

TRANSFORMERS

- 1.WORKING PRINCIPLE OF A TRANSFORMER-

- The transformer is a static device, or a machine, that transfers electrical energy from one electrical circuit to another electrical circuit through the medium of magn field without a change of frequency.
- The electric circuit which receives energy from the sup mains is called primary winding and other circuit whicł delivers electric energy to the load is called secondary winding.

TRANSFORMERS

TRANSFORMERS

- The transformer is an electromagnetic energy conversion device, sinc energy received by the primary is first converted to magnetic energy it is then reconverted to useful electrical energy in the other circuit. T primary and secondary windings of a transformer are not connected electrically, but are coupled magnetically. This coupling magnetic fielo allows the transfer of energy in either direction, from high voltage to voltage circuits or low voltage to high voltage circuits.

TRANSFORMERS

- If secondary winding has more turns than primary winding, then secondary voltage is higher than the primary voltage and transformer is called step-up transformer. In case secondary winding has less turns than primary winding, then secondary voltage is lower than the primary voltage and transformer is called step down transformer. Therefore, when referring to the winding of a particular transformer, the term HV windi and LV winding should be used instead of primary and secondary windings.
- The physical basic of transformer is mutual induction between two circuits linked by a common magnetic flu

TRANSFORMERS

- If one winding connected to source of alternating voltage, an alternating flux is set up in the laminated core, most of which is linked with the other winding in which it produces mutuallyinduced e.m.f. according to Faraday's Law Of Electromagnetic Induction
($\mathrm{e}=\mathrm{M} \mathrm{dl} / \mathrm{dt}$). If second winding circuit is close, a current flows i and so electrical energy is transferred from one winding to anot winding.
- In general, important tasks performed by transformers are :
- Transfers electric power from one circuit to another.
- It dose so without a change of frequency.
- It accomplishes this by electromagnetic induction.
- Where the two electric circuits are in mutual inductive influenc each other.

TRANSFORMERS

- 2.TARNSFORMER CONSTRUCTION

- The simple elements of a transformer consist of two windings having mutual inductance and a laminated steel core. The two winding are insulated from each other and the steel core. Other necessary parts a some suitable container for the assembled core and windings ; a suita medium for insulating the core and its winding from the container ; suitable porcelain, oil filled or capacitor bushing for insulting and brin out the terminals of windings from tank.

TRANSFORMERS

- In all types of transformers, the core is a stack of thin silicon-steel laminations assembled to provide a continuous magnetic path with minimum of air-gap included. The steel used is of high silicon contain, sometimes heat treated to produce a high permeabil and low hysteresis loss at the usual operating flux densities. The eddy current loss is minimized by laminating the core, the laminations being insulated from each other by a light coat of core-plate varnish.
- Constructionally, the transformers are of two general types core type and shell type. These two types diffe from each other by the manner in which the windings wound around the core.

TRANSFORMERS

n the other.

TRANSFORMERS

- 1.CORE TYPE :- In the core type transformer windings surrounded a considerable part of the core.
- 2.SHELL TYPE :- in shell type transformer core surrounded a considera part of the windings

1.CORE TYPE

2.SHELL TYPE

CORE TYPE \quad SHELL TYPE

Winding surround a considerable part of the core
Flux has one magnetic path
Two legs core
Concentric winding are used

Core surround a considerable part of th winding
Flux has two magnetic path
Three legs core

Interleaved windings are used

- A transformer workers on the principle of electromagnetic induction. According to this principle an e.m.f. is induced in a coil if it links a changing flux.

The primary winding P is connected to an alterna voltage source and secondary winding is open circui therefore, an alternating no-load current I_{0} starts flow through N_{1} turns. The alternating mmf $\mathrm{N}_{1} 10$ sets alternating flux ϕ which is confined to the high permeab iron path. The alternating flux, induces voltage E_{1} knowr self induced voltage in primary winding and E2 in secondary winding known as mutual induced voltage.

- 4.ELEMENTARY THEORY OF AN IDEAL TRANSFORMER -
- A transformer to be an ideal one, the various assumptions are as follows:
- Windings resistances are negligible.
- All the flux set up by the primary links the secondary windings.
- The core losses (hysteresis and eddy current losses) are negligible.
- The core has constant permeability.
- In other words, an ideal transformer consists of two purely inductive coils wound on a loss free core. It may, however, be noted that it is impossible to realize such a transformer ir practice, yet for convenience, we will start with such a transformer and step by step approach an actual transformer

- Consider an ideal transformer shown in above Fig. whose secondary is open and whose primary is connected to sinusoid alternating voltage V_{1}. This potential difference causes an alternating current to flow in the primary. Since the primary co is purely inductive and there is no output (secondary being op the primary draws the magnetising current I μ only. The functio of this current is merely to magnetise the core, it is small in magnitude and lags V_{1} by 90 . This alternating current $I \mu$ produ an alternating flux ϕ which is, at all times. Proportional to the current (assuming permeability of the magnetic circuit to be constant) and . hence, is in phase with it.
- This changing flux is linked both with the primary and the secondary windings. Therefore, it produces self-induced e.m.f. the primary. This self-induced e.m.f. E_{1} is, at every instant, equ to and on oppsition to V_{1}. It is also known as counter e.m.f. of t primary. Similarly, thereis produced. In the secondary an induc e.m.f. E_{2} which is known as mutually induced e.m.f. This antiph with V_{1} and its magnitude is proportional to the rate of change flux and the number of secondary turns.
\The instantaneous values of applied voltage, induced e.m.f.s, flux and magnetising current are shown by sinusoidal waves in Fig. show the vectorial representation of the effective values of the above quantities.

EIF EOUATION

E.M.F. EQUATION OF A TRANSFORMER-

Let $N_{1}=$ No. Of turns in primary
$\mathrm{N}_{2}=$ No. Of turns in secondary
$\phi_{m}=$ max. flux in core in wb
$=B_{m}{ }^{*} \mathrm{~A}$

$\mathrm{f} \quad=$ frequency of a.c. input in Hz
As shown in Fig flux increases from its zero value to maximum value ϕ_{m} in one quarter of the i. e. in 1/4f second

Average rate of change of flux $=\phi_{m} /(1 / 4 f)$
$=4 f \phi_{\mathrm{m}} \mathrm{Wb} / \mathrm{s}$ or volt
Now rate of change of flux per turn means induced e.m.f.

- \therefore average e.m.f./turn $=4 f \phi_{m} \mathrm{~Wb} / \mathrm{s}$ or volt
- If flux ϕ varies sinusoidally, then r.m.s. Value of induce e.m.f. is obtained by multiplying the average value wit form factor.
- Form factor =r.m.s. value/average value=1.11
- \therefore r.m.s. Value of e.m.f. /turn $=1.11 * 4 f \phi_{m}$

$$
=4.44 f \phi_{m} \text { volt }
$$

- Now, r.m.s.value of the induced e.m.f. in the whole of primary winding
- =(induced e.m.f./turn)*No. of primary turns
- $E_{1}=4.44 f N_{1} \phi_{m}=4.44 f N_{1} B_{m} A$....(i)
- Similarly, r.m. s. Value of the e.m.f. Induced in seconda is,
- $E_{2}=4.44 f N_{2} \phi_{m}=4.44 f N_{2} B_{m} A$
- It is seen from (i) and (ii) that $E_{1} / N_{1}=E_{2} / N_{2}=4.44 f \phi_{m}$.
- It means that e.m.f. /turn is the same in both the primary and second windings.
- In an ideal transformer of no-load,
- $E_{1}=V_{1}$ and $E_{2}=V_{2}$
- $\mathrm{Or} \mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{E}_{2} / \mathrm{E}_{1} \ldots$ (iii)
- 6.VOLTAGE TRANSFORMATION RATIO (K)From equations (i) and (ii), we get

$$
E_{2} / E_{1}=N_{2} / N_{1} \ldots \ldots . . \text { (iii) }
$$

- In transformer input power = output power
- Then $\mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2}$
- $\mathrm{Or} \mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{I}_{1} / \mathrm{I}_{2} \quad$....(iv)
- From eq. (i) to (iv)
- $V_{2} / V_{1}=E_{2} / E_{1}=N_{2} / N_{1}=I_{1} / I_{2}=K$
- This constant K is known as transformation ratio.
- (i) If $\mathbf{N}_{2}>\mathbf{N}_{1}$ i.e. $\mathrm{K}>1$, transformation is known as step transformer
- (ii)If $\mathbf{N}_{2}<\mathbf{N}_{1}$ i.e. $\mathrm{K}<1$, then transformeris known as stepdown transformer

- TRANSFORMER ON NO-LOAD

An ideal transformer i.e. one in which there were no c losses and copper losses. But practical conditions an actual transformer is put on load, there is iron loss in the core and copp loss in the windings (both primary and secondary) and these los. ate not entirely negligible.

- Even when the transformer is on no-load, the primary input cur is not wholly reactive. The primary input current under no-load conditions has to supply
- (i) iron losses in the core i.e. hysterias is loss and eddy current ld and
- (ii) a very small amount of copper loss in primary (there being n loss in secondary as it is open). Hence, the no load primary inpu current I_{0} is not at 90° behind V_{1} but lags it by an angle
- $\phi_{0}<90^{\circ}$.
- No-load input power

$$
\mathrm{W}_{0}=\mathrm{V}_{1} \mathrm{I}_{0} \cos \phi_{0}
$$

- Where $\cos \phi_{0}$ is primary power factor under no-load conditions. No-lo condition of an actual transformer is shown vectorially in fig.

- As seen from fig, primary current I_{0} has two componen
- (i) One in phase with V_{1}. This is known as active or working or iron loss component I_{w} because it mainly supplies the iron loss plus small quantity of primary Cu loss.

$$
I_{w}=I_{0} \cos \phi_{0}
$$

(ii) The other component is in quadrature with V_{1} and known as magnetising component I_{μ} because its functi is to sustain the alternating flux in the core. It is wattle

$$
I_{\mu}=I_{0} \sin \phi_{0}
$$

Obviously, I_{0} is the vector sum of I_{w} and I_{μ}, hence I_{0} $\left.I_{\mu}{ }^{2}+I_{w}{ }^{2}\right)$.

- The following points should be noted carefully:
- 1.The no-load primary current I_{0} is very small as compared to the full-load primary current.
- It is about 1percent of the full-load current.
- Owing to the fact that the permeability of the core varies with the instantaneous value of the exciting current, the wave of the exciting or magnetising curre is not truly sinusoidal.
- 2. As I_{0} is very small, the no-load primary Cu loss is negligibly small which means that no-load primary inp is practically equal to the iron loss in the transformer.
- As it is principally the core-loss which is responsible fo shift in the current vector, angle ϕ_{0} is known as hysteresis angle of advance.

- 8. TRANSFORMER ON LOAD-

- When the secondary is loaded the secondary current I_{2} is set up. The magnitude and phase of I_{2} wit respect to V_{2} is determined by the characteristics of t load. Current I_{2} is in phase with V_{2} if load is noninductive, it lags if load is inductive and it leads if loac capacitive.
- The secondary current sets up its own m.m.f. (= $\mathrm{N}_{2} \mathrm{I}_{2}$) and hence its own flux ϕ_{2} which is in opposition to the main primary flux ϕ which is due to I_{0}. The secondary ampere-turns $\mathrm{N}_{2} \mathrm{I}_{2}$ are known as demagnetizing ampturns. The opposing secondary flux ϕ_{2} weakens the primary flux ϕ momentarily, hence primary back e.m. E_{1} tends to be reduced. For a moment V_{1} agains the upper hand over E_{1} and hence causes more current to flow in primary.
- Let the additional primary current be I_{2}. It is known as load component of primary current. This current is antiphase with I .The additional primary m.m.f. $\mathrm{N}_{1} \mathrm{I}_{2}$ sets up its own flux $\phi^{\prime}{ }_{2}$ wh is in opposition to ϕ_{2} (but is in the same direction as ϕ) and is equal to it in magnitude. Hence ,the two fluxes cancel each oth out So, we find that the magnetic effects of secondary current are immediately neutralized by the additional primary current which is brought into existence exactly at the same instant as I_{2} The whole process is illustrated in below fig.

- Hence whatever the load conditions, the net flux pass through the core is approximately the as at
- no-load therefore the core loss is also practically the same under all load conditions.
- As $\phi_{2}=\phi^{\prime}{ }_{2}$
- so $\mathrm{N}_{2} \mathrm{I}_{2}=\mathrm{N}_{1} \mathrm{I}^{\prime}{ }_{2}$ and hence $\mathrm{I}^{\prime}{ }_{2}=\mathrm{N}_{1} / \mathrm{N}_{2} \quad{ }^{*} \mathrm{I}^{\prime}{ }_{2}$ Hence, when transformer is on load, the primary winding has two currents no-load current I_{0} a I_{2} which is anti-phase with I_{2} and K times in magnitude. The total primary current is the vector sun I_{0} and I_{2}^{\prime}

(c)

RESISTIVE LOAD INDUCTIVE LOAD

CAPACITIVE LOAD

PROBIEMS

PROB 1.

- The maximum flux density in the core of a $250 / 3000 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer is $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$ if em per turn is 8 V find (I) $\mathrm{N}_{1}, \mathrm{~N}_{2}(2)$ area of core
- Solu: Given $\mathrm{E}_{1}=\mathrm{V}_{1}=250 \mathrm{v}$

$$
E_{2}=V_{2}=3000 \mathrm{v}
$$

$\mathrm{E}_{1}=\mathrm{N}_{1}{ }^{*} \mathrm{emf} / \mathrm{turn}$

$$
\mathrm{N}_{1}=250 / 8=32 \text { and } \mathrm{N}_{2}=3000 / 8=375
$$

$\mathrm{E}_{2}=4.44{ }^{*} \mathrm{f}^{*} \mathrm{~N}_{2}{ }^{*} \mathrm{Bm}{ }^{*} \mathrm{~A}$

$$
3000=4.44 * 50 * 375 * 1.2 * \mathrm{~A}
$$

$A=0.03 \mathrm{~m}^{2}$

- PROB 2.
- 1-phase tran has 400 primary turn and 1000 secondary turn. Net area of the core is 60 cm 2 if primary winding is connected to a 50 Hz 520 v supply Find max value of flux density and secondary induced voltage.
- Solu Given $\mathrm{N}_{1}=400$
- $\quad N_{2}=1000$

$$
A=60 \mathrm{~cm} 2=60 * 10-4 \mathrm{~m}^{2}
$$

$$
\mathrm{F}=50 \mathrm{~Hz}
$$

$$
V_{1}=520 \mathrm{~V}
$$

- $\mathrm{N}_{2} / \mathrm{N}_{1}=\mathrm{E}_{2} / \mathrm{E}_{1}=\mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{K}$
- $K=N_{2} / N_{1}=1000 / 400=2.5$
- $\mathrm{V}_{1}=\mathrm{E}_{1}$
- $\mathrm{E}_{2}=\mathrm{KE}_{1}=2.5 * 520=1300 \mathrm{~V}$
- $E_{1}=4.44{ }^{*} f^{*} N_{1}{ }^{*} B m * A$
- $520=4.44 * 50 * 400 * B m * 60 * 10-4$
- $\mathrm{Bm}=0.976 \mathrm{~Wb} / \mathrm{m}^{2}$

PROB 3

A 25-kVA tran has 500 turn on primary and 50 turn on secondary. The primary is connected $3000-\mathrm{v}, 50 \mathrm{~Hz}$ supply. Find full load primary and secondary current, secondary emf and max flux in the core

- Solu :-Given KVA OUTPUT 25 KVA
$\mathrm{N}_{1}=500$
$\mathrm{N}_{2}=50$
$V_{1}=3000 \mathrm{~V}$
$N_{2} / N_{1}=E_{2} / E_{1}=V_{2} / V_{1}=K$
$V_{1}=E_{1}$
$K=N_{2} / N_{1}=50 / 500=0.1$
$E_{2}=K E_{1}=0.1 * 3000=300 \mathrm{~V}$
$\mathrm{I}_{1}=$ KVA OUTPUT*1000/ $\mathrm{V}_{1}=25^{*} 1000 / 3000=8.33 \mathrm{~A}$
$I_{2}=K V A$ OUTPUT* $1000 / V_{2}=25^{*} 1000 / 300=83.3 \mathrm{~A}$
$\mathrm{E}_{1}=4.44 \mathrm{f} \phi \mathrm{N}_{1}$
$\phi=\mathrm{E}_{1} / 4.44 \mathrm{f} \mathrm{N}_{1}=3000 / 4.44 * 50 * 500=27 \mathrm{mWb}$

1. The number of turns on the primary and secondary windings of a 1ϕ transformer are 350 and 35 respectively. If the primary is connected to a $2.2 \mathrm{kV}, 50 . \mathrm{Hz}$ supply, determine the secondary voltage on no-load.
[220V]
2. A $3000 / 200-\mathrm{v}, 50-\mathrm{Hz}, 1$-phase transformer is built on a core having an effective cross sectional area of 150 cm 2 and has 80 turns in the LV winding. Calculate B and HV turns. ($0.75 \mathrm{~Wb} / \mathrm{m}^{2}, 1200$)
3. A $3300 / 230-\mathrm{v}, 50-\mathrm{Hz}, 1$-phase transformer is to be worked at a max flux density $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$ in the core having an effective cross sectional area of 150 cm 2 . Calculate LV and HV turns. $(58,830)$
4. A $40 \mathrm{kVA} 3300 / 240-\mathrm{v}, 50-\mathrm{Hz}, 1$-phase transformer has 600 turns on primary calculate. N_{2}, max flux, I_{1} \& I
($48,22.5 \mathrm{mwb}, 12.1 \mathrm{~A} \& 166.7 \mathrm{~A}$)

5 A double wound 1-phase, 10 kva transformer is to be worked at a max flux density $1.2 \mathrm{~Wb} / \mathrm{m} 2$ in the core is required to step down from 1900 v to $240 \mathrm{v}, 50 \mathrm{~Hz}$. It is to be $1.5 \mathrm{v} /$ turn. Calculate $\mathrm{N} 1, \mathrm{~N} 2,11,12$ and area of core $1267,160,41.75 \mathrm{~A}, 5.27 \mathrm{~A}, 56.4 \mathrm{~cm} 2$)
6 The no-load voltage ratio of a 1phase 50 Hz tran is 1200/440 calculate N , N if max flux is 0.075 Wb .
[24 and 74]
7 A 1-phase tran has number of turns on the primary and secondary windings are 500 and 1200 respectively.If effective cross sectional area of core is 75 cm 2 and the primary is connected to a $400 \mathrm{v}, 50 . \mathrm{Hz}$ supply, determine max flux density and the secondary voltage on no-load.
[0.48 Wb/m2,60V]

8 A 10 kVA 1-phase tran has turn ratio 300/23 primary is connected to 1500 $\checkmark 60 \mathrm{~Hz}$ supply find V2, I1, I2 AND max valu of flux.

$$
\text { [} 115 \mathrm{~V}, 6.67 \mathrm{~A}, 87 \mathrm{~A}, 11.75 \mathrm{mwb}]
$$

9 A 100 kVA 3300/400-v, 50-Hz,1-phase transformer has 110 turns on secondary calculate.N1,max flux , I1 \& I2
(907, 16.4 mwb, 30.3A \& 250 A)

1 A 2200/200-v, 50-Hz,1-phase transformer a no-load primary current of 0.6 A and absorb 400 watts. Find magnetizing and iron loss current.

Solu :- iron loss current = no-load input watt/primary voltage

$$
=400 / 2200=0.182 \mathrm{~A}
$$

$$
\begin{aligned}
& I 20=I 2 w+I 2 \mu \\
& I \mu=(\sqrt{ } I 20-I 2 w) \\
& I \mu=(\sqrt{ } 0.62-0.1822)=0.572 \mathrm{~A}
\end{aligned}
$$

2 A 2200/250-v, 50-Hz,1-phase transformer takes 0.6 A at Pf 0.3 on open circuit . Find magnetizing and working component of no load current.

$$
\text { Solu } \begin{aligned}
I O & =0.6 \mathrm{~A} \cos \phi=0.3 \\
I w & =I 0^{*} \cos \phi=0.5^{*} 0.3=0.15 \mathrm{~A} \\
I \mu & =(\sqrt{ } 120-I 2 \mathrm{w}) \\
I \mu & =(\sqrt{ } 0.62-0.1822)=0.476 \mathrm{~A}
\end{aligned}
$$

3 The number of turns on the primary and secondary windings of a 1transformer are 350 and 35 respectively. If the primary is connected to a $2.2 \mathrm{kV}, 50 . \mathrm{Hz}$ supply, determine the secondary voltage on no-load.

4 A 3000/200.V, 50-Hz, 1-phase transformer is built on a core having an effective cross-sectional area of 150 cm 2 and has 80 turns in the low-voltage winding. Calculate the value of the maximum flux density in the core the number of turns the high-voltage winding.

> [(a) 0.75Wb/m2 (b) 1200]

5 A 3,300/230.V $50-\mathrm{Hz}$, 1-phase transformer is to be worked at a maximum flux density of $1.2 \mathrm{~Wb} / \mathrm{m} 2$ in the core. The effective cross/sectional area of the transformer core is 150 cm 2 . Calculate suitable values of primary and secondary turns.
[830;58]
6 A 40-k VA, 3,300/240-V, 50-Hz, 1-phase transformer has 660 turns on the primar Determine the number of turns on the secondary (b) the maximum value of flux in the core the approximate value of primary and secondary full-load currents. Internal drops in the windings are to be ignored.
[(a)48 (b)22.5 mWb (c)12.1A;166.7A]

7 A double-wound, 1-phase transformer is required to step down from 1900 V to $240 \mathrm{~V}, 50-\mathrm{Hz}$. It is to have 1.5 V per turn. Calculate the required number of turns on the primary and secondary windings respectively. The peak value of flux densit is required to be not more than $1.2 \mathrm{~Wb} / \mathrm{mw}$. Calculate the required Crosssectional area of the steel core. If the output is 10 kVA , calculate the secondary current.
[1,267;160;56.4 cm2;41.75 A]

8 The no-load voltage ratio in a 1-phase, $50-\mathrm{Hz}$, core-type transformer is $1,200 / 440$. Find the number of turns lin each winding if the maximum flux is to be 0.75 Wb .

$$
\text { [24 and } 74 \text { turns] }
$$

9 A 1-phase transformer has 500 primary and 1200 secondaryturns. The net cross-sectional area of the core is 75 cm 2 . If the primary winding be connected to a $400-\mathrm{V}, 50 \mathrm{~Hz}$ supply, calculate the peak value of flux density in the core and (ii) voltage induced in the secondary winding. [0.48Wb/m2;60V]
10 A $10-\mathrm{kVA}, 1$-phase transformer has a turn ratio of $300 / 23$. The primary is is connected to a $1500 / \mathrm{V}, 60 \mathrm{~Hz}$ supply. Find the secondary volts on open-circuit and the approximate values of the currents in the two Windings on full-load. Final also the maximum value of the flux.
[115V;6.67A;87A; 11.75mWb]
11 A 100-k VA, 3300/400. V, 50.Hz, 1-phase transformer has 110 turns on the secondary. Calculate the approximate values of the primary and secondary full/load currents, the maximum value of flux in the core an the number of primary turns. How does the core flux vary with load ?

$$
\text { [30.3 A; } 250 \text { A; } 16.4 \text { mWb; } 907 \text {] }
$$

12 The no/load current of a transformer is 5.0 A at 0.3 power factor when supplied at $230-\mathrm{V}, 50-\mathrm{Hz}$. The number of turns on the primary winding is 200. Calculate (I) the maximum value of flux in the core (ii) the core loss (iii) the magnetising current.
[5.18 mWb; 345W; 4.7A]
13 The no-load current of a transformer is 15 A at a power factor of factor o 0.2 when connected to a $460-\mathrm{V}, 50-\mathrm{Hz}$ supply. If the primary winding has 550 turns, calculate the magnetising component of no/load current (b) the iron loss (c) the maximum value of the flux in the core.

$$
\text { [(a) 14.7A (b)1,380 W (c) } 3.77 \mathrm{mWb}]
$$

14 The no/load current of a transformer is 4.0 A at 0.25 p.f. when supplied at $250-\mathrm{V}, 50-\mathrm{Hz}$. The number of turns on the primary winding is 200. Calculate the r.m.s. value of the flux in the core (assume sinusoidal flux) (ii) the core loss (iii) the magnetising current.
[(I) 3.98 mWb
(ii) 250 W (iii) 3.87 A]

- 1. A single-phase transformer with a ratio of $440 / 110-\mathrm{V}$ takes a no load
- Current of 5 A at 0.2 power factor lagging. If the secondary supplies a current of 120 A at a p.f. of 0.8
- Lagging, estimate taken by the primary.
- SOLUTION :- $\cos \phi 2=0.8, \phi 2=\cos -1(0.8)=36.54^{\circ}$
- $\quad \cos \phi 0=0.2, \phi 0=\cos -1(0.2)=78.30^{\circ}$

Now K=V2/V1 $=110 / 440=1 / 4$
I2'=KI2=120x1/4 =30 A
$10=5 \mathrm{~A}$.
Angle between 10 an 12^{\prime}

$$
=78^{\circ} 30^{\prime}-36.54^{\circ}=41^{\circ} 36^{\prime}
$$

Using parallelogram law of vectors (fig.27-19) we get $I 1=\sqrt{ }\left(52+302+2 \times 5 \times 30 \times \cos 41^{\circ} 36^{\prime}\right)$

$$
=34.45 \mathrm{~A}
$$

The resultant current could also have been found by resolving 12 ' and 10 into their X-and
Y-components.

- A transformer has a primary winding of 800 turns and a secondary winding of 200 turns. When the load current on the secondary is 80 A at 0.8 power factor lagging, the primary current is 25 A at 0.707 power facto lagging. Determine graphically or otherwise the no-load current of the transformer and its phase with respect to the voltage.
- SOLUTION : - Here

$$
\begin{gathered}
K=200 / 800=1 / 4 ; \mid 2^{\prime}=80 \times 1 / 4=20 \mathrm{~A} \\
\phi 2=\cos -1(0.8)=36.54^{\circ} \\
\phi 1=\cos -1(0.707)=45^{\circ}
\end{gathered}
$$

As seen from fig. 27.20, 11 is the vector sum of 10 and 12^{\prime}. Let 10 lag behind V1 by an angle $\phi 0$

$$
\begin{aligned}
& I 0 \cos \phi 0 \quad+20 \cos 36.9=25 \cos 45 \\
& I 0 \cos \phi 2=25 \times 0.707-20 \times 0.8=1.675 \mathrm{~A} \\
& 10 \sin \phi 0 \quad+20 \sin 36.9=25 \sin 45 \\
& I 0 \sin \phi 2=25 \times 0.707-20 \times 0.6=5.675 \mathrm{~A} \\
& \tan \phi 0=5.675 / 1.675=3.388 \\
& \phi 0=73.3 \\
& \text { Now, IO } \sin \phi 0=5.675 \\
& I 0=5.675 / \sin 73.3=5.93 \mathrm{~A}
\end{aligned}
$$

3 The primary of a certain transformer takes 1 A at a power factor of 0.4 when it is connected across a $200-\mathrm{V}, 50-\mathrm{Hz}$ supply and the secondary is on open circuit. The number of turns on the primary is twice that on the secondary. A load taking 50 A at a lagging power factor of 0.8 is now connected across the secondary. What is now the value of primary current?
[25.9A]
4 The number of turns on the primary and secondary windings of a single/phase transformer are 350 and 38 respectively. If the primary winding is connected to a $2.2 \mathrm{kV}, 50-\mathrm{Hz}$ supply, determine the secondary voltage on no-load.The primary current when the secondary current is 200 A at 0.8 p.f. lagging, if the no-load current is 5 A at 0.2 p.f. lagging.The power factor of the primary current. [239 V; 25.65A; 0.715 lag$]$
5 A 400/200-V, 1-phase transformer is supplying a load of 25 A at a p.f. of 0.866 lagging. On no-load, the current land power factor are 12 A and 0.208 respectively. Calculate the current taken from the supply.

> [13.9A lagging V1 by 36.10]

6 A transformer takes 10 A on no-load at a power factor of 0.1. The turn ratio is $4: 1$ (step down). If a load is supplied by the secondary at 200 A and p.f. of 0.8 , find the primary current and power factor (internal voltage drops in transformer are to be ignored) [57.2A; 0.717 lagging]

- (7) A 1-phase transformer is supplied at $1,600 \mathrm{~V}$ on the h.v. side and has a turn ratio of $8: 1$. The transformer supplies a load of 20 kW at a power factor of 0.8 lag and takes a magnetizing current of 2.0 A
- A at a power factor of 0.2 Calculate the magnitude and phase of the current taken from the h.v. supply.
-

$$
\text { [17.15A; } 0.753 \mathrm{lag}]
$$

- (8) A 2,200/200-V transformer takes 1 A at the H.T. side on no-load at a p.f. of 0.385 lagging. Calculate the iron losses.
- If a load of 50 A at a power of 0.8 lagging is taken from the secondary of the transformer, calculate the actual primary current and its power factor.
[847 WI;5.44A; 0.74 lag$]$
- (9) A 400/200-V, 1-phase transformer is supplying a load of I50 A at a power factor of 0.866 lagging. The
- no-load current is 2 A at 0.208 p.f. lagging. Calculate the primary current and primary power factor.

COUILIENTGROUTIT

- EQUIVALENT RESISTANCE

- In a transformer whose primary resistance \mathbf{R}_{1} and secondary resistance is \mathbf{R}_{2}
- This resistance is external to the winding and transferred to any one of the two windings. The advantage of the resistance in one winding is that it makes calculation very simple and easy.
- The cu loss in secondary is $I_{2}{ }^{2} \mathbf{R}_{\mathbf{2}}$. this loss is supplied by primar which takes a current I1. Hence, if \mathbf{R}_{2} is the equivalent resistan in primary which would have caused the same loss as R_{2} in secondary, then
- $I_{1}{ }^{2} R_{2}^{\prime}=I_{2}{ }^{2} R_{2}$
- $R_{2}^{\prime}=\left(I_{2}{ }^{2} / I_{1}{ }^{2}\right) R_{2}$

- If neglect no load current I_{0} then $\left(I_{2} / I_{1}\right)$ hence $R_{2}^{\prime}=R_{2} / K^{2}$, simila equivalent primary resistance as referred to the secondary $\mathrm{R}_{1}{ }_{1}=$ R_{2}
- In below fig secondary resistance has been transferred to prima side having secondary circuit resistance less. The resistance R_{1} $=R_{1}+R_{2} / K^{2}$ is known as the equivalent or effective resistance of transformer as referred to primary and represented by $\mathrm{R}_{01}=\mathrm{R}_{1}$ $=R_{1}+R_{2} / K^{2}$
A resistance of R_{2} in secondary is equivalent to R_{2} / K^{2} in primary. Hence it is called the equivalent secondary resistance as referre primary i.e. $R_{2^{\circ}}$
- (3) Total or effective resistance of the transformer as referred to primary is

$$
\mathrm{R}_{01}=\mathrm{R}_{1}+\mathrm{R}_{2}^{\prime}=R_{1}+R_{2} / K^{2}
$$

Total or effective resistance of the transformer as referred to secondary is

$$
\mathrm{R}_{02}=\mathrm{R}_{1}^{\prime}+\mathrm{R}_{2}=K^{2} R_{1}+R_{2}
$$

- Similarly primary and secondary leakage reactance car also transferred from one winding to the other in the same way as resistance.
- $\mathrm{X}_{2}^{\prime}=\mathrm{X}_{2} / K^{2}$ and $\mathrm{X}_{1}^{\prime}=K^{2} \mathrm{X}_{1}$
- And $X_{01}=X_{1}+X_{2}^{\prime}=X_{1}+X_{2} / K^{2}$
- and $X_{02}=X_{1}+X_{2}=K^{2} X_{1}+X_{2}$
- It is obvious that total impedance of the transformer a primary and secondary is given by
- $Z_{01}=\sqrt{ }\left[\left(R_{01}\right)^{2}+\left(X_{01}\right)^{2}\right]$ and
- $Z_{02}=\sqrt{ }\left[\left(R_{02}\right)^{2}+\left(X_{02}\right)^{2}\right]$

- EQUIVALENT CIRCUIT

The transformer shown diagrammatically in below fig can be resolved into an equivalent circuit in which the resistance and leakage reactance of the transformer are imagined to be external to the windin whose only function then is to transform the voltage. The no-load current I_{0} is simulated by pure inductance taking the magnetizing component $I \mu$ and a non inductive resistance R_{0} taking the working component connected in parallel across primary circuit. The value is obtained by subtracting vectorially

- $I_{1} Z_{1}$ from V1. The value of $X_{0}=E_{1} / I \mu$ and
- $R_{0}=E_{1} / l w$ it is clear $E_{2} / E_{1}=K$
- Make transformer calculation easier simpler, it is preferable to transfer V,I, and Z either primary or to be secondary.
- Hence primary equivalent of the secondary induced voltage $=E_{2} / K=E 1$
- primary equivalent of the secondary output voltage
- $\quad \mathrm{V}_{2}=\mathrm{V}_{2} / \mathrm{K}=\mathrm{V} 1$
- primary equivalent of the secondary current
- $\quad \mathrm{I}_{2}=\mathrm{KI}_{2}$
- and $R_{2}^{\prime}=R_{2} / K^{2}, X_{2}^{\prime}=X_{2} / K^{2}$ and $Z_{2}^{\prime}=Z_{2} / K^{2}$
- the same relationship is used for shifting an external load impedance to the primary.
- The secondary circuit and its equivalent primary values are shd in below fig.
- The total equivalent circuit of the transformer is obtained by adding in the primary impedance as shown in below fig.

$$
\mathrm{R}_{2}^{\prime}=\mathrm{R}_{2} / \mathrm{K}^{2} \quad \mathrm{X}_{2}^{\prime}=\mathrm{X}_{2} / \mathrm{K}^{2}
$$

(b)

REGULATON

- REGULATION OF A TRANSFORMER

- When a transformer is loaded with constant primary voltage due to internal resistance and reactance the secondary voltage decreased (inductive load i.e. lagging pf) or increased (capacitive load i.e. leadin
- Let secondary terminal voltage at no-load

$$
=V_{02}=E_{2}=K E_{1}=K V_{1}
$$

- secondary terminal voltage at full-load $=\mathrm{V}_{2}$
- The change in secondary terminal voltage from no-load to full-load - V_{2}

Regulation is define in two ways
REGULATION DOWN :-The change in secondary term voltage from no-load to full-load is divided by V_{2} is known as regulation down.
$\%$ Regulation down $=\left[\left(\mathrm{V}_{02}-\mathrm{V}_{2}\right) / \mathrm{V}_{2}\right] \times 100$

REGULATION UP :-The change in secondary termina voltage from no-load to full-load is divided by V_{02} is known as regulation up. $\%$ Regulation up $=\left[\left(\mathrm{V}_{02}-\mathrm{V}_{2}\right) / \mathrm{V}_{02}\right] \times 100$

- Regulation is to be taken as always regulation down
- Lesser the value of regulation better the transformer, because a good transformer should keep its secondary terminal voltage as constant as possible under all conditions of load.
- Regulation may also be explained in terms of primary values
- \% Regulation $=\left(\mathrm{V}_{1}-\mathrm{V}_{2}{ }_{2}\right) / \mathrm{V}_{1} \times 100$
- where V_{1} is secondary no-load terminal voltage as referred to primary $E^{\prime}{ }_{2}=E_{2} / K=E_{1}=V_{1}$
- $\quad \mathrm{V}_{2}{ }_{2}$ is the secondary full-load voltage as referred to prima is $\mathrm{V}_{2}^{\prime}=\mathrm{V}_{2} / \mathrm{K}$
- Regulation is also define in this way
- $\%$ regn $=\left(I_{1} R_{01} \cos \phi+I_{1} X_{01} \sin \phi\right) / V_{1} \times 100$

$$
=\mathrm{Vr} \cos \phi+\mathrm{Vx} \sin \phi
$$

- where

$$
\begin{gathered}
\mathrm{Vr}=\left(I_{1} \mathrm{R}_{01} * 100\right) / V_{1} \\
\mathrm{Vx}=\left(\mathrm{I}_{1} \mathrm{X}_{01} * 100\right) / V_{1}
\end{gathered}
$$

PERCENTAGE RESISTANCE, REACTANCE AND IMPEDANCE

- Percentage resistance at full-load

$$
\% R=\left(I_{1} R_{01} * 100\right) / V_{1} * 100=\left(I_{1}{ }_{1} R_{01} * 100\right) / V_{1} * I_{1} 100
$$

- $\% R=\left(I_{2}{ }_{2} R_{02} * 100\right) / V_{2} * I_{2} 100=\%$ cu loss at full-load

$$
\% R=V r=\% c u \text { loss at full-load. }
$$

- Percentage reactance at full-load
- $\% \mathrm{X}=\left(\mathrm{I}_{1} \mathrm{X}_{01} * 100\right) / \mathrm{V}_{1} * 100==\left(\mathrm{I}_{2} \mathrm{X}_{02} * 100\right) / \mathrm{V}_{2} * 100=\mathrm{Vx}$
- Percentage impedance at full-load
- $=\% \mathrm{Z}=\left(\mathrm{I}_{1} \mathrm{Z}_{01} * 100\right) / \mathrm{V}_{1} * 100==\left(\mathrm{I}_{2} \mathrm{Z}_{02} * 100\right) / \mathrm{V}_{2} * 100$

$$
\% Z=\sqrt{ }\left(\% R^{2}+\% X^{2}\right)
$$

OL/SETEST

- TRANSFORMER TESTS

- The performance of a transformer can be calculated on the basis of it equivalent circuit which contain four main parameters
- The equivalent resistance $R_{01}\left(\right.$ or $\left.R_{02}\right)$
- The equivalent reactance X_{01} (or X_{02})
- No-laod component (R_{0} and X_{0})
- This parameters can be easily determined by two test
- OPEN-CIRCUIT OR NO-LOAD TEST
- SHORT-CIRCUIT OR LOAD TEST

OPEN-CIRCUIT OR NO-LOAD TEST :-

The purpose of the test is to determine no load loss core loss and no-load current I_{0} which helpful in find R_{0} and X_{0}.
One winding usually HV winding left open and othe connected to supply of normal voltage and frequen

- In above fig a wattmeter, voltmeter and an ammeter are connected to primary (LV) winding and secondary open. With normal voltage applied to the primary, normal flux set up in th core, hence normal iron loss will occur which are recorded in wattmeter. As the primary no-load current I_{0} (as measured by ammeter) is small (2 to 10% of rated load current), cu loss is negligibly small in primary and nil in secondary. Hence wattm reading represents practically the core loss under no-load condition (which is same for all loads).
- Sometimes, a high resistance voltmeter is connected to the secondary for measurement of $E_{2}=$ this help to find transformation ratio K.

$$
\begin{aligned}
& \text { - If } \begin{aligned}
\text { Wattmeter reading } & =\mathrm{W} \\
\text { Voltmeter reading } & =\mathrm{V}_{1}
\end{aligned} \\
& \text { Ammeter reading } \\
& \text { W }
\end{aligned}=\mathrm{I}_{0} .
$$

SEPARATION OF CORE LOSSES

The core loss of a transformer depends upon the frequency and the maximum flux density when the volume and thickness of the core laminations are given. The core loss is made up of two parts Hysteresis loss $\quad W_{h}=P B^{2}{ }_{\text {max }} f$ as given by Steinmetz's empirical relation
Eddy current loss We =Q B ${ }^{1.6}{ }_{\text {max }}$ f 2
Where \mathbf{P} and \mathbf{Q} are constant
The total core loss is given by

$$
\begin{aligned}
\mathbf{W i} & =\mathbf{W e}+\mathbf{W h} \\
& =P B^{2}{ }_{\text {max }} f+Q B^{1.6}{ }_{\text {max }} f^{2}
\end{aligned}
$$

- SHORT-CIRCUIT OR IMPENDANCE TEST

- The purpose of the test is to determine
- (i) Equivalent impendanceZ ${ }_{01}$,resistance R_{01} and leakage reactar X_{01}.
- (ii) Cu loss at full load.
- (iii) Total voltage drop in the transformer and hence regulation.
- In this test one winding usually LV winding short circuited by thi conductor.

- A low voltage(5 to 10\% of normal primary voltage) at correct frequen applied to the primary and cautiously increased till
- full-load currents are flowing both in primary and secondary. Applied voltage is a small percentage of the normal voltage, flux produced is a small percentage of its normal value hence, core loss are very small w result that the wattmeter reading represents the full-load cu loss
- If

Wattmeter reading = W
Voltmeter reading $\quad=\mathrm{V}_{\text {sc }}$
Ammeter reading $=I_{1}$

$$
\begin{aligned}
& \mathrm{W}=I^{2}{ }_{1} R_{01} \\
&=W / I_{1}{ }_{1} \\
& R_{01} \\
& X_{01} \quad=\sqrt{ }\left(Z^{2}{ }_{01}-R^{2}{ }_{01}\right)
\end{aligned}
$$

and

IOCOEAETGEN

- Transformer is a static device there is no friction and windage losses. Hence transformer has only two losses .
- Core or iron loss :- core loss includes both hysteresis and eddy current loss this loss is practically constant at all loads.
- Hysteresis loss $\quad W_{h}=P B^{2}{ }_{\text {max }}$ f watt as given by Steinmetz's empirical relation
- Eddy current loss We =Q B ${ }^{1.6}{ }_{\text {max }} \mathrm{f}^{2}$ watt

Where P and Q are constant

- These loss is minimized by using steel high silicon content for th core and by using very thin laminations.
- Copper loss:- This loss is due to ohmic resistance of the transfor winding.
- Total cu loss $=I^{2}{ }_{1} R_{1}+I^{2}{ }_{2} R_{2}=I^{2}{ }_{1} R_{01}=I^{2}{ }_{2} R_{02}$ It is clear that Cu loss is proportional to to (current) ${ }^{2}$ or (KVA) ${ }^{2}$.
- cupper loss depend on current and iron loss depend on voltage hence transformer rating is in VA OR KVA.
- EFFICIENCY OF A TRANSFORMER
- Efficiency of any machine is defined as
- Efficiency = Output/Input
- Input = Output + losses
- Since transformer has two losses, Cu loss and Core los
- Hence , Input = Output + Cu loss + Core loss
- Efficiency = Output / (Output + Cu loss + Core loss)
- In other words
- Output = Input - Cu loss - Core loss = Input - Iosses
- Efficiency = (Input - losses) / Input
- Efficiency = 1 - (losses / Input)

$$
\mathrm{Cu} \text { loss }=\mathrm{I}_{1} \mathrm{R}_{01}=\mathrm{I}_{2} \mathrm{R}_{02}=\mathrm{Wcu}
$$

- Iron loss = Hysteresis loss + Eddy current loss = Wh + We = Wi
- Considering primary side
- Primary input $=\mathrm{V}_{1} \mathrm{I}_{1} \cos \phi$
- Efficiency $=\left(\mathrm{V}_{1} \mathrm{I}_{1} \cos \phi\right.$ - losses $) /\left(\mathrm{V}_{1} \mathrm{I}_{1} \cos \phi\right)$
- =1- (Losses / $\left.\mathrm{V}_{1} \mathrm{I}_{1} \cos \phi\right)$
- $\quad=1-\mathrm{Wi} / \mathrm{V}_{1} \mathrm{I}_{1} \cos \phi-\mathrm{Wcu} / \mathrm{V}_{1} \mathrm{I}_{1} \cos \phi$
- $\quad=1-\mathrm{Wi} / \mathrm{V}_{1} \mathrm{I}_{1} \cos \phi-\mathrm{I}_{1} \mathrm{R}_{01} / \mathrm{V}_{1} \mathrm{I}_{1} \cos \phi$
- $\quad=1-W i / V_{1} I_{1} \cos \phi-I_{1} R_{01} / V_{1} \cos \phi$
- for η is maximum $\mathrm{d} \eta / \mathrm{dl}_{1}=0$
- now differentiating both sides wrt I_{1}
- $d \eta / d l_{1}=d / d I_{1}\left(1-W i / V_{1} I_{1} \cos \phi-I_{1} R_{01} / V_{1} \cos \phi\right)$

$$
=0+\left[\mathrm{Wi} /\left(\mathrm{V}_{1} \cos \phi \mathrm{I}_{1}\right)\right]-\left[R_{01} / \mathrm{V}_{1} \cos \phi\right]=0
$$

- [Wi / $\left.\left.\mathrm{V}_{1} \cos \phi \mathrm{I}_{1}{ }_{1}\right)\right]=\left[\mathrm{R}_{01} / \mathrm{V}_{1} \cos \phi\right]$
- $\quad W i=I_{1}{ }_{1} R_{01}$
- Iron loss = CU loss
- The output current corresponding to maximum efficiency is
- $\quad I^{2}=\sqrt{ }\left(\mathbf{W i} / R_{02}\right)$
- Load corresponding to maximum efficiency
$=$ full load $X \sqrt{ }(\mathrm{Wi} / \mathrm{Cu}$ loss at full load)
- Some important point
- If $\mathbf{x}=$ actual load / full load
- Actual load = x * full load
- Cu loss at actual load = x2 *full load cu loss
- And iron is same for all load condition
- Efficiency at any load is given
- Efficiency =
x*Output inKW or W
- (x^{*} Output in KW or W + x2 *full load cu loss KW or W+Core loss in KW or W)

RIL DAN EFFCEEICY

ALL- DAY EFFICIENCY :-

- All day efficiency of transformer is the ratio of output kwh to the input in kwh for $\mathbf{2 4}$ hours
- η all-day = output in kwh / input in kwh (for 24 hrs)
- This efficiency is always less than the commercial efficiency of a transformer
- The performance of transformer should be judge by all day (also called energy, operational) efficiency which is computed on the basic of energy consumed during a certain period, usually a day of 24 hrs .

1. A $30-\mathrm{kVA},, 2400 / 120-\mathrm{V}, 50-\mathrm{Hz}$ transformer has a high voltage winding residhance of 0.1
And a leakage reactance of 0.22 . The lowl voltage winding resistance is 0.035 and the leakage reactance is 0.012 . Find the equivalent winding resistance, reactance and impedance referred to the (I) High voltage side and (ii) the low-voltage side Solution :- $\mathrm{K}=120 / 2400=1 / 20 ; r 1=0.1 \Omega$, $\mathrm{X} 1=0.22 \Omega$

$$
\mathrm{R} 2=0.035 \Omega \text { and } \mathrm{X} 2=0.012 \Omega
$$

Here, high-voltage side is, obviously, the primary side. Hence, values as referred to primary side are

$$
\begin{aligned}
& R 01=R 1+R 2^{\prime}=R 1+R 2 / K 2=0.1+0.035 /(1 / 20) 2=14.1 \Omega \\
& X 01=X 1+X 2^{\prime}=X 1+X 2 / K 2=0.22+0.012 /(1 / 20) 2=5.02 \Omega \\
& Z 01=\sqrt{ } R 01+x 012=\sqrt{ } 14.12=5.022=15 \\
& R 02=R 2+R 1^{\prime}=R 2+K 2 R 1=0.035+(1 / 20) 2=0.1=0.03525 \Omega \\
& X 02=X 2+X 1^{\prime}=X 2+K 2 X 1=0.012+(1 / 20) 2 \times 0.22=0.01255 \Omega \\
& Z 02=\sqrt{ } R 022+X 022=\sqrt{ } 0.035252+0.012552=0.0374 \Omega \\
& \text { (or } Z 02=K 2 Z 01=(1 / 20) 2 \times 15=0.0375 \Omega
\end{aligned}
$$

1. A $50 / \mathrm{kVA}, 4,400 / 220-\mathrm{V}$ transformer has $R 1=345 \Omega, R 2=0009 \Omega$. The values of reactances are X1=5.2 Ω and $\mathrm{X} 2=0.015 \Omega$. Calculate for the transformer (I) equivalent resistance as referred to primary (ii) equivalent resistance as referred to secondary (iii) equivalent reactance as referred to both primary and secondary (iv) equivalent impedance as referred to both primary and secondary (v) total Cu loss, first using individual resistances of the two windings and secondly, using equivalent resistances as referred to each side.
Solution: Full-load $I 1=50,000 / 4,400=11.36 \mathrm{~A}$ (assuming 100% efficiency)
Full/load $12=50,000 / 220=227$ A; $K=220 / 4,400=1.20$
$R 01=R 1+R 2 / K 2=3.45+0.009 /(1 / 20) 2=3.45+3.6=7.05 \Omega$
$R 02=R 2+K 2 R 1=0.009+(1 / 20) 2 \times 3.45=0.009+0.0086=0.0176 \Omega$
Also, R02=K2RO1=(1/20) $2 \times 7.05=0.0176 \Omega$ (check)

$$
\begin{equation*}
X 01=X 1+X 2^{\prime}=X 1+X 2 / K 2=5.2+0.015 /(1 / 20) 2=11.2 \Omega \tag{iii}
\end{equation*}
$$

$$
X 02=X 2+X 1^{\prime}=X 2+K 2 X 1=0.015+5.2 / 202=0.028 \Omega
$$

Also X02 $=$ K2X01 $=11.2 / 400 \quad=0.028 \Omega \quad$ (check)
Z01 $=\sqrt{ }($ R012 $+X 012)=\sqrt{ }(7.052+11.22)=13.23 \Omega$
ZO2 $=\sqrt{ }($ R022 + X022 $)=\sqrt{ }(0.01762+0.0282)=0.0331 \Omega$
ZO2 $=K 2 Z 01=13.23 / 400=0.0331 \Omega$ (check)
(v) Cu loss= I12 R1 +I22 R2=11.36 $2 \times 3.45+2272 \times 0.009=910 \mathrm{~W}$

Also Cu loss $=112$ R01 $=11.362 \times 7.05=910 \mathrm{~W}$
I22 R02 = $2272 \times 0.0176=910 \mathrm{~W}$

- .2. The parameters of a $2300 / 230 / 230-\mathrm{V}, 50-\mathrm{Hz}$ transformer are given below :
$\mathrm{R} 1=0.286$ ohm R2 ${ }^{\prime}=0.319$ ohm R0 ${ }^{\prime}=250$ ohm
X1 $=0.73$ ohm \quad X2 ${ }^{\prime}=0.73$ ohm X0 $=1250$ ohm
The secondary loadl impedance $\mathrm{Zl}=0.387+10.29$. Solve the exact equivalent circuit with normal
- Voltage across the primary.

$$
\begin{aligned}
& \text { Solution: K=230/2300 =1/10; Zl }=0.1387+10.29 \\
& Z^{\prime}{ }^{\prime}=Z 1 / K 2=100(0.387+\mid 0.29)=38.7+|29=| 29=48.4 \angle 36.8^{\circ} \\
& \text { Z2 '= } 0.319+j 0.73 \\
& Z 2 \text { ' }+Z L \text { ' }=(38.7+0.319)+j(29+0.73)=39.02+j 29.73=49.0 / 37 / 37.3^{\circ} \\
& \mathrm{Ym}=(0.004-\mathrm{j} 0.0008)^{\prime} \mathrm{Zm}=1 / \mathrm{Ym}=240+\mathrm{j} 48=245 \angle 11.3^{\circ} \\
& \left.Z m+\left(Z 2^{\prime}+Z L^{\prime}\right)=(240+j 48)+39+j 29.7\right)+=290 \angle 15.6^{\circ} \\
& I 1=V 1 /\left(Z 1+\left[Z m\left(Z^{\prime} 2+Z^{\prime} L\right) /\left(Z m+Z^{\prime} 2+Z^{\prime} L\right)\right]\right. \\
& =2300 \angle 0 /(0.286+j 0.73+41.4 \angle 33 \\
& =2300 \angle 0 / 42 \angle 33.7=54.8 \angle-33.7 \\
& \text { - } I^{\prime} 2=11 \times Z m /\left(Z m+Z^{\prime} 2+Z^{\prime} L\right)=54.8 \angle-33.7 \times 245 \angle 11.3 / 290 \angle 15.6 \\
& =54.8 \angle-33.7 \times 0.845 \angle-4.3=46.2 \angle-38 \\
& I 0=I 1 X\left(Z^{\prime} 2+Z^{\prime} L\right) /\left(Z m+Z^{\prime} 2+Z^{\prime} L\right)=54.8 \angle-33.7 \times 49 \angle 37.3 / 290 \angle 15.6 \\
& =54.8 \angle-33.7 \times 0.169 \angle 21.7=9.26 \angle-12
\end{aligned}
$$

Input power factor $=\cos 33.7=0.832$ lagging

- Power input $=$ V1I1 $\cos \phi 1=2300 \times 54.8 \times 0.832=1105 \mathrm{~kW}$
- Power output $=46.22 \times 38.7=82.7 \mathrm{~kW}$
- Primary Cu loss $=54.82 \times 0.286=860 \mathrm{~W}$
- Secondary Cu loss $=46.22 \times 0.319=680 \mathrm{~W}$; Core loss $=0.262 \times 240=20.6 \mathrm{~kW}$

$$
\eta=(92.7 / 105) \times 100=78.8 \% ; V^{\prime} 2=I^{\prime} 2 Z^{\prime} 1=46.2 \times 48.4=2,240 \mathrm{~V}
$$

Regulation $=2300-2240 / 2240 \times 100=2.7 \%$

- Prob1:-In a test for the determination of the losses of a $440-\mathrm{V}, 50 \mathrm{~Hz}$ transformer, the total iron losses were found to be 2500 W at normal voltage and frequency. When applied voltage and frequency were 220 V and 25 Hz , the iron losses were found to be 850 W . calculate the eddy current loss at normal frequency and voltage
- Solu : flux density is remain constant in both cases and voltage and frequency is half in second.
- Hence eddy curent loss We $\propto f 2$ hence We= Af2 and hysteresis loss Wh \propto f hence Wh=Bf
- Where A,B are constant
- Total iron losses $\mathrm{Wi}=\mathrm{We}+\mathrm{Wh}=\mathrm{Af} 2+\mathrm{Bf}=\mathrm{f}(\mathrm{Af}+\mathrm{B})$
- $A f+B=W i / f$
- $A * 50+B=2500 / 50=50$
- $A * 25+B=850 / 25=34$
- $A=0.64$ AND $B=18$
- $W e=A f 2=0.64 * 502=1600 \mathrm{~W}$
- $\mathrm{Wh}=\mathrm{Bf}=18 * 50=900 \mathrm{~W}$
- Prob2:- When a transformer is connected to a $1000-\mathrm{V}, 50 \mathrm{~Hz}$ supply, the core loss is 1000 W , of which 650 is hysteresis and 350 is eddy current loss If the applied voltage is raised to 2000 v and the frequency 100 Hz , find the new losses.
- Solu : flux density is remain constant in both cases and voltage and frequency is half in second.
- Hence eddy curent loss We $\propto f 2$ hence We= Af2 and hysteresis loss Wh \propto f hence Wh=Bf
- Where A, B are constant
- For 1000 V at 50 Hz
- $W h=A f=A * 50$
- $A=W h / f=650 / 50=13$
- $W e=B f 2$
- $\mathrm{B}=350 / 50 * 50=7 / 50$
- For 2000V at 100 Hz
- $\mathrm{We}=\mathrm{B} f 2=(7 / 50) * 1002=1400 \mathrm{~W}$
- $\mathrm{Wh}=\mathrm{Af}=13 * 100=1300 \mathrm{~W}$
- New core loss is $1300+1400=2700 \mathrm{~W}$

A transformer with normal voltage impressed has a flux density $1.4 \mathrm{~Wb} / \mathrm{m} 2$ and , the core loss consisting 1000 W eddy current loss and 3000 is hysteresis loss. What do these losses become under following conditions: Increasing the applied voltage by 10% at rated frequency.
Reducing the frequency by 10% with normal voltage.
Increasing both voltage and frequency by 10%.

solu

since voltage eq. is $\mathrm{E}=4.44 \mathrm{f} \mathrm{NBm} \mathrm{A}$
$B m \propto E / f$
Hysteresis loss Wh $=P B m 1.6 f$ and $\mathrm{We}=\mathrm{QBm} 2 \mathrm{f} 2$

$$
W h=P(E / f) 1.6 f \text { and } W e=Q(E / f) 2 f 2
$$

$$
3000=\text { PE1.6f }-6 \text { and } 1000=\text { Q E2 }
$$ eq 1

where E and f are the normal values of primary voltage and frequency
here voltage becomes $=\mathrm{E}+10 \% \mathrm{E}=1.1 \mathrm{E}$ \qquad eq2
The new Hysteresis loss Wh =P(1.1E)1.6f -6f
From eq 1 and $2 \quad \mathrm{~Wh} / 3000=(1.1 \mathrm{E}) 1.6 \mathrm{~Wh}=3000 * 1.165=3495 \mathrm{~W}$
New eddy -current loss is $\mathrm{We}=\mathrm{Q}(1.1 \mathrm{E}) 2$
Hence We/1000 = (1.1)2
$\mathrm{We}=1000$ * $1.21=1210 \mathrm{~W}$
when frequency change eddy current loss would not be effected. The new hysteresis loss
Wh = PE1.6(0.9f)-6
$\mathrm{Wh} / 3000=(0.9)-6=3000 * 1.065=3196 \mathrm{~W}$
In this case both E and f are increased by 10%. The new losses becomes
$\mathrm{Wh}=$ PE1.6(0.9f)-6 \quad therefore $\mathrm{Wh} / 3000=(1.1) 1.6(0.9)-6$
$\mathrm{Wh}=3000$ * 1.165 * $0.944=3299 \mathrm{watt}$
As We is unaffected by changes in frequency but affected by voltage changes and its value same in case (a) i.e. 1210 W

- Prob3:-A 30-kV A,6000/230-V single-phase transformer has the following parameters:-
- Primary winding ressitance=10 Ω
- Secondery winding ressitance referred to primary $=10.8 \Omega$
- Primary winding leakage reactance=16
- Secondery winding leakage reactance referred to primary $=18 \Omega$
- Calculate, neglecting no-load current, the voltage to be applied to the primary to circulate full-load current when the secondery is shortcircuited. What is the power factor on short- circuit?
- Solution.
- $R 01=r 1+r 2=10+10.8=20.8 \Omega ; X 01=X 1+X 2=16+18=34 \Omega$
- $\quad Z 01=\sqrt{ }(R 201+X 201)=\sqrt{ }(20.82+342)=39.8 \Omega$
- F.L. secondery current, $12=30 \times 103 / 230=130.4 \mathrm{~A} ; \mathrm{K}=230 / 6000=23 / 600$
- F.L. primaery current $\quad I 1=I^{\prime} 2=K I 2=(23 / 600) \times 130.4=5 \mathrm{~A}$
- Vsc=I1Z01=5x39.8=199V
- Short circuit p.f. $=\cos \phi 0=$ R01/ZO1=20.8/39.8=0.675
- Prob4:- Obtain the equilant circuit of a 200/400-V,50-Hz,1-phase transformer from the following data:-
- O.C. test :200V,0.7A,70W -on I.v. side
- S.C. test :15V,10A,85W -on h.v.side
- Calculate the secondery voltage when delivering 5 kW at 0.8 p.f. Langging, the primary voltage being 200V.
- Solution.
- From O.C. Test
- V1I0 $\cos \phi 0=\mathrm{W} 0$
- $\therefore 200 \times 0.7 x \cos \phi 0=70$
- $\therefore \cos \phi 0=0.5$ and $\sin \phi 0=0.866$
- $\mathrm{Iw}=\mathrm{Io} \cos \phi 0=0.7 \times 0.5=0.35 \mathrm{~A}$
- Iu=lo $\sin \phi 0=0.7 \times 0.866=0.606 \mathrm{~A}$
- Ro=Vi/lw=200/0.35=571.4 Ω
- $\mathrm{Xo}=\mathrm{Vi} / \mathrm{lu}=200 / 0.606=330 \Omega$
- These value refers to primary i.e. low-voltage side.
- From S.C. Test
- It may be noted that in this test, instrument have been placed in the secondary i.e. high- voltage winding whereas the low-voltage winding i.e. primary has been short-circuited.

$$
\begin{aligned}
& \mathrm{Zo} 2=\mathrm{Vsc} / 12=15 / 10=1.5 \Omega ; \mathrm{K}=400 / 200=2 \\
& \text { Zo1=Zo2/K2=1.5/4=0.375 }
\end{aligned}
$$

- Also I22Ro2=W; Ro2=85/100=0.85 Ω;Ro1=Ro2/K2=0.85/4=0.21
- \quad Xo1= $\sqrt{ }($ Z2o2-R2o1 $)=\sqrt{ }(0.3752-0.212)=0.31 \Omega$
- Output kVA $=5 / 0.8$;output current $I 2=5000 / 0.8 \times 400=15.6 \mathrm{~A}$
- This value of 12 is approximate because V2(Which is to be calculated as yet) has been taken equal to 400 V
- (Which, in fact, is equal to E2 or oV2).
- Now, Zo2=1.5 Ω, Ro2=0.85 $\Omega \quad \therefore$ Xo2 $=\sqrt{ }(1.52-0.852)=1.24 \Omega$
- Total transformer drop as refered to secondery
- $\quad=I 2(\operatorname{Ro2} \cos \phi 2+X o 2 \sin \phi 2)=15.6(0.85 \times 0.8+1.24 \times 0.6)=22.2 \mathrm{~V}$
- $\therefore \quad \mathrm{V} 2=400-22.2=377.8 \mathrm{~V}$
- Prob5 Starting from the ideal transformer, obtain the approximate equivalent circuit of a commercial transformer in which all the constant are lumped and represented on one side.
-

A1-phase transformer has turn ratio of 6. The resistance and reactance of primary winding are 0.9Ω and 5Ω respectively and those of the secondary are 0.03Ω and 0.13Ω respectively. If $330-\mathrm{Vat} 50-\mathrm{Hz}$ be applied to high voltage winding with low voltage winding short circuited, find the current in the low voltage winding and its power factor. Neglect magnetizing current.

- Solution. Here $K=1 / 6 ; R 01=R 1+R 2=0.9+(0.03 \times 36)=1.98 \Omega$
- $\quad \mathrm{Xo1}=\mathrm{X} 1+\mathrm{X} 2=5+(0.13 \times 36)=9.68 \Omega$
- Zo1= $\sqrt{(9.682+1.982)=9.9 \Omega ; V s c=330 V ~}$
- Full load primary current $\mathrm{I}=\mathrm{Vsc} / \mathrm{Zo1=330/0.9=100/3A}$
- As lo is negligible,hence $11=I^{\prime} 2=100 / 3 A$. Now, I'2=KI2
- F.L. secondery current $I 1=I 2 / K=(100 / 3) x 6=200 A$
- Now, power input on short - circuit =Vsc I1cos $\phi s c$; $\cos \phi s c=0.2$.
- Prob6 A 1-phase, 10-kVA,500/250-V,50-Hz transformer has the following constant:
- Reactance: primary 0.2Ω;secondery 0.5Ω
- Ressitance :primary 0.4Ω;secondery 0.1Ω
- Ressitance of equilant exciting circuit referred to primary, Ro= 1500Ω
- Reatance of equilant exciting circuit referred to primary, Xo=750
- What would be the readings of the instruments when the transformer is connected for the oper circuit and short- circuit tests ?
- Solution.
- O.C.Test
- $\quad \mathrm{lu}=\mathrm{Vi} / \mathrm{X}=500 / 750=2 / 3 \mathrm{~A} ; \mathrm{Iw}=\mathrm{Vi} / \mathrm{Ro}=500 / 1500=1 / 3 \mathrm{~A}$
- $\quad \therefore \mathrm{lo}=\sqrt{ }[(1 / 3) 2+(2 / 3) 2]=0.745 \mathrm{~A}$
- No load primary input =V1Iw=500x1/3=167W
- Instruments used in primary circuit are: voltmeter, ammeter and wattmeter, their reading being $500 \mathrm{~V}, 0.745 \mathrm{~A}$ and 167 W respectively.
- S.C.Test
- Suppose S.C. test performed by short-circuiting the l.v. winding i.e. the secondery so that all instruments are in primary.
- R01=R1+R2=R1+R2/K2; here $K=1 / 2 \therefore R 01=0.2+(4 x 0.5)=2.2 \Omega$
- Similarly, X01=X1+X2=X1+X2/K2=0.4+(4x0.1)=0.8
- $\quad Z 01=\sqrt{ }(2.22+0.82)=2.341 \Omega$
- Full load primary current
- $11=10,000 / 500=20 \mathrm{~A} \quad \therefore$ Vsc=I1Z01=20x2.341=46.8V
- Power absorbed=I21R01=20x2.2=880W
- Primary instruments will read : 46.8V,20A,880W.
- Prob8.The S.C. test on a 1-phase transformer, with the primary winding shortcircuited and 30 V applied to the secondary gave a wattmeter reading of 60 W and secondary current of 10 A . if the normal applied primary voltage is 200, the transformation ratio 1:2 and the full load secondary current 10A, calculate the secondary terminal p.d. at full load current for (a) unity power factor (b) power factor 0.8 lagging.

If any approximation are made, they must be explained.
[394V,377.6V]

- Prob9. A single phase transformer has a turn ratio of 6, the resistances of the primary and secondary windings are 0.9Ω and 0.25Ω respectively and the leakage reactance of these windings are 5.4Ω and 0.15Ω respectively. Determine the voltage to be applied to the low voltage winding to obtain a current of 100 A in the short- circuited high voltage winding. Ignore the magnetising current
[82V]
- Prob10.draw the equivalent circuit for a 3000/400-V,1-phase transformer on which the following test results were obtained. Input to high voltage winding when I.v. winding is open circuited:3000V, $0.5 \mathrm{~A}, 500 \mathrm{~W}$. input to l.v.winding when h.v.winding is short circuited:11V,100A,500W. insert the appropriate values of ressitance and reactance.

$$
[R o=18,000 \Omega, X o=6,360 \Omega, \operatorname{Ro1}=2.81 \Omega, \mathrm{Xo}=5.51 \Omega]
$$

- Prob11. the iron loss in a transformer core at normal flux density was measured at frequencies of 30 and 50 Hz , results being 30 W and 50 W respectively. Calculate (a) the hysteresis loss and (b) the eddy current loss at 50 Hz .
[44W,10 W]
- O.C.TEST -
$\mathrm{V} 1=120 \mathrm{~V} ; \mathrm{I} 1=4.2 \mathrm{~A} ; \mathrm{W} 1=80 \mathrm{~W} ; \mathrm{V} 1, \mathrm{~W} 1$ and I 1 were read on the low-voltage side .

S.C.TEST -

$\mathrm{V} 1=9.65 \mathrm{~V} ; \mathrm{I} 1=22.2 \mathrm{~A} ; \mathrm{W} 1=120 \mathrm{~W}$ - with low-voltage winding short- circuited.

Compute :

the equipment circuit (approximate) constants efficiency and voltage regulation for an 80\% lagging p.f. load

- Example 27-21A 30-kV A,6000/230-V single-phase transformer has the following parameters:-

Primary winding ressitance $=10 \Omega$
Secondery winding ressitance referred to primary $=10.8 \Omega$
Primary winding leakage reactance $=16 \Omega$
Secondery winding leakage reactance referred to primary $=18 \Omega$
Calculate, neglecting no-load current, the voltage to be applied to the primary to circulate full-load current when the secondery is shortcircuited. What is the power factor on short- circuit?

- Solution. R01=r1+r2=10+10.8=20.8 $; \times X 01=X 1+X 2=16+18=34 \Omega$
- ZO1 $=\sqrt{ }$ R01 $+X 01=\sqrt{ } 20.8+34=39.8 \Omega$
- F.L. secondery current,I2=30x10/230=130.4A;K=230/6000=23/600
- F.L. primaery current $\quad I 1=12=\mathrm{KI} 2=(23 / 600) \times 130.4=5 \mathrm{~A}$
- Vsc=I1Z01=5x39.8=199V
- Short circuit p.f. $=\cos =$ R01/ZO1=20.8/39.8=0.675
- Example 27.22 Obtain the equilant circuit of a 200/400-V,50$\mathrm{Hz}, 1-\mathrm{phase}$ transformer from the following data:-
- O.C. test :200V,0.7A,70W
- S.C. test :15V,10A,85W -on l.v. side -on h.v.side
- Calculate the secondery voltage when delivering 5 kW at 0.8p.f. Langging, the primary voltage being 200V.
- Solution. From O.C. Test
- V1I0 $\cos \varnothing 0=W 0$
- $\therefore 200 x 0.7 x \cos \varnothing 0=70$
$\therefore \cos \varnothing 0=0.5 \sin \varnothing 0=0.866$
- Iw=lo $\cos \varnothing 0=0.7 \times 0.5=0.35 \mathrm{~A}$
- Iu=lo $\sin \varnothing 0=0.7 x 0.866=0.606 \mathrm{~A}$
- Ro=Vi/lw=200/0.35=571.4
- $\mathrm{Xo}=\mathrm{Vi} / \mathrm{lu}=200 / 0.606=330 \Omega$
- As shown in Fig 27.48 these value refers to primary i.e. lowvoltage side.
- From S.C. Test
- It may be noted that in this test, instrument have been placed in the secondary i.e. high- voltage winding whereas the low-voltage winding i.e. primary has been short-circuited.
- Now, as shown in Art. 27.22
- Zo2=Vsc/I2=15/10=1.5 $;$ K=400/200=2
- Zo1=Zo2/K2=1.5/4=0.375
- Also I2Ro2=W; Ro2=85/100=0.85 Ω;Ro1=Ro2/K2=0.85/4=0.21 Ω
- Xo1= $\sqrt{ }$ Zo2-Ro1= $\sqrt{ } 0.375-0.21=0.31 \Omega$
- Output kVA =5/0.8;output current I2=5000/0.8x400=15.6A
- This value of I2 is approximate because V2(Which is to be calculated as yet) has been taken equal to 400 V
- (Which, in fact, is equal to E2 or oV2).

Now, $\quad Z o 2=1.5 \Omega$, Ro2 $=0.85 \Omega \quad \therefore$ Xo2 $=\sqrt{ } 1.5-0.85=1.24 \Omega$
Total transformer drop as refered to secondery $=12($ Ro $2 \cos \varnothing 2+X o 2 \sin \varnothing 2)=15.6(0.85 \times 0.8+1.24 \times 0.6)=22.2 \mathrm{~V}$

- $\therefore \quad \mathrm{V} 2=400-22.2=377.8 \mathrm{~V}$
- Example 27.23 Starting from the ideal transformer, obtain the approximate equilant circuit of a commercial transformer in which all the constant are lumped and represented on one side.

A1-phase transformer has turn ratio of 6. The ressitance and reactance of primary winding are 0.9Ω and 5Ω respectively and those of the secondery are 0.03Ω and 0.13Ω respectibvely. If $330-\mathrm{Vat} 50-\mathrm{Hz}$ be applied to high voltage winding with low voltage winding short circuited, find the current in the low voltage winding and its power factor. Neglect magnetisiny current.

- Solution. Here $K=1 / 6 ; R 01=R 1+R 2=0.9+(0.03 \times 36)=1.98 \Omega$
- $\quad \mathrm{Xo1}=\mathrm{X} 1+\mathrm{X} 2=5+(0.13 \times 36)=9.68 \Omega$
- Zo1= $\sqrt{ }(9.68+1.98)=9.9 \Omega ; \mathrm{Vsc}=330 \mathrm{~V}$
- Full load primary current li=Vsc/Zo1=330/0.9=100/3A
- As lo is negligible,hence $11=12=100 / 3 A$. Now, $12=K I 2$
- F.L. secondery current $I 1=I 2 / K=(100 / 3) \times 6=200 A$
- Now, power input on short - circuit =Vsc I1cos $\varnothing \mathrm{sc} ; \cos \varnothing \mathrm{sc}=\mathbf{0 . 2}$.
- Example 27.24 A 1-phase, 10-kVA,500/250-V,50Hz transformer has the following constant:
- Reactance: primary 0.2Ω;secondery 0.5Ω
- Ressitance :primary 0.4Ω;secondery 0.1Ω
- Ressitance of equilant exciting circuit referred to primary, Ro= 1500Ω
- Reatance of equilant exciting circuit referred to primary, $\mathrm{Xo}=750 \Omega$
- What would be the readings of the instruments when the transformer is connected for the opencircuit and short- circuit tests ?

