
 1

BASIC COMPUTER ORGANIZATION AND DESIGN

• Instruction Codes

• Computer Registers

• Computer Instructions

• Timing and Control

• Instruction Cycle

• Memory Reference Instructions

• Input-Output and Interrupt

• Complete Computer Description

• Design of Basic Computer

• Design of Accumulator Logic

INTRODUCTION

• Every different processor type has its own design (different registers, buses,

microoperation, machine instructions, etc)

• Modern processor is a very complex device

• It contains

– Many registers

– Multiple arithmetic units, for both integer and floating point calculations

– The ability to pipeline several consecutive instructions to speed execution

– Etc.

• However, to understand how processors work, we will start with a simplified

processor model

• This is similar to what real processors were like ~25 years ago

• M. Morris Mano introduces a simple processor model he calls the Basic

Computer

• We will use this to introduce processor organization and the relationship of the

RTL model to the higher level computer processor

 2

Basic Computer

• The Basic Computer has two components, a processor and memory

• The memory has 4096 words in it

– 4096 = 212, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

INSTRUCTIONS

• Program

– A sequence of (machine) instructions

• (Machine) Instruction

– A group of bits that tell the computer to perform a specific operation (a

sequence of micro-operation)

• The instructions of a program, along with any needed data are stored in memory

• The CPU reads the next instruction from memory

• It is placed in an Instruction Register (IR)

• Control circuitry in control unit then translates the instruction into the sequence of

microoperations necessary to implement it

INSTRUCTION FORMAT

• A computer instruction is often divided into two parts

– An opcode (Operation Code) that specifies the operation for that

instruction

– An address that specifies the registers and/or locations in memory to use

for that operation

• In the Basic Computer, since the memory contains 4096 (= 212) words, we needs

12 bit to specify which memory address this instruction will use

• In the Basic Computer, bit 15 of the instruction specifies the addressing mode (0:

direct addressing, 1: indirect addressing)

• Since the memory words, and hence the instructions, are 16 bits long, that leaves

3 bits for the instruction’s opcode

Opcod
e

Addres
s

Instruction Format

1
5

1
4

1
2

0

I

1
1

Addressing
mode

 3

 ADDRESSING MODES

• The address field of an instruction can represent either

– Direct address: the address in memory of the data to use (the address of

the operand), or

– Indirect address: the address in memory of the address in memory of the

data to use

• Effective Address (EA)

– The address, that can be directly used without modification to access an

operand for a computation-type instruction, or as the target address for a

branch-type instruction

PROCESSOR REGISTERS

• A processor has many registers to hold instructions, addresses, data, etc

• The processor has a register, the Program Counter (PC) that holds the memory

address of the next instruction to get

– Since the memory in the Basic Computer only has 4096 locations, the PC

only needs 12 bits

• In a direct or indirect addressing, the processor needs to keep track of what

locations in memory it is addressing: The Address Register (AR) is used for this

– The AR is a 12 bit register in the Basic Computer

• When an operand is found, using either direct or indirect addressing, it is placed

in the Data Register (DR). The processor then uses this value as data for its

operation

• The Basic Computer has a single general purpose register – the Accumulator

(AC)

PROCESSOR REGISTERS

• The significance of a general purpose register is that it can be referred to in

instructions

– e.g. load AC with the contents of a specific memory location; store the

contents of AC into a specified memory location

• Often a processor will need a scratch register to store intermediate results or other

temporary data; in the Basic Computer this is the Temporary Register (TR)

• The Basic Computer uses a very simple model of input/output (I/O) operations

– Input devices are considered to send 8 bits of character data to the

processor

– The processor can send 8 bits of character data to output devices

• The Input Register (INPR) holds an 8 bit character gotten from an input device

• The Output Register (OUTR) holds an 8 bit character to be send to an output

device

 4

BASIC COMPUTER REGISTERS

Registers in the Basic Computer

COMMON BUS SYSTEM

• The registers in the Basic Computer are connected using a bus

• This gives a savings in circuitry over complete connections between registers

COMMON BUS SYSTEM

List of BC Registers
DR 16 Data Register Holds memory operand
AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction Register Holds instruction code
PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data
INPR 8 Input Register Holds input character
OUTR 8 Output Register Holds output character

11 0

PC

15 0

IR

15 0

TR

7 0

OUTR

15 0

DR

15 0

AC

11 0

AR

INPR

0 7

Memory

4096 x 16

CPU

 5

COMMON BUS SYSTEM

• Three control lines, S2, S1, and S0 control which register the bus

selects as its input

• Either one of the registers will have its load signal activated, or the memory will

have its read signal activated

– Will determine where the data from the bus gets loaded

• The 12-bit registers, AR and PC, have 0’s loaded onto the bus in the high order 4

bit positions

S0

Memory unit
 4096 x 16

LD INR CLR

Address

Read Write

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

AC ALU

E

INPR

IR

LD

LD INR CLR

TR

OUTR

LD
Clock

16-bit common bus

7

1

2

3

4

5

6

S0 S1 S2

 6

• When the 8-bit register OUTR is loaded from the bus, the data comes from the

low order 8 bits on the bus

BASIC COMPUTER INSTRUCTIONS

• Basic Computer Instruction Format

BASIC COMPUTER INSTRUCTION

Symbol I = 0 I = 1 Description

AND 0xxx 8xxx AND memory word to AC

ADD 1xxx 9xxx Add memory word to AC

LDA 2xxx Axxx Load AC from memory

STA 3xxx Bxxx Store content of AC into memory

BUN 4xxx Cxxx Branch unconditionally

BSA 5xxx Dxxx Branch and save return address

ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instr. if AC is positive

15 14
12 11 0

I Opcode Address

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

 Input-Output Instructions (OP-code =111, I = 1)

15 12
11

0

Register
operation

0 1 1
1

15 12
11

0

I/O
operation

1 1 1
1

 7

SNA 7008 Skip next instr. if AC is negative

SZA 7004 Skip next instr. if AC is zero

SZE 7002 Skip next instr. if E is zero

HLT 7001 Halt computer

INP F800 Input character to AC

OUT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

INSTRUCTION SET COMPLETENESS

A computer should have a set of instructions so that the user can

construct machine language programs to evaluate any function that is known to be

computable.

• Instruction Types

Functional Instructions

 - Arithmetic, logic, and shift instructions

 - ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions

 - Data transfers between the main memory

 and the processor registers

 - LDA, STA

Control Instructions

 - Program sequencing and control

 - BUN, BSA, ISZ

Input/Output Instructions

 - Input and output

 - INP, OUT

CONTROL UNIT

• Control unit (CU) of a processor translates from machine instructions to the

control signals for the microoperations that implement them

• Control units are implemented in one of two ways

• Hardwired Control

– CU is made up of sequential and combinational circuits to generate the

control signals

• Microprogrammed Control

– A control memory on the processor contains microprograms that activate

the necessary control signals

 8

• We will consider a hardwired implementation of the control unit for the Basic

Computer

TIMING AND CONTROL

Control unit of Basic Computer

TIMING SIGNALS

- Generated by 4-bit sequence counter and 416 decoder

- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .

 Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

1 14 13 12 11 - 0

3 x 8
 decode

 7 6 5 4 3 2 1 0

I

D 0

15 14 2 1 0
4 x 16
 decoder

4-bit
 sequence

 counter
 (SC)

Increment (INR)

Clear (CLR)

Clock

Other inputs

Control
signals

D

T

T

7

15

0

Combinational
Control

logic

 9

INSTRUCTION CYCLE

• In Basic Computer, a machine instruction is executed in the following cycle:

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction has an indirect

address

4. Execute the instruction

• After an instruction is executed, the cycle starts again at step 1, for the next

instruction

• Note: Every different processor has its own (different)

 instruction cycle

• In Basic Computer, a machine instruction is executed in the following cycle:

1. Fetch an instruction from memory

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

 10

2. Decode the instruction

3. Read the effective address from memory if the instruction has an indirect

address

4. Execute the instruction

• After an instruction is executed, the cycle starts again at step 1, for the next

instruction

• Note: Every different processor has its own (different)

 instruction cycle

INSTRUCTION CYCLE

FETCH and DECODE

Fetch and Decode

T0: AR PC (S0S1S2=010, T0=1)

T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)

T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

 11

DETERMINE THE TYPE OF INSTRUCTION

S2

S1

S0

Bus

7
Memory
 unit

Address

Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T

 12

D'7IT3: AR M[AR]

D'7I'T3: Nothing

D7I'T3: Execute a register-reference instruction

D7IT3: Execute an input-output instruction

REGISTER REFERENCE INSTRUCTIONS

Register Reference Instructions are identified when

D7 = 1, I = 0

- Register Ref. Instruction. is specified in b0 ~ b11 of IR

- Execution starts with timing signal T3

r = D7 IT3 => Register Reference Instruction

Bi = IR(i) , i=0,1,2,...,11

= 0 (direct)

AR  PC
T

IR  M[AR], PC  PC + 1
T1

AR  IR(0-11), I IR(15
Decode Opcode in IR (12-14),

T

D7
= 0 (Memory-reference) (Register or I/O) = 1

I I

Execute
 register-

 instruction
 SC  0

Execute
 input-output

 instruction
 SC  0

M[AR] AR Nothing

= 0 (register) (I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execut
 memory-reference

 instruction
S  0

T4

 13

MEMORY REFERENCE INSTRUCTIONS

The effective address of the instruction is in AR and was placed there during

 timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle

- The execution of MR instruction starts with T4

AND to AC

 D0T4: DR  M[AR] Read operand

 D0T5: AC  AC  DR, SC  0 AND with AC

ADD to AC

 D1T4: DR  M[AR] Read operand

 D1T5: AC  AC + DR, E  Cout, SC  0 Add to AC and store carry

 In E

 r: SC  0

CLA rB11: AC  0

CLE rB10: E  0

CMA rB9: AC  AC’

CME rB8: E  E’

CIR rB7: AC  shr AC, AC(15)  E, E  AC(0)

CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)

INC rB5: AC  AC + 1

SPA rB4: if (AC(15) = 0) then (PC  PC+1)

SNA rB3: if (AC(15) = 1) then (PC  PC+1)

SZA rB2: if (AC = 0) then (PC  PC+1)

SZE rB1: if (E = 0) then (PC  PC+1)

HLT rB0: S  0 (S is a start-stop flip-flop)

Symbol Operation
Decoder

Symbolic Description

AND D0 AC  AC  M[AR]

ADD D1 AC  AC + M[AR], E  Cout

LDA D2 AC  M[AR]

STA D3 M[AR]  AC

BUN D4 PC  AR

BSA D5 M[AR]  PC, PC  AR + 1

ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

 14

MEMORY REFERENCE INSTRUCTIONS

LDA: Load to AC

 D2T4: DR  M[AR]

 D2T5: AC  DR, SC  0

STA: Store AC

 D3T4: M[AR]  AC, SC  0

BUN: Branch Unconditionally

 D4T4: PC  AR, SC  0

BSA: Branch and Save Return Address

 M[AR]  PC, PC  AR + 1

Memory, PC, AR at time T4

MEMORY REFERENCE INSTRUCTIONS

BSA:

 D5T4: M[AR]  PC, AR  AR + 1

 D5T5: PC  AR, SC  0

ISZ: Increment and Skip-if-Zero

 D6T4: DR  M[AR]

 D6T5: DR  DR + 1

 D6T4: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS

21

0 BSA 135

Next instruction

Subroutine

20

13

1 BUN 135

0 BSA 135

Next instruction

Subroutine

20

21

135

PC = 136

1 BUN 135

Memory Memory

 15

DR  M[AR] DR  M[AR] DR  M[AR] M[AR]  AC
 SC  0

AND ADD LDA STA

AC  AC DR
 SC  0

AC  AC + DR
 E  Cout
 SC  0

AC  DR
 SC  0

D T 0 4 D T 1 4 D T 2 4 D T 3 4

D T 0 5 D T 1 5 D T 2 5

PC  AR
 SC  0

M[AR]  PC
 AR  AR + 1

DR  M[AR]

BUN BSA ISZ

D T 4 4 D T 5 4 D T 6 4

DR  DR + 1

D T 5 5 D T 6 5

PC  AR
 SC  0

M[AR]  DR
 If (DR = 0)
 then (PC  PC + 1)
 SC 

D T 6 6



 16

INPUT-OUTPUT AND INTERRUPT

A Terminal with a keyboard and a Printer

• Input-Output Configuration

INPR Input register - 8 bits

OUTR Output register - 8 bits

FGI Input flag - 1 bit

FGO Output flag - 1 bit

IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information

- The serial info. from the keyboard is shifted into INPR

- The serial info. for the printer is stored in the OUTR

- INPR and OUTR communicate with the terminal

 serially and with the AC in parallel.

- The flags are needed to synchronize the timing

 difference between I/O device and the computer

INPUT-OUTPUT INSTRUCTIONS

D7IT3 = p

IR(i) = Bi, i = 6, …, 11

 p: SC  0 Clear SC

INP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC

OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC

SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag

SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag

ION pB7: IEN  1 Interrupt enable on

Input-output
 terminal

Serial
 communication

 interface

Computer
registers and
flip-flops
 Printer

Keyboard

Receiver
 interface

Transmitter
 interface

FGO OUTR

AC

INPR FGI

Serial Communications Path
Parallel Communications Path

 17

IOF pB6: IEN  0 Interrupt enable off

PROGRAM-CONTROLLED INPUT/OUTPUT

• Program-controlled I/O

- Continuous CPU involvement

 I/O takes valuable CPU time

- CPU slowed down to I/O speed

- Simple

- Least hardware

Input

 LOOP, SKI DEV

 BUN LOOP

 INP DEV

Output

 LOOP, LDA DATA

 LOP, SKO DEV

 BUN LOP

 OUT DEV

INTERRUPT INITIATED INPUT/OUTPUT

Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,

 it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task

 it is doing, branches to the service routine to process the data

 transfer, and then returns to the task it was performing.

IEN (Interrupt-enable flip-flop

 18

can be set and cleared by instructions

- when cleared, the computer cannot be interrupted

FLOWCHART FOR INTERRUPT CYCLE

The interrupt cycle is a HW implementation of a branch

 and save return address operation.

- At the beginning of the next instruction cycle, the

 instruction that is read from memory is in address 1.

- At memory address 1, the programmer must store a branch instruction

 that sends the control to an interrupt service routine

- The instruction that returns the control to the original

 program is "indirect BUN 0"

REGISTER TRANSFER OPERATIONS IN INTERRUPT CYCLE

Store return address

R
=1 =0

in location 0
 M[0]  PC

Branch to location 1
 PC  1

IEN  0

 R  0

Interrupt cycle Instruction cycle

Fetch and decode
 instructions

IE

FG

FGO

Execute
 instructions

R  1

=1

=

=

=0

=0

=0

 19

Register Transfer Statements for Interrupt Cycle

 - R F/F  1 if IEN (FGI + FGO)T0T1T2

  T0T1T2 (IEN)(FGI + FGO): R  1

- The fetch and decode phases of the instruction cycle

 must be modified Replace T0, T1, T2 with R'T0, R'T1, R'T2

- The interrupt cycle :

 RT0: AR  0, TR  PC

 RT1: M[AR]  TR, PC  0

 RT2: PC  PC + 1, IEN  0, R  0, SC  0

COMPLETE COMPUTER DESCRIPTION

Flowchart of Operations

 After interrupt cycle

0 BUN 1120

0

1

PC = 256
255

1 BUN 0

 Before interrupt

Main
 Program

1120

I/O
 Program

0 BUN 1120

0

PC = 1

 256
255

1 BUN 0

Mai
 Progra

1120

I/O
 Program

256

 20

COMPLETE COMPUTER DESCRIPTION

=1 (I/O) =0 (Register) =1(Indir) =0(Dir)

R

AR  PC
R’T0

IR  M[AR], PC  PC + 1

R’T1

AR  IR(0~11), I  IR(15)
D0...D7  Decode IR(12 ~ 14)

R’T2

AR  0, TR  PC

RT0

M[AR]  TR, PC  0

RT1

PC  PC + 1, IEN  0
R  0, SC  0

RT2

D7

I I

Execute
RR

Instruction

AR <- Idle

D7’IT3

Execute MR
Instruction

=0(Instruction =1(Interrupt
 Cycle) Cycle)

=1(Register or I/O) =0(Memory Ref)

 D7’T4

 21

Fetch

Decode

Indirect
Interrupt

Memory-Reference
 AND

 ADD

 LDA

 STA
 BUN
 BSA

 ISZ

RT0:

RT1:

RT2:

D7IT3:

RT0:
RT1:
RT2:

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

AR  PC
IR  M[AR], PC  PC + 1
D0, ..., D7  Decode IR(12 ~ 14),
 AR  IR(0 ~ 11), I  IR(15)
AR  M[AR]

R  1
AR  0, TR  PC
M[AR]  TR, PC  0
PC  PC + 1, IEN  0, R  0, SC  0

DR  M[AR]

AC  AC  DR, SC  0
DR  M[AR]
AC  AC + DR, E  Cout, SC  0
DR  M[AR]
AC  DR, SC  0
M[AR]  AC, SC  0
PC  AR, SC  0
M[AR]  PC, AR  AR + 1
PC  AR, SC  0
DR  M[AR]
DR  DR + 1
M[AR]  DR, if(DR=0) then (PC  PC + 1),
SC  0

T0T1T2(IEN)(FGI + FGO):

 22

DESIGN OF BASIC COMPUTER(BC)

Hardware Components of BC

A memory unit: 4096 x 16.

Registers:

 AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC

Flip-Flops (Status):

 I, S, E, R, IEN, FGI, and FGO

Decoders: a 3x8 Opcode decoder

 a 4x16 timing decoder

Common bus: 16 bits

Control logic gates:

Adder and Logic circuit: Connected to AC

Control Logic Gates

Register-Reference

 CLA
 CLE
 CMA
 CME
 CIR
 CIL
 INC
 SPA
 SNA
 SZA
 SZE
 HLT

Input-Output

 INP
 OUT
 SKI
 SKO
 ION
 IOF

D7IT3 = r
IR(i) = Bi
 r:
 rB11:
 rB10:
 rB9:
 rB8:
 rB7:
 rB6:
 rB5:
 rB4:
 rB3:
 rB2:
 rB1:
 rB0:

D7IT3 = p
IR(i) = Bi
 p:
 pB11:
 pB10:
 pB9:
 pB8:
 pB7:
 pB6:

(Common to all register-reference instr)
(i = 0,1,2, ..., 11)
SC  0
AC  0
E  0

AC  AC

E  E
AC  shr AC, AC(15)  E, E  AC(0)
AC  shl AC, AC(0)  E, E  AC(15)
AC  AC + 1
If(AC(15) =0) then (PC  PC + 1)
If(AC(15) =1) then (PC  PC + 1)
If(AC = 0) then (PC  PC + 1)
If(E=0) then (PC  PC + 1)
S  0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC  0
AC(0-7)  INPR, FGI  0
OUTR  AC(0-7), FGO  0
If(FGI=1) then (PC  PC + 1)
If(FGO=1) then (PC  PC + 1)
IEN  1
IEN  0

 23

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops

- S2, S1, S0 Controls to select a register for the bus

- AC, and Adder and Logic circuit

CONTROL OF REGISTERS AND MEMORY

Address Register; AR

Scan all of the register transfer statements that change the content of AR:

R’T0: AR  PC LD(AR)

R’T2: AR  IR(0-11) LD(AR)

D’7IT3: AR  M[AR] LD(AR)

RT0: AR  0 CLR(AR)

D5T4: AR  AR + 1 INR(AR)

LD (AR) = R'T0 + R'T2 + D'7IT3

CLR(AR) = RT0

INR(AR) = D5T4

CONTROL OF FLAGS

IEN: Interrupt Enable Flag

pB7: IEN  1 (I/O Instruction)

pB6: IEN  0 (I/O Instruction)

RT2: IEN  0 (Interrupt)

p = D7IT3 (Input/Output Instruction)

 24

CONTROL OF COMMON BUS

For AR

D

I

T3

7

J

K

Q IE
N

p

B 7

B 6

T 2

R

x
1 x
2 x
3 x
4 x
5 x
6 x
7

Encode
r

S 2

S 1

S 0

Multiplexer
 bus
select

inputs

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0

selected
register
 0 0 0 0 0 0 0 0 0 0 none

1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

 25

DESIGN OF ACCUMULATOR LOGIC

Circuits associated with AC

All the statements that change the content of AC

D0T5: AC  AC  DR AND with DR

D1T5: AC  AC + DR Add with DR

D2T5: AC  DR Transfer from DR

pB11: AC(0-7)  INPR Transfer from INPR

rB9: AC  AC Complement

rB7 : AC  shr AC, AC(15)  E Shift right

rB6 : AC  shl AC, AC(0)  E Shift left

rB11 : AC  0 Clear

rB5 : AC  AC + 1 Increment

CONTROL OF AC REGISTER

Gate structures for controlling

the LD, INR, and CLR of AC

ALU (ADDER AND LOGIC CIRCUIT)

One stage of Adder and Logic circuit

D4T4: PC  AR

D5T5: PC  AR

 x1 = D4T4 +

 26

AN
D

AD
D

D
R

INP
R

CO
M

SH
R

SH
L

J

K

Q
AC(i
)

L
D

F
A

C

C

Fro
m

INP
R

bit(i
)

DR(i
)

AC(i
)

AC(i+1
)

AC(i-
1)

i

i

i+
1

I

