
UNIT-4 

ELEMENTS OF INFORMATION 
THEORY 

1 



 “If the rate of Information is less  

than the Channel capacity then there  

exists a coding technique such that  

the information can be transmitted  

over it with very small probability of  

error despite the presence of noise.”  

Summary of Concepts/theorems 
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What is Information? 
 For a layman, whatsoever may be the meaning 

of information but it should have following 
properties 

 

• The amount of information (Ij) associated 
with any happening ‘j’ should be inversely 
proportional to its probability of 
occurrence. 

 

• Ijk  = Ij + Ik ; if events i and j are independent. 
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Technical aspects of Information 

•  Shannon proved that the only mathematical function 
which can retain the previously stated properties of 
information for a symbol produced by a discrete source 
is  

 Ii = log(1/Pi) bits 
 The base of log (if 2) define the unit of information 

(then bits) 

 

• A single binary digit (binit) may carry more/less than 
one bit (may not be integer) information depending 
upon its source probability. 
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Where is the difference? 

• Human mind is more intelligent than any machine. 
 

• Suppose a 8 month old child picks up the phone 
and pressed redial button if you are at the 
receiving end you will immediately realize that 
something like this has been happened and 
whatsoever he is saying it conveys no information 
to you. 
 

• But for the system, which is less intelligent than 
us, it is a message with very small probability thus 
it is treated as most informative message. 
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Source Entropy 

• Defined as average amount of information 
produced by the source, denoted by H(x). 

 

• Find H(x) for a discrete source which can 
produce ‘n’ different symbols in a random 
fashion. 

 

• There is a binary source with symbol 
probabilities ‘p’ and (1-p). Find the maximum 
and minimum value of H(x). 
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• H(x) = ∑ xi*P(xi) ; If X is discrete 

        ∫ x*p(x) dx ; If X is continuous. 

,H(x)= 1/N(N1*x1+N2*x2+ …….)- 

 

•  H(x) = Ω (p) = p*log(1/p) + (1-p)*log(1/(1-p))  

{can be solved as simple Maxima-Minima problem} 

p 

Ω (p) 

0 0.5 1 

1 
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Entropy of a M-ary source 
• There is a known 

mathematical inequality 

(V-1) >= log V  

equality holds at V=1 

 

• Let V = (Qi/Pi) ; such that ∑Qi 
= ∑Pi =1 

   ( P may be assumed as set of 

source symbol probabilities and Q 
is another independent set of 
probabilities having same number 
of elements) 

v=1 

v -1 

log(v) 
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• thus, {(Qi/Pi) – 1}>= log (Qi/Pi) 

  

• Pi*{(Qi/Pi) – 1}>= Pi* log (Qi/Pi) 

 

• ∑ Pi*,(Qi/Pi) – 1->= ∑ Pi* log (Qi/Pi) 

 

• ,∑ Qi - ∑ Pi - = 0 >= ∑ Pi* log (Qi/Pi) 

 

• ∑ Pi* log (Qi/Pi) <= 0 

 

• Let Qi=1/M (all events are equally likely) 

 

• ∑ Pi* log (1/M*Pi) <= 0 
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• ∑ Pi* log (1/Pi) – log (M) ∑ Pi <=0 

  

• H(x) <= log (M) 

 

• Equality holds when v=1 i.e. Pi=Qi i.e. P should also be a 
set of equally likely events. 

 

• Conclusion- 

 “A source which generates equally likely symbols will 
have maximum avg. information”   

 

 “Source coding is done to achieve it” 
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Coding for Memoryless source 

• Generally the information source is not of 
designers choice thus source coding is done 
such that it appears equally likely to the 
channel. 

 

• Coding should neither generate nor destroy any 
information produced by the source i.e. the 
rate of information at I/P and O/P of a source 
coder should be same. 

11 



Rate of Information 

• If the rate of symbol generation of a source, with 
entropy H(x), is r symbols/sec. then  

R = r*H(x) and R<= r*log (M) 

 

•  If a binary encoder is used then  

o/p rate = rb* Ω (p)  and <= rb  
(if the 0’s and 1’s are equally likely in coded seq) 

 

• Thus as per basic principle of coding theory 

 R {= r*H(x)} <= rb ; H(x) <= rb/r ; H(x)<= N 

•  Code efficiency = H(x)/N <=100% 
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Uniquely Decipherability (Kraft’s inequality) 

• A source can produce four symbols 

 {A(1/2, 0); B(1/4, 1); C(1/8, 10); D(1/8, 11)}.  

[symbol (probability, code)] 

Then H(x)= 1.75 and N = 1.25 so efficiency > 1  

where is the problem? 
• Kraft’s inequality 

K = ∑2 -Ni <= 1  

13 



Source coding algorithms 
• Comma code 

 (each word will start with ‘0’ and 
one extra ‘1’ at the end. first 
code = 0) 

• Tree code 

 (no code word appears as prefix 
in another codeword, first code 
= 0) 

• Shannon – Fano 

  ( Bi partitioning till last two 
elements. ‘0’ in upper/lower 
part and ‘1’ in lower/upper part) 

• Huffman 

 (adding two least symbol 
probabilities and 
rearrangement till two 
elements, back tracing for 
code.) 

•  nth extension 

 (form a group by combining ‘n’ 
consecutive symbols then code 
it.) 

•  Lempel – Ziv 

 (Table formation for 
compressing binary data) 
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Source Coding Theorem 

H(x)<=N< H(x) + φ ; φ should be very small. 
Proof: 

• It is known that ∑ Pi* log (Qi/Pi) <= 0 
 

• As per Kraft’s inequality 1 = (1/K)∑2 -Ni , thus it can be 
assumed that Qi = 2-Ni/K (so that addition of all Qi =1). 

 
• Thus, ∑ Pi*,log(1/Pi) – Ni – log (K)} <=0 

 
• H(x) – N – log (K)<=0; H(x)<= N + log (K) 

 
• since log (K)<=0 (as 0<K<=1) thus H(x)<=N 

 
• For optimum codes K=1 and Pi=Qi 15 



Symbol Probability Vs code length 

• We know that an optimum code requires K=1 and 
Pi=Qi 

• Thus, Pi = Qi = 2-Ni/K(=1) thus Ni =  log(1/Pi) 

• Ni = Ii   

 (the length of code should be (inversely) 
proportional to its information (probability)) 

  

 Samuel Morse applied this principle long before 
Shannon has mathematically proved it  
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Predictive run encoding 

• ‘run of n’ means ‘n’ successive 
0’s followed by a 1. 

• m = 2k-1 

• k-digit binary codeword is sent 
in place of a ‘run of n’ such 
that 0<=n<=m-1 

n Encoding Decoding 

0 00…00(k) 1 

1 00…01 01 

2 00...10 001 

- - - 

- - - 

m-1 11…10 00..01 

>=m 11…11 00..00 (m) 
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Designing parameters 

• A run of n has total n+1 bits. If ‘p’ is the probability of 
correct prediction by the predictor then the probability of a 
run of n is P(n)= pn*(1-p). 

 

• E*n+ = E = ∑(n+1)*P(n); (for 0<=n<=infinity) = 1/(1-p) 

 

• The series (1-v)-2=1+2v+3v2+------; for v2<1 is used. 

 
• If n>m such that (L-1)*m<=n<=L*m – 1 then number of 

codeword bits required to represent it will be N=L*k 

 

• Write an expression for avg. no. of code digits per run. 18 



• N = k* ∑P(n);0<=n<=(m-1) 

   +2k*∑ P(n);(m-1)<=n<=(2m-1) 

    +3k*∑ P(n);(m-1)<=n<=(2m-1) +……. 

 

• It can be solved to N = k/(1-pm)-2 

 

• There is an optimal value of k which minimizes N 
for a given predictor. 

 

• N/E = rb/r; measures the compression ratio. It 
should be as low as possible. 
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Information Transmission 
Channel Types:- 
 
• Discrete Channel produces discrete symbols at the 

receiver. (source is implicitly assumed to be discrete) 
 
• Definitely, the channel noise converts a discrete signal 

into continuous but it is assumed that the term 
‘channel’ includes an pre processing section which will 
again convert it into discrete nature and it is supplied 
to the receiver. 

 
• The continuous channel analysis does not involve 

above assumptions. 
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Discrete Channel Examples 

• Binary Symmetric Channel (BSC) 

 2 source and 2 receiver symbols.  

(single threshold detection) 

 

• Binary Erasure Channel (BEC) 

2 source and 3 receiver symbols. 

(two threshold detection) 
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Discrete channel analysis 

• P(xi); Probability that the source selects symbol xi 
for Tx. 

 

• P(yj); Probability that symbol yj is received. 

 

• P(yj|xi) is called forward transition probability. 

 

• Mutual information measures the amount of 
information transferred when xi is transmitted 
and yj is received. 
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Mutual Information (MI) 

• If we happen to have an ideal noiseless channel then 
definitely each yj uniquely identifies a particular xi; then 
P(xi|yj)=1 and MI is expected to be equal to self 
information of xi. 
 

• On the other hand if channel noise has such a large 
effect that yj is totally unrelated to xi then P(xi|yj)=P(xi) 
and MI is expected to be zero. 
 

• All real channels falls between these two extremes. 
 

• Shannon suggested following expression for MI which 
does satisfy both the above conditions 

I(xi;yj) = log {P(xi|yj) / P(xi)} bits 
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Discrete Channel Capacity 

• Being a stochastic process, Instead of I(xi,yj) the quantity of 
interest is I(X;Y), the Avg MI, defined as the average 
amount of source information gained per received symbol. 

 

• I(X;Y) = ∑ P(xi,yj)*I(xi;yj); (for all possible values of i and j) 

 

• Discrete Channel Capacity (Cs) = max I(X;Y). 

 

• If ‘s’ symbols/sec is the maximum symbol rate allowed by 
the channel then channel capacity (C) = s*Cs bits/sec i.e. 
maximum rate of information transfer. 
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Channel Capacity 

•  Capacity in the channel is defined as a 
intrinsic ability of a channel to convey 
information 

• Using mutual information the channel 
capacity of a discrete memoryless 
channel is a maximum average mutual 
information in any single use of channel 
over all possible probability distributions 



Discrete Memoryless Channels 

•  Example : Binary symmetric channel revisited 
– capacity of a binary symmetric channel with given 

input probabilities 

– variability with the error probability 



Channel Coding Theorem 

•  Channel coding consists of mapping the 
incoming data sequence into a channel 
input sequence and vice versa via 
inverse mapping 

– mapping operations performed by encoders 

Source Channel 

Encoder 
Channel Channel 

decoder 
Destinatio

n 



Information Capacity Theorem 

•  A channel with noise and the signal are 
received is described as discrete time, 
memoryless Gaussian channel (with 
power-limitation) 

– example : Sphere Packing 



Implications of the Information 
Capacity Theorem 

• Set of M-ary examples 



Shannon’s fundamental theorem 

• It is intuitive that R <= C otherwise the channel will 
cause distortion which in turn will increase the error 
rate even if the channel is noiseless. 

 

• Shannon combined the above result with source and 
channel coding theory and stated that 

  

 “If R<C, then there exists a coding technique such that 
the O/P of a source can be transmitted over the 
channel with an arbitrarily small frequency of errors.” 
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 The general proof of theorem is well beyond the scope of this course but 
following cases may be considered to make it plausible –  

(a) Ideal Noiseless Channel 

• Let it has m=2k symbols then   

 Cs= max I(X;Y)= max H(x) = log(m)= k and C = s*k.  

 

• Errorless transmission rests on the fact that the channel itself is 
noiseless. 

 

• If R is rate of information of source, rb is rate of binary encoder 
then rate of symbol to the channel (o/p of binary to m-ary block) 
will be  

 s = rb/log(m)= rb/k thus rb= s*k = C 

 

• We have already proved that rb>=R otherwise it will violate Kraft’s 
inequality thus C>=R 
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(b) Binary Symmetric Channel  
 
•  I (X;Y) = Ω(α + p - 2*p*α) - Ω(α); Ω(α) being constant for 

a given α.  
 

• Ω(α + p - 2*p*α) varies with source probability p and 
reaches a maximum value of unity at (α+p - 2*p*α)=1/2. 
 

• Ω(α + p - 2*p*α) =1 if p=1/2; irrespective of α (it is 
already proved that Ω(1/2)=1). 
 

• Using an optimum source coding technique p=1/2 can be 
achieved. 
 

• Thus Cs = max I(X;Y) = 1- Ω(α) and C=s*{1- Ω(α)}. 
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• In figure 1, C decreases to zero and again it 
increases to one, as alpha varies from 0 to 1. 
Explain the reason.   

 

• Please write it down in your notebook. 

Ω (α) 

0 0.5 1 

1 
C 

0 0.5 1 

1 

α 
α 

Fig.2 
Fig.1 
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• p=1/2 can be achieved by optimum source coding.  

• Extra bits are required to be added for error control 
(concept of redundancy).  

• If q redundant bits are added to a k bit message then 
code rate Rc = k/(k+q)<1. 

 

• Effect of decrease in Rc (by increasing ‘q’) - 

(a) The value of α decreases thus the capacity will 
increase. 

(b) Effective message digit rate rb = Rc*s and 
Information rate (R) <= rb thus the effective R will 
decreases. 
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GAUSSION CHANNLE 
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Gaussian Channel in Standard Form 
 
 

X1 

√h21 

√h12 X2 

Y1 

Y2 

1 

1 

channel 
encoder 1 

encoder 2 

X1 

X2 

W1 

W2 

W1 

^ 

decoder 1 

decoder 2 

Y1 

Y2 W2 

  ^  

p(y1,y2|x1,x2) 

Interference Channel  

221122

122111

ZXXhY

ZXhXY





Z1~ N (0,1), Z2~ N (0,1) where  
 
 

How to cope with interference is not well understood 
The interference channel capacity is a long standing open problem 
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Strong Interference  

• Capacity region known if there is strong interference: 

Capacity region = Capacity region of a compound MAC in which both 
messages are decoded at both receivers [Ahlswede, 1974] 

)|;()|;(

)|;()|;(

112122

221211

XYXIXYXI

XYXIXYXI





For the Gaussian channel in standard form, this means  
[Sato, Han&Kobayashi, 1981] 

1

1

21

12





h

h

 for all input product probability distributions [Costa&El Gamal,1987] 
 

Focus of this work: strong interference 
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Compound MAC 

Source 1 

Source 2 

Decoder 1 

Decoder 2 

W1 

W2 

(W1, W2) 

(W1, W2) 
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Cooperation in Interference Channel 

Not captured in the interference channel model: 
Broadcasting: sources “overhear” each other’s transmission 
Cooperation 

Our goal: consider cooperation and derive capacity results 
Work on more involved problems than already unsolved? 
What are insightful and tractable channel models? 
How do we model cooperation? 
 

 

channel 
encoder 1 

encoder 2 

X1 

X2 

W1 

W2 

W1 

^ 

decoder 1 

decoder 2 

Y1 

Y2 W2 

  ^  

p(y1,y2|x1,x2) 
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• Full  cooperation: MIMO broadcast channel 
–  DPC optimal [Weingarten, Steinberg & Shamai, 04], [Caire &    Shamai, 01], [Viswanath, Jindal & Goldsmith, 02] 

• Several cooperation strategies proposed  
 [Host-Madsen, Jindal, Mitra& Goldsmith, 03, Ng & Goldsmith, 04] 
 

• [Jindal, Mitra& Goldsmith, Ng& Goldsmith]: 
– Gain from DPC when sources close together 
– When apart, relaying outperforms DPC 
– Assumptions: 
– Dedicated orthogonal cooperation channels  
– Total power constraint 

 

Transmitter Cooperation for Gaussian 
Channels 

S1 

S2 

R1 

R2 

S1 

S2 

R1 

R2 
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Transmitter Cooperation In Discrete 
Memoryless Channel  

MAC with partially cooperating encoders [Willems, 1983] 
 
Capacity region CMAC (C12,C21) determined by Willems, 1983 

 
Communication through conference 
 
 
 
 
 
 
Realistic model 
 
 

C21 
channel 

encoder 1 

encoder 2 

  decoder 

X1 

X2 

W1 

W2 

Y (W1, 
^ 

 W2) 
^ 

C12 
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Each transmitter sends K symbols 
 

V1k depends on previously received 
 
 
 
 

Alphabet size of        is at most NC12 

 

 

 

Alphabet size of        is at most NC21 

Cooperation through Conference 
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Partial Transmitter Cooperation 

channel 

encoder 1 

encoder 2 

decoder 1 

decoder 2 

X1 

X2 

W1,W0 

W2,W0 

Y1 

Y2 

In the conference: partial information about messages W1, W2 
exchanged between encoders 

After the conference:  
Common message at the encoders 
 

Encompasses scenarios in which encoders have a partial knowledge 
about each other’s messages  
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Transmitter Cooperation 
Limited cooperation allows transmitters to exchange partial information 

about each other messages 
After cooperation 

 Common message known to both encoders 
 Private message at each encoder 

In the strong interference, the capacity region tied to the capacity 
     region of The Compound MAC with Common Information  

Two MAC channels with a common and private messages 
 

   common 

private 

private 

channel 

encoder 1 

encoder 2 

decoder 1 

decoder 2 

X1 

X2 

W1 

W2 

Y1 

Y2 

W0 

(W1,W2, W0) 
 ^           ^  ^ 

(W1,W2, W0) 
 ^           ^   ^ p(y1,y2|x1,x2) 
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Compound MAC with Common 
Information 

Source 1 

Source 2 

Decoder 1 

Decoder 2 

W1,W0 

W2,W0 

(W1, W2,W0) 

(W1, W2,W0) 
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The Compound MAC with Common 
Information 

• Encoding 
 

• Decoding 
 

• The error probability 
 

• (R0, R1, R2) achievable if, for any       , there is an (M0, M1, M2, N, Pe) code such that 
 

• The capacity region is the closure of the set of all achievable  
(R0, R1, R2)  

– Easy to determine given the result by [Slepian & Wolf, 1973] 
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Capacity region [ Slepian & Wolf , 1973] 
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The MAC with Common Information 
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Capacity region [ Slepian & Wolf , 1973] 
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The Compound MAC with Common 
Information 

 
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Capacity region [MYK, ISIT 2005] 
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    pp
p

21 MACMACCMAC RR C

                   union over p(u)p(x1|u)p(x2|u)p(y1,y2|x1,x2)  

 
• For each p : ( R0,R1,R2 ) is an intersection of rate regions RMACt achieved in two 

MACs with common information: 
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Converse 
• Error probability in MACt 

  
• Error probability 

 in CMAC 

 
   

 

→ Necessary condition for                : 

 
→ Rates confined  to R MAC1 (p) and R MAC2 (p) for every p 
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• From Slepian and Wolf result, choosing the rates ( R0,R1,R2 ) in 

 

 

     will guarantee that Pe1 and Pe2 can be made arbitrarily small  
 

→ Pe will be arbitrarily small    

 
21 MACMAC RR 

Achievability  
The probability of error 
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Implications 

• We can use this result to determine the capacity region of several 
channel with partial transmitter cooperation: 

 

1. The Strong Interference Channel with Common Information 

 

2. The Strong Interference Channel with Unidirectional Cooperation 

 

3. The Compound MAC with Conferencing Encoders 
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Compound MAC with common information 

After The Conference 

   common 

private 

private 

channel 

encoder 1 

encoder 2 

decoder 1 
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Relax the decoding constraints: 
Each receiver decodes only one private message 
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Theorem 
• For the interference channel with common information satisfying  

 

 

     

    for all product input distributions  the capacity region C is 
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Capacity region = capacity region of the compound MAC with 
                                  common information 
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Proof 
• Achievability 

– Follows directly from the achievability in the Compound MAC with 
common information 

• Decoding constraint is relaxed 

• Converse 

– Using Fano’s inequality 

– In the interference channel with no cooperation: outer bounds rely 
on the independence of X1 and X2 

– Due to cooperation: Codewords not independent 

 

• Theorem conditions obtained from the converse 
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Relationship to the Strong Interference 
Conditions 
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  Strong interference channels conditions  
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Interference Channel With 
Unidirectional Cooperation 

channel 

encoder 1 

encoder 2 

decoder 1 

decoder 2 

X1 

X2 

W1 

W2 

Y1 

Y2 

W1  
^  

W2 
^  

• Encoding functions 

 

• Decoding functions 

 tttte WgPP  )(, YThe error probability 
 

},max{ 2,1, eee PPP  2,1tfor 
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
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The difference from the interference channel: one encoder knows both 
messages 
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Cognitive Radio Settings 
• Cognitive Radio Channel [Devroye, Mitran, Tarokh, 2005] 

– An achievable rate region 
• Consider simple two-transmitter, two-receiver network: 
 Assume that one transmitter is cognitive 

– It can “overhear” transmission of the primary user 
– It obtains partially the primary user’s message  it can cooperate 
  

Secondary user 

Primary user 

Decoder 1 

Decoder 2 

(cognitive radio) 

 Interference channel with unidirectional cooperation 
 

The assumption that the full message W1 is available at the cognitive 
    user is an over-idealization 
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Interference Channel with Unidirectional Cooperation  
 

• The Interference Channel with Unidirectional Cooperation  

[Marić, Yates & Kramer, 2005] 
– Capacity in very strong interference 

• The Interference Channel with Degraded Message Set  

[Wu, Vishwanath & Arapostathis, 2006] 
– Capacity for weak interference and for Gaussian channel in weak 

interference 

• Cognitive Radio Channel [Joviċić& Viswanath, 2006] 
– Capacity for Gaussian channel in weak interference 

• The Interference Channel with a Cognitive Transmitter  

[Marić, Goldsmith, Kramer& Shamai, 2006] 
– New outer bounds and an achievable region 
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• For the interference channel with unidirectional cooperation satisfying  
 
 

    for all joint input distributions  p(x1,x2),  the capacity region C is  
 
 
 
 

 
• Capacity region = capacity region of the Compound MAC channel with 

Common Information 
 

Theorem 
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where the union is over p(x1,x2)p(y1,y2|x1,x2). 
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Achievability: Compound MAC with 
Common Information   

 Encode as for a Compound MAC with Common Information 
 Due to unidirectional cooperation:  

 W1 is a common message 
 encoder 1 has no private message R’0=R1, R’1=0 choose: U=X1 
 

   common 

private 

channel 

encoder 1 

encoder 2 

decoder 1 

decoder 2 

X1 

X2 

Y1 

Y2 

W1 

W2 

(W1,W2) 
 ^           ^ 

(W1,W2) 
 ^ ^ 

 :),( 21 RRCMAC C  
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Converse 
• Using Fano’s inequality 

 

• Interference channel with no cooperation: outer bounds rely on 
the independence of X1 and X2 

 

• Due to cooperation: Codewords not independent 

 

• Theorem conditions obtained from the converse 
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Converse (Continued ) 

• Lemma: If per-letter conditions                 are satisfied for all p(x1,x2), 
then  

),|;(),|;( 11121122 WIWI XYXXYX 

)|X;YI(X)|X;YI(X 112122 

Proof: Similar to proof by [Costa& El Gamal,1987]  
with the changes  
X1, X2 not independent 
Conditioning on W1   

We would  next like 
 

But because the situation is asymmetric, this seems difficult 
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Converse (Continued ) 
• Recall that the achievable rates are  

 

 
 

• By assumption, for all p(x1,x2) 

 

 
 

• The rates 

 

           union over all p(x1,x2) 

 are thus achievable and are an outer bound 
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Gaussian Channel 
• Channel outputs: 

Power constraints: 

iiii

iiii

zxxhy

zxhxy
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122111
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i

tti

Z1~ N (0,1) 

Z2~ N (0,1) 

Noise: 
 

S1 

S2 

x1 

√h21 

√h12 x2 

y1 

y2 

1 

1 
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 Encoder 2: - Dedicates a portion P2 to help 
                        -Uses superposition coding 
 

Capacity Achieving Scheme in Strong 
Interference 

1

1

2
202 X

P

P
XX
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2P
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 220 ,0~ PX 

• Encoder 1: Codebook x1(w1)  

 

 11 ,0~ PX 12,...,11

NR
w 

2P

 Decoders reduce interference as they can decode each other’s messages 
 

1W

2W

dec 1 

dec 2 

enc 1 

enc 2 

√h21 

√h12 
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Interference channel  
– no cooperation:  

 
Interference channel  

with common information: 
 
Unidirectional cooperation: 
    - more demanding 

  conditions  
 

For P1= P2    sufficient 
        conditions: 

For P1= 0    conditions never satisfied  
Channel reduces to a degraded broadcast channel from sender 2 

Gaussian Channel- Strong Interference 
Conditions 
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Gaussian Channel with Unidirectional 
Cooperation 

h12  

1  

 weak  
 
 

strong  
 
 

interference 
 
 

1/ 21  PPLet 
 

h21  1  

Sufficient conditions: 

121

2112





h

hh

 Weak and strong interference    
   regime solved 
 Our current work: in between      
   regime 

s1 s2 d2 d1 

Strong interference scenario: 
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Gaussian Channel With Conferencing 

• Channel outputs: 

Power constraints: 

iiii

iiii

zxxhy

zxhxy
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Noise: 
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Note: additional resources 
 needed for the conference 

 

C12 C21 
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a = 0 

max sum rate 

c=0 
(no cooperation) 

Gaussian Channel With Conferencing 

a increases 

Symmetric channel 

21

21 ][

PP

XXE
a 

a=0:  X1, X2 independent 
 
Max sum-rate: 
    Two sum-rate bounds equal 

h12 = h21= h 

P1  = P2  = P 

c  = c12 = c21 

Zt ~ N (0,1)  t=1,2 
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a = 0 

max sum rate 
c=0 

(no cooperation) 

c=0 
(no cooperation) 

Gaussian Channel With Conferencing 

                 
Sender t power, t=1,2: 
 

 
 
 

 
Pc-conference power 

a increases 
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Large c: 
Rate region 
 
 
→ Maximized for a=1 

 

Senders able to exchange indexes 
W1 and W2 

→ Full cooperation condition 
 
 
→ Less cooperation needed   

  as the receivers further away 

Full Cooperation in Gaussian Channel 
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Interference Channel With 
Conferencing • Relax the constraint → Each user decodes only one message: 

     Strong interference conditions? 
• After the conference 

   common 

private 

private 

channel 

encoder 1 

encoder 2 

decoder 1 

decoder 2 

X1 

X2 

W1 

W2 

Y1 

Y2 

W0 

(W1,W01 ) 
 ^  ^ 

(W2,W02 ) 
 ^  ^ 

Common message contains information about both original messages 
                                  W0=(W01,W02) 

Decoders are  interested in a part of the common message 
Strong interference conditions? 



75 

Encompasses various models: 
MIMO broadcast 
Unidirectional cooperation 
Partial cooperation 
 

Strong Interference conditions? 

Interference Channel With 
Conferencing 

(W1,W01) 
 ^  ^ 

channel 

encoder 1 

encoder 2 

decoder 1 

decoder 2 

X1 

X2 

W1   W01  W02 

Y1 

Y2 

W2   W01  W02 (W2,W02) 
 ^  ^ 



76 

Discussion 
• Introduced cooperation into the Interference Channel: 

– Capacity results for scenarios of strong interference 

– If the interference is strong : decoders can decode the interference 

– No partial decoding at the receivers → easier problem 

 

– Ongoing work:  

– Channel models that incorporate node cooperation 

• Capture characteristics of cognitive radio networks 

– Capacity results and cooperation gains for more general settings 
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a = 0 

max sum rate 

a increases 
  A B 

The Gaussian Channel Capacity Region 

c+R1 

)(hPC

Corner A: 
S1 acts as a relay: 

Sends at rate c 
S2 sends independent 

 information at rate 
 
Corner B: 
In addition, S1 sends own data 
Sum-rate for a=0 achieved 
 
 

)(hPC

)(21 PhPCRR 

c 

S2 

S1 

c=0 
(no cooperation) 



78 

Interference Channel with Confidential Messages  

channel 
encoder 1 

encoder 2 

X1 

X2 

W1 

W2 

W1 

^ 

decoder 1 

decoder 2 

Y1 

Y2 W2 

  ^  

p(y1,y2|x1,x2) 

 
 
 
Interference Channel 

W1 

W2 
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Interference Channel with 
Confidential Messages 

• Joint work with: Ruoheng Liu, Predrag Spasojevic and Roy D. Yates  
• Developed inner and outer bounds 

Receiver 1 

Transmitter 1 

encoder 1 

encoder 2 

decoder 

X1 

X2 

W1 

W2 

W1 
  ^ 

channel 

p(y1, y2|x1, x2) 

Y1 

Transmitter 2 

H(W2| Y1,W1) 

Receiver 2 

decoder W2 
  ^ 

H(W1| Y2,W2) 

Y2 
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The Compound MAC With Conferencing Encoders  

channel 
encoder 1 

encoder 2 

X1 

X2 

W1 

W2 

C21 C12 

decoder 1 

decoder 2 

Y1 

Y2 

(W1,W2) 
^ ^ 

(W1,W2) 
^ ^ p(y1,y2|x1,x2) 

Adopt Willems’ cooperation model 
Decoding constraint: Both messages decoded by both receivers 

 
Encoding: 
 
Decoding: 
 
The probability of error: 
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Theorem 
• The Compound MAC capacity region C (C12,C21) is 

 
 
 
 
 
 
 

union over p(u)p(x1|u)p(x2|u)p(y1,y2|x1,x2) denoted p 
• For each p : Intersection between rate regions of two MACs with  partially cooperating encoders 
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Gaussian Channel With Conferencing 
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Use the maximum entropy theorem 
The Gaussian C-MAC capacity region 

For C12=C21=0: optimum choice is a=0, b=0 


