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PROCESS STATES AND TRANSITIONS

the lifetime of a process can be conceptually divided into

a set of states that describe the process. The following list contains the complete
set of process states.

1:
2.
3

el

The process is executing in user mode.

The process is executing in kernel mode.

The process is not executing but is ready to run as soon as the kernel
schedules it.

The process is sleeping and resides in main memory.

The process is ready to run, but the swapper (process 0) must swap the
process into main memory before the kernel can schedule it to execute.
Chapter 9 will reconsider this state in a paging system.

The process is sleeping, and the swapper has swapped the process to
secondary storage to make room for other processes in main memory.

The process is returning from the kernel to user mode, but the kernel
preempts it and does a context switch to schedule another process. The
distinction between this state and state 3 (“ready to run’) will be brought out
shortly.

The process is newly created and is in a transition state; the process exists,
but it is not ready to run, nor is it sleeping. This state is the start state for
all processes except process 0.

The process executed the exit system call and is in the zombie state. The
process no longer exists, but it leaves a record containing an exit code and
some timing statistics for its parent process to collect. The zombie state is
the final state of a process.
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Figure 6.1. Process State Transition Diagram




The fields in the process table are the following.

e The state field identifies the process state.
e The process table entry contains fields that allow the kernel to locate the process
and its u area in main memory or in secondary storage. The kernel uses the

information to do a context switch to the process when the process moves from
state ‘““ready to run in memory” to the state ‘“‘kernel running’ or from the state
“preempted” to the state ““user running.” In addition, it uses this information
when swapping (or paging) processes to and from main memory (between the
two “in memory” states and the two “swapped” states). The process table
entry also contains a field that gives the process size, so that the kernel knows
how much space to allocate for the process.

Several user identifiers (user IDs or UIDs) determine various process privileges.
For example, the user ID ficlds delinecate the sets of processes that can send
signals to each other, as will be explained in the next chapter.

Process identifiers (process IDs or PIDs) specify the relationship of processes to
cach other. These ID fields are set up when the process enters the state
“created” in the fork system call.

The process table entry contains an event descriptor when the process is in the
“sleep™ state. This chapter will examine its use in the algorithms for sleep and
wakeup .

Scheduling parameters allow the kernel to determine the order in which
processes move to the states “‘kernel running’ and *‘user running.”

A signal field enumerates the signals sent to a process but not yet handled
(Section 7.2).

Various timers give process execution time and kernel resource utilization, used
for process accounting and for the calculation of process scheduling priority.

One field is a user-set timer used to send an alarm signal to a process (Section
8.3).
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The u area contains the following fields that further characterize the process
states. Previous chapters have described the last seven fields, which are briefly
described again for completeness.

e A pointer to the process table identifies the entry that corresponds to the u area.

o The real and effective user IDs determine various privileges allowed the process,
such as file access rights (see Section 7.6).

o Timer fields record the time the process (and its descendants) spent executing in
user mode and in kernel mode.

* An array indicates how the process wishes to react to signals.

e The control terminal field identifies the “login terminal” associated with the
process, if one exists.

e An error field records errors encountered during a system call.

e A return value field contains the result of system calls.

o [/O parameters describe the amount of data to transfer, the address of the
source (or target) data array in user space, file offsets for I/0, and so on.

o The current directory and current root describe the file system environment of

the process.
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o The user file descriptor table records the files the process has open.
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Figure 7.1. Process System Calls and Relation to Other Algorithms




PROCESS CREATION

The only way for a user to create a new process in the UNIX operating system is
to invoke the fork system call. The process that invokes fork is called the parent
process, and the newly created process is called the child process. The syntax for
the fork system call is

pid = fork();

On return from the fork system call, the two processes have identical copies of their
user-level context except for the return value pid. In the parent process, pid is the
child process ID; in the child process, pid is 0. Process 0, created internally by the
kernel when the system is booted, is the only process not created via fork.

The kernel does the following sequence of operations for fork.

1. It allocates a slot in the process table for the new process.

2. It assigns a unique ID number to the child process.

It makes a logical copy of the context of the parent process. Since certain

portions of a process, such as the text region, may be shared between

processes, the kernel can sometimes increment a region reference count

instead of copying the region to a new physical location in memory.

4. It increments file and inode table counters for files associated with the
process.

5. It returns the ID number of the child to the parent process, and a 0 value to I

o

the child process.



algorithm fork

input: none

output: to parent process, child PID number
to child process, O

{

check for available kernel resources;
get free proc table slot, unique PID number;
check that user not running t00 many processes;
mark child state "being created;"
copy data from parent proc table slot to new child slot;
increment counts on current directory inode and changed root (if applicable);
increment open file counts in file table;
make copy of parent context (u area, text, data, stack) in memory;
push dummy system level context layer onto child system level context;
dummy context contains data allowing child process
to recognize itself, and start running from here
when scheduled;
if (executing process is parent process)
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change child state to "ready to run;”
return(child ID); /* from system to user */
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else /* executing process is the child process */

initialize u area timing fields;
return(0); /* to user */

Figure 7.2. Algorithm for Fork
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#include <fcntl.h>
int fdrd, fdwt;
char c;
main{(argc, argv)
int argc;
char *argvll;
{
if (argc ' 3) %
exit(1); 15
if ((fdrd = openfargvil]l, O RDONLY)) == —1) <
exit(1); z
if ((fdwt = creat(argvl2], O666)) === —1) S
exit(1); =
C
forkQ; 'é
/* both procs execute same code */ 5
rdwrtQ; 5
exit(0); %
} >
£
1('dwrt() %
for (3)
{
if (read(fdrd, &c, 1) ' 1)
return;
write(fdwt, &c, 1);
}
}

Figure 7.4. Program where Parent and Child Share File Access




7.3 PROCESS TERMINATION

Processes on a UNIX system terminate by executing the exit system call. An
exiting process enters the zombie state (recall Figure 6.1), relinquishes its
resources, and dismantles its context except for its slot in the process table. The

syntax for the call is
exit(status);

where the value of status is returned to the parent process for its examination.
Processes may call exit explicitly or implicitly at the end of a program: the startup
routine linked with all C programs calls exit when the program returns from the
main function, the entry point of all programs. Alternatively, the kernel may |
invoke exit internally for a process on receipt of uncaught signals as discussed
above. If so, the value of status is the signal number.

The system imposes no time limit on the execution of a process, and processes
frequently exist for a long time. For instance, processes 0 (the swapper) and |
(init) exist throughout the lifetime of a system. Other examples are getty
processes, which monitor a terminal line, waiting for a user to log in, and special-
purpose administrative processes.
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algorithm exit
input: return code for parent process
output: none
{
ignore all signals;
if (process group leader with associated control terminal)
{
send hangup signal to all members of process group;
reset process group for all members to 0;
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}

close all open files (internal version of algorithm close);

release current directory (algorithm iput);

release current (changed) root, if exists (algorithm iput);

free regions, memory associated with process (algorithm freereg);

write accounting record;

make process state zombie

assign parent process ID of all child processes to be init process (1);
if any children were zombie, send death of child signal to init;

send death of child signal to parent process;

context switch;
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Figure 7.14. Algorithm for Exit




7.6 THE USER ID OF A PROCESS

The kernel associates two user IDs with a process, independent of the process ID:
the real user ID and the effective user ID or setuid (set user ID). The real user ID
identifies the user who is responsible for the running process. The effective user ID
is used to assign ownership of newly created files, to check file access permissions,
and to check permission to send signals to processes via the kill system call. The
kernel allows a process to change its effective user ID when it execs a setuid
program or when it invokes the setuid system call explicitly.

A setuid program is an executable file that has the seruid bit set in its
permission mode field. When a process execs a setuid program, the kernel sets the
effective user ID fields in the process table and u area to the owner ID of the file.
To distinguish the two fields, let us call the field in the process table the saved user
ID. An example illustrates the difference between the two fields.

The syntax for the setuid system call is

setuid (uid)

where wid is the new user ID, and its result depends on the current value of the
effective user ID. If the effective user ID of the calling process is superuser, the
kernel resets the real and effective user ID fields in the process table and u area to
uid. If the effective user ID of the calling process is not superuser, the kernel
resets the effective user ID in the u area to uid if uid has the value of the real user
ID or if it has the value of the saved user ID. Otherwise, the system call returns
an error. Generally, a process inherits its real and effective user IDs from its
parent during the fork system call and maintains their values across exec system
calls.
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7.7 CHANGING THE SIZE OF A PROCESS

A process may increase or decrease the size of its data region by using the brk
system call. The syntax for the brk system call is

brk(endds);

where endds becomes the value of the highest virtual address of the data region of
the process (called its break value). Alternatively, a user can call

oldendds = sbrk(increment):
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where increment changes the current break value by the specified number of bytes,
and oldendds is the break value before the call.



| {

algorithm brk
input: new break value
output: old break value

lock process data region;
if (region size increasing)
if (new region size is illegal)
{
unlock data region;
return{error) ;
}
change region size (algorithm growreg);
zero out addresses in new data space;
unlock process data region;
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Figure 7.26. Algorithm for Brk
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Figure 6.30. Processes Sleeping on Events and Events Mapping into Addresses




algorithm sleep
input: (1) sleep address
(2) priority
output: 1 if process awakened as a result of a signal that process catches,
longjump algorithm if process awakened as a result of a signal
that it does not catch,
O otherwise;

raise processor execution level to block all interrupts;
set process state to sleep;
put process on sleep hash queue, based on sleep address;
save slecp address in process table slot;
set process priority level to input priority;
i{f (process slecp is NOT interruptible)
do context switch;
/™ process resumes execution here when it wakes up */
resct processor priority level to allow interrupts as when
process went to sleep;
return (0);
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}

/™ here, process sleep is interruptible by signals */

if (no signal pending against process)

{
do context switch;
/* process resumes execution here when it wakes up */
if (no signal pending against process)

{
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reset processor priority level to what it was when
process went Lo sleep;
return (0);
}

}
remove process from sleep hash queune, if still there;
reset processor priority level to what it was when process went to sleep;
if (process sleep priority set Lo catch signals)

return (1)
do longjimp algorithm;

Figure 6.31. Sleep Algorithm




algorithm wakeup /* wake up a sleeping process */
input: sleep address
output: none
{
raise processor execution level to block all interrupts;
find sleep hash queue for sleep address;
for (every process asleep on sleep address)
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remove process from hash queue;
mark process state "ready to run";
put process on scheduler list of processes ready to run;
clear field in process table entry for sleep address:
if (process not loaded in memory)
wake up swapper process (0);
else if (awakened process is more elligible to run than
currently running process)
set scheduler flag;
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}

restore processor execution level to original level;

Figure 6.32. Algorithm for Wakeup




