
Introduction to 
Thermal Radiation 

Figures except for the McDonnell Douglas figures come from Incorpera & 

DeWitt, Introduction to Heat and Mass Transfer or Cengel, Heat Transfer: A 

Practical Approach 

M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



Thermal Radiation 

• Occurs in solids, liquids, and gases 
• Occurs at the speed of light 
• Has no attenuation in a vacuum 
• Can occur between two bodies with a colder medium 

in between 
• Applications: satellite temperature management, 

taking accurate temperature measurements, 
designing heaters for manufacturing, estimating heat 
gains through windows, infrared cameras, metal 
cooling during manufacturing, Greenhouse effect, 
lasers, insulating cryogenic tanks, thermos design, ice 
skating rink ceiling design 
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Background 

• Electromagnetic radiation – energy emitted due to changes in 
electronic configurations of atoms or molecules 

 

• where l=wavelength (usually in mm), n=frequency 

• In a vacuum c=co=2.998x108 m/s 

• Other media: c=co /n where n=index of refraction nl c
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Background, cont. 

• Radiation – photons or waves? 

• Max Planck (1900): each photon has an energy of  

• h=Planck’s constant=6.625 x 10-34 Js 

• Shorter wavelengths have higher energy 

ln hche
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Radiation Spectrum 
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Types of Radiation 

• Two categories 

• Volumetric phenomenon – radiation emitted or 
absorbed throughout gases, transparent solids, some 
fluids 

• Surface phenomenon – radiation to/from solid or 
liquid surface 

• Thermal radiation – emitted by all substances 
above absolute zero 

• Includes visible & infrared radiation & some UV 
radiation. 
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Radiation Properties 

• Magnitude of radiation varies with wavelength – 
it’s spectral. 
• The wavelength of the radiation is a major factor in 

what its effects will be. 

• Earth/sun example 

• Radiation is made up of a continuous, 
nonuniform distribution of monochromatic 
(single-wavelength) components. 

• Magnitude & spectral distribution (how the 
radiation varies with wavelength) vary with temp 
& type of emitting surface. 
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Emission Variation with 
Wavelength 
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Blackbody Radiation 

• Blackbody – a perfect emitter & absorber of 
radiation; it absorbs all incident radiation, and no 
surface can emit more for a given temperature 
and wavelength 

• Emits radiation uniformly in all directions – no 
directional distribution – it’s diffuse 

• Example of a blackbody: large cavity with a small 
hole Joseph Stefan (1879)– total radiation 
emission per unit time & area over all 
wavelengths and in all directions: 

 

 

• s=Stefan-Boltzmann constant =5.67 x10-8 W/m2K4 

 24 mW  TEb s
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Planck’s Distribution Law 

• Sometimes we care about the radiation in a certain wavelength 
interval 

• For a surface in a vacuum or gas 

 

 

 

 

 

 

 

 

• Integrating this function over all l gives us 

 
  

 

constant sBoltzmann'J/K 1038051
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Radiation 
Distribution 

• Radiation is a 
continuous function of 
wavelength 

• Magnitude increases 
with temp. 

• At higher temps, more 
radiation is at shorter 
wavelengths. 

• Solar radiation peak is 
in the visible range. 
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Wien’s Displacement Law 

• Wavelength of radiation with the largest magnitude can be 
found for different temps using Wien’s Displacement Law: 

 

 

• Note that color is a function of absorption & reflection, not 
emission 
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Blackbody Radiation Function 

• We often are interested in radiation energy 
emitted over a certain wavelength interval. 

 

 

 

 

 

 

 

• This is a tough integral to do! 
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Blackbody Radiation Function 

• Use blackbody radiation 
function, Fl (often called the 
fractional function) 

 

 

 

 

• If we want radiation between 
l1 & l2,  
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More Radiation Properties 

• Directional distribution – a surface doesn’t emit the same in 
all directions. 

• Hemispherical – refers to all directions 
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Angle definitions 

• zenith angle q up and down) 

• azimuthal angle f side to side) 
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Solid Angle 

• differential solid angle  dwdAn/r2= dA1cosq/r2 =sinq 
dq df 

• A solid angle is for a sphere what an angle is for a 
circle 

• Units: steradians (sr); For a sphere w=4 sr 
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Solid Angle, cont. 
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Spectral Intensity 

• Il,e: rate at which radiant energy is emitted at the 
wavelength l in the (q,f) direction, per unit area 
of the emitting surface normal to this direction, 
per unit solid angle about this direction, and per 
unit wavelength interval dl about l 

• Translation: rate of emission at a given 
wavelength, in a given direction, per unit area, 
solid angle, and wavelength interval 

• Units: W/(m2 sr mm) 
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Spectral Intensity 
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To solve for dq 

• Sometimes we know the intensity Ie rather than the spectral 
intensity (i.e., the rate of emission in a given direction, per unit 
area and solid angle). This is Il,e integrated over all wavelengths. 
Then  

 , 1, , cosedQ I dA d dl l q f q  l  

  1, cosedQ I dA dq f q  
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Total heat flux 

• To find the total heat flux, we must integrate over both angles 
and wavelength. 
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Emissive Power 

• E: amount of radiation emitted per unit area 

• Spectral hemispherical emissive power El (often 
leave out the word “hemispherical”) W/m2l 

• Rate of emission per unit area of radiation of a given 
wavelength l in all directions per unit wavelength 
interval  

• Total (hemisperical) emissive power E (W/m2) 

• Rate of emission per unit area of radiation of all 
wavelengths and in all directions; this is 

emittedq
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Diffuse emitters 

• Diffuse emitter: intensity is the same in all directions; 
integration is easy! 
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Irradiation, G 

• Irradiation: radiation incident on (hitting) a surface per unit 
area 

• Use subscript i 

• Same equations as E except replace E with G and Il,e with Il,i 
(intensity of incident radiation) 

 

M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



Radiosity, J 

• Radiosity: all radiation leaving a surface per unit area, both 
emitted and reflected 

• Use subscript e+r 

• Same equations as E except replace E with J and Il,e with Il,e+r 
(intensity of emitted+reflected radiation) 
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Example 1 

 A small surface of area A1=3 cm2 diffusely 
emits radiation with an emissive power of 
7350 W/m2. Part of the radiation strikes 
another small surface of area A2=5 cm2 
oriented as shown on the board. 

 

 a) Find the intensity of the emitted radiation. 

 b) Find the solid angle subtended by A2 when 
viewed from A1. 

 c) Find the rate of radiation emitted by A1 
that strikes A2. 
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3 Introduction to 
Mass Transfer 

M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



Overview 
•Thermodynamics 

•heat and mass transfer 

•chemical reaction rate 

theory(chemical kinetics) 
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Rudiments of Mass Transfer 

•Open a bottle of perfume in the 

center of a room---mass transfer 

•Molecular processes(e.g., 

collisions in an ideal gas) 

•turbulent processes. 
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Mass Transfer Rate Laws 

• Fick’s law of Diffusion 

• one dimension: 

dx

dY
DmmYm A

ABBAAA  )( 

Mass flow of 

species A per 

unit  area 

Mass flow of 

species A 

associated 

with bulk flow 

per unit area 

Mass flow of species 

A associated with 

molecular diffusion 

per unit area 
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• The mass flux is defined as the mass flowrate of species A per 
unit area perpendicular to the flow: 

 

 

 

• The units are kg/s-m2 

• DAB is a property of the mixture and has units of m2/s, the 
binary diffusivity. 

Amm AA / 
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• It means that species A is transported by two means: the first 
term on the right-hand-side representing the transported of 
A resulting from the bulk motion of the fluid, and the second 
term representing the diffusion of A superimposed on the 
bulk flow. 
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• In the abseence of diffusion, we obtain the obvious result that 

 

• where     is the mixture mass flux. The diffusion flux adds an 
additional component to the flux of A: A species offlux Bulk )(  mYmmYm ABAA



m 

diff.A,mA, species offlux  lDiffusiona  
dx

dY
D A

AB
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• An analogy between the diffusion of mass and the diffusion of 
heat (conduction) can be drawn by comparing Fourier’s law of 
conduction: 

dx

dT
kQx 
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• The more general expression 

 

 

• where the bold symbols represent vector quantities. In many 
instants, the molar form of the above equation is useful: 

AABBA YDY  )( mmm AA


AABA xDx  )( BAA NNN 
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• Where        is the molar flux(kmol/s-m2) of species A, xA is the 
mole fraction, and c is the mixture molar 
concentration(kmolmix/m3) 

• The meanings of bulk flow and diffusion flux become clearer if 
we express the total mass flux for a binary mixture as the sum of 
the mass flux of species A and the mass flux of species B: 

AN 
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mass 
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Speies A 
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• For one dimension: 

 

 

• or 

dx

dY
DmY

dx

dY
DmYm B

BAB
A

ABA   

dx

dY
D

dx

dY
DmYYm B

BA
A

ABBA    )(
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• For a binary mixture, YA+YB=1, thus, 

 

0
dx

dY
D

dx

dY
D B

AB
A

AB 

Diffusional 

flux of 

species A 

Diffusional 

flux of 

species B 
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• In general, overall mass 
conservation required that: 

  0,diffim
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• This is called ordinary diffusion. 

 

•Not binary mixture; 

•thermal diffusion 

•pressure diffusion. 
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Molecular basis of Diffusion 
• Kinetic theory of gases: Consider a  stationary (no bulk flow) plane 

layer of a binary gas mixture consisting of rigid, nonattracting 
molecules in which the molecular mass of each species A and B is 
essential equal. A concentration(mass-fraction) gradient exists in 
the gas layer in the x-direction and is sufficiently small that the 
mass-fraction distribution can be considered linear over a distance 
of a few molecular mean free paths, , as illustrated in Fig 3.1 
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• Average molecular properties derived from kinetic theory: 
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• Where kB is Boltzmann’s constant; 

• mA the mass of a single A molecular, 

• nA/V is the number of A molecular per unit volume, 

• ntot/V is the total number of molecules per unit volume 

•  is the diameter of both A and B molecules. 
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• Assuming no bulk flow for simplicity, the net flux of A 
molecules at the x-plane is the difference between the flux of 
A molecules in the positive x-direction and the flux of A 
molecules in the negative x-direction: 

 

 

• which, when expressed in terms of the collision frequency, 
becomes 

dirxAdirxAA mmm 
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• We can use the definition of density 

• (mtot/Vtot) to relate ZA”to the mass fraction of A molecules: 

vYv
m

mn
mZ A

tot

AA
AA 
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• Substituting the above Equation into the early one, and 
treating the mixture density and mean molecular speeds as 
constants yields 

)(
4

1
,, axAaxAA YYvm   
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• With our assumption of a linear concentration distribution 

 

 

 

• Solving the above equation for the concentration difference 
and substituting into equation 3.14, we obtain our final result: 

3/42
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dx

dYv
m A

A
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Comparing the above equation with the first equation,  

we define the binary diffusivity DAB as  

3

v
DAB 

M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



• Using the definitions of the mean molecular speed and mean free 
path, together with the ideal-gas equation of state PV=nkBT, the 
temperature and pressure dependence of DAB can easily be 
determined  

 

 

• or 
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• Thus, we see that the diffusivity depends strongly on 
temperature( to the 3/2 power) and inversely with pressure. The 
mass flux of species A, however, depends on the product 
DAB,which has a square-root temperature dependence and is 
independent of pressure: 

 

 

• In many simplified analyses of combustion processes, the weak 
temperature dependence is neglected and D is treated as a 
constant. 2/102/1 TPTDAB 
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Comparison with Heat 
Conduction 

• To see clearly the relationship between mass and heat transfer, 
we now apply kinetic theory to the transport of energy. We 
assume a homogeneous gas consisting of rigid nonattracting 
molecules in which a temperature gradient exists. Again, the 
gradient is sufficiently small that the temperature distribution 
is essentially linear over several mean free paths, as illustrated 
in Fig. 3.2. 

M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



• The mean molecular speed and mean free path have the same 
definitions as given in Eqns. 3.10a and 3.10c, respectively; 
however, the molecular collision frequency of interest is now 
based on the total number density of molecules, ntot/V, i.e., 

v
V

n
Z tot











4

1

areaunit per frequency 

collision  wallAverage

M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



• In our no-interaction-at-a-distance hard-sphere model of the 
gas, the only energy storage mode is molesular translational, 
i.e., kinetic, energy.  We write an energy balance at the x-
direction is the difference between the kinetic energy flux 
associated with molecules traveling from x-a to x and those 
traveling form x+a to x 

axaxx keZkeZQ 
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• Since the mean kinetic energy of a molecule is given by  

 

 

• the heat flux can be related to the temperature as 
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• The temperature difference in Eqn 3.22 relates to the 
temperature gradient following the same form as Eqn. 3.15 i.e., 

 

 

• Substituting difference in Eqn. 3.22 employing the definition 
of Z” and a, we obtain our final result for the heat flux: 

a

TT

dx

dT axax

2

 


dx

dT
v

V

n
kQ Bx )(

2

1


M
Y

cs
v
tu

 N
o
te

s 
w

w
w

.m
y
cs

v
tu

n
o
te

s.
in

 



• Comparing the above with Fourier’s law of heat 
conduction(Eqn. 3.4), we can identify the thermal conductivity 
k as  

 

 

• Expressed in terms of T and molecular mass and size, the 
thermal conductivity is  

v
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• The thermal conductivity is thus proportional to the square-
root of temperature, 

 

 

 

• as is the DAB product. For real gases, the true temperature 
dependence is greater. 2/1Tk 
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Species Conservation 

•Consider the one-dimensional 
control volume of Fig. 3.3, a 
plane layer x thick.  
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• The net rate of increase in the mass of A within the control 
volume relates to the mass fluxes and reatction rate as follows: 

VmAmAm
dt
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•      is the mass production rate of species A per unit 
volume(kgA/m3-s). In Chapter 5, we specifically deal with how 
to determine 

        . Recognizing that the mass of A within the control volume 
is mA,cv=Yamcv=YAVcv and that the volume Vcv=Ax, Eqn. 3.28 
can be written: 
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• Dividing through by Ax and taking the limit as x0, Eqn. 
3.29 becomes  xAm
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• Or, for the case of steady flow where  

 

 

 

• Equation 3.31 is the steady-flow, one-dimensional form of 
species conservation for a binary gas mixture, assuming 
species diffusion occurs only as a result of concentration 
gradients; i.e., only ordinary diffusion is considered. For the 
multidimensional case, Eqn. 3.31 can be generalized as  
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0                                   
AA mm 

Net rate of 

production of 

species A by 

chemical 

reaction, per 

unit volume 

Net flow of 
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Some application 

• The stefan Problem: 
• Consider liquid A, maintained at a fixed height in a glass 

cylinder as illustrated in Fig. 3.4.  
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• Mathematically, the overall conservation of mass for this 
system can be expressed as 

 

 

• Since       =0, then  
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• Equation 3.1 now becomes: 

 

 

 

• Rearranging and separating variables, we obtain 
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• Assuming the product DAB to be constant, Eqn. 3.36 can be 
integrated to yield 

 

 

 

• where C is the constant of integration. With the boundary 
condition: 
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• We eliminate C and obtain the following mass-fraction 
distribution after removing the logarithm by exponentiation: 
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• The mass flux of A,       , can be found by letting YA(x=L)=YA,∞ in 
Eqn. 3.39. Thus, 
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• From the above equation, we see that the mass flux is directly 
proportional to the product of the density and the mass 
diffusivity and inversely proportional to the length, L. Larger 
diffusivities thus produce larger mass fluxes. 

•   To see the effects of the concentrations at the interface and 
at the top of the varying YA,i, the interface mass fraction, from 
zero to unity.  
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• Physically, this could correspond to an experiment in which dry 
nitrogen is blown across the tube outlet and the interface mass 
fraction is controlled by the partial pressure of the liquid, which, 
in turn, is varied by changing the temperature. Table 3.1 shows 
that at small values of YA,i, the dimensionless mass flux is 
essentially proportional to YA,i,  For YA,I greater than about 0.5, the 
mass flux increases very rapidly. 
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Table 3.1 Effect of interface 
mass fraction on mass flux 

YA,i
)//( LDm ABA  

0 0

0.05 0.0513

0.10 0.1054

0.20 0.2231

0.50 0.6931

0.90 2.303

0.99 6.908
MYcsvtu Notes www.mycsvtunotes.in 
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