
Unit 2 
Arithmetic Processor Design 
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Number System 
• We have already mentioned that computer can 

handle with two type of signals, therefore, to 
represent any information in computer, we have 
to take help of these two signals.  

• These two signals correspond to two levels of 
electrical signals, and symbolically we represent 
them as 0 and 1. 

• In our day to day activities for arithmetic, we 
use the Decimal Number System. The decimal 
number system is said to be of base, or radix 10, 
because it uses ten digits and the coefficients 
are multiplied by power of 10 

 

D
es

ig
n

ed
 B

y 
: D

ee
p

ak
 B

h
al

la
  

M
Yc

sv
tu

 N
o

te
s 



• A decimal number such as 5273 represents a 
quantity equal to 5 thousands plus 2 hundred, 
plus 7 tens, plus 3 units. The thousands, 
hundreds, etc. are powers of 10 implied by the 
position of the coefficients. To be more precise, 
5273 should be written as: 
                                        

• In decimal number system, we need 10 
different symbols. But in computer we have 
provision to represent only two symbols. So 
directly we cannot use decimal number system 
in computer arithmetic. 

•  For computer arithmetic we use binary 
number system.             
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• The binary number system uses two symbols to 
represent the number and these two symbols are 0 
and 1. 

• The binary number system is said to be of base 2 or 
radix 2, because it uses two digits and the coefficients 
are multiplied by power of 2.  

• The binary number 110011 represents the quantity 
equal to: 

 

 

• To distinguish between radix numbers, the digits will 
be enclosed in parenthesis and the radix of the 
number inserted as a subscript. 

• For example, to show the equality between decimal 
and binary forty-five we will write  

   (101101)2   =  (45)10 
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• Besides decimal and binary number systems, 
the octal number system are there 

• Octal Number : The octal number system is said 
to be of base, or radix 8, because it uses 8 digits 
and the coefficients are multiplied by power of 
8. 
Eight digits used in octal system are:   0, 1, 2, 3, 
4, 5, 6 and 7. 

• Hexadecimal number : The hexadecimal 
number system is said to be of base, or radix 16, 
because it uses 16 symbols and the coefficients 
are multiplied by power of 16. 
Sixteen digits used in hexadecimal system 
are:  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. 
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For example, octal 736.4 is 
converted to decimal as follows: 
(736.4)8= 7 x 82  + 3 x 81  + 6 x 80  + 4 x 8-1 

      = 7 x 64  + 3 x 8  + 6 x 1  + 4 / 8 = (478.5)10 
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For example, Hex. Decimal F3  is 
converted to decimal as follows: 

(F3)16= F x 16 + 3 = 15 x 16 + 3 

      = (243)10 
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Octal and Hexadecimal 
Numbers 
• The conversion from and to binary, octal, and 

hexadecimal representation plays an important 
part in digital computers. 

• Since 23   = 8 and 24   = 16, each octal digit 
represents to 3 binary digits and each 
hexadecimal digit corresponds to 4 binary digits. 

• The conversion of binary to octal is easily 
accomplished by partitioning the binary number 
into groups of three bits each. 
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Binary Octal Hexadecimal Decimal 

01101000 150 68 104 

00111010 072 3A 58 

--------------- ------ ------ ----- 

10100010 242 A2 162 

Binary representation of     41.6875      is      101001.1011 
 
Therefore any real number can be converted to binary 
number system 
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There are two schemes to 
represent real number : 
 
•Fixed-point representation 

•Floating-point representation 
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Fixed Point Representation 

• Binary representation of 41.6875 is 
101001.1011 

• To store this number, we have to store two 
information,  

-- the  part  before decimal point and  
--   the  part  after decimal point. 

• This is known as fixed-point representation 
where the position of decimal point is fixed and 
number of bits before and after decimal point 
are also predefined. 
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• If we use 16 bits before decimal point and 7 bits after 
decimal point, in signed magnitude form 

• One bit is required for sign information, so the total size of 
the number is 24 bits 

  ( 1(sign)  +  16(before decimal point)  +  7(after decimal 
point)  ). 
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Integer Representation 
  Representation of Unsigned Integers 

• Any integer can be stored in computer in binary 
form. 

•  As for example:  
The binary equivalent of integer   107 is 
1101011,   so  1101011 are stored to represent 
107. 

• What is the size of Integer that can be stored in 
a Computer? 
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• It depends on the word size of the Computer. If 
we are working with 8-bit computer, then we can 
use only 8 bits to represent the number. The eight 
bit computer means the storage organization for 
data is 8 bits. 

• In case of 8-bit numbers, the minimum number 
that can be stored in computer is 00000000 (0) 
and maximum number is 11111111 (255) (if we 
are working with natural numbers). 

• In general, for n-bit number, the range for natural 
number is from  
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• Any arithmetic operation can be performed with 
the help of binary number system. Consider the 
following two examples, where decimal and binary 
additions are shown side by side. 
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01101000  104  

00110001    49  

--------------- ------ 

10011001  153  
 In the above example, the result is an 8-bit 

number, as it can be stored in the 8-bit computer, 
so we get the correct results.  
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 10000001 129 

 10101010  178  

----------------- ------ 

100101011  307  
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 In the above example, the result is a 9-bit number, 
but we can store only 8 bits, and the most 
significant bit (MSB) cannot be stored. 

 The result of this addition will be stored as 
(00101011) which is 43 and it is not the desired 
result. Since we cannot store the complete result 
of an operation, and it is known as the overflow 
case. 
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Signed Integer 
• When a integer binary number is positive , the sign is 

represented by 0 and a magnitude by a positive binary numbers. 

• When a number is negative , the sign is represented by 1 but the 
rest of the numbers may be represented by one of the 3 
possible ways: 

• Signed-Magnitude form. 

• Signed 1’s complement form. 

• Signed 2’s complement form. 
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Signed magnitude form: 
 • In signed-magnitude form, one particular bit is 

used to indicate the sign of the number, whether 
it is a positive number or a negative number. 

• Other bits are used to represent the magnitude of 
the number. 

• Generally, Most Significant Bit (MSB) is used to 
indicate the sign and it is termed as signed bit. 0 
in signed bit indicates positive number and 1 in 
signed bit indicates negative number. 

• For example, consider the signed num 14 stored 
in an 8 bit register 

• +14 is represented by a sign bit of 0 in the left 
most position followed by the binary equivalent  
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of 14 : 00001110. 

• Note that each of the 8 bits of the register must 
have a value and therefore 0’s must be inserted in 
the most significant positions following the sign 
bit. 

• Although there is one way to represent +14 

• But there is 3 ways to represent -14 with eight 
bits. 

• In signed magnitude representation 1 
0001110 

• The signed magnitude representation of -14 
is obtained from +14 by complementing only 
the sign bits. 
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The Concept of Complement 

• The concept of complements is used to represent 
signed number. 

• Consider a number system of base-r or radix-r. 
There are two types of complements, 

• The radix complement or the r’s complement. 

• The diminished radix complement or the (r - 
1)’s complement. 
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Diminished Radix Complement : 
  Given a number N in base r having n digits , the (r -   

1)’s complement of N is defined as   

For decimal numbers , r = 10  and r - 1  =9 
,   so  the  9’s   complement of  N  is  . 

           e.g.,      9’s   complement 
of    5642   is      9999  -  5642  =  4357. 
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Radix Complement : 
• The r’s complement of an n-digit number in base r is 

defined as   for N != 0   and    0 for N = 0. 

• r’s complement is obtained by adding 1 to the ( r - 1 )’s 
complement,  since   

 

 

• e.g.,  10's  complement 
of   5642  is  9's  complement  of  5642 + 1,   i.e.,  4357 + 
1  = 4358 

• e.g.,    2's  complement 
of   1010  is  1's  complement  of  1010 + 1,   i.e.,  0101 + 
1  = 0110.    
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Representation of Signed integer 
in 1's complement form: 
 
• Consider the eight bit number 01011100, 1's 

complements of this number is 10100011. If we 
perform the following addition: 

• If we perform the following addition: 
 
   0  1  0  1  1  1  0  0 
   1  0  1  0  0  0  1  1 
   ---------------------------- 
   1  1  1  1  1  1  1  1 
• If we add 1 to the number, the result is 100000000 
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• Since we are considering an eight bit number, so 
the 9th bit (MSB) of the result can not be stored. 
Therefore, the final result is 00000000. 

• Since the addition of two number is 0, so one can 
be treated as the negative of the other number. So, 
1's complement can be used to represent negative 
number. 

• The signed -1’s complement representation of -14 
is obtained by complementing all the bits of +14 
including sign bit. 
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Representation of Signed integer 
in 2's complement form: 
 
• Consider the eight bit number 01011100 

• 2's complements of this number is 10100100 

• The signed-2’s of -14 is obtained by taking the 2’s 
complement of +14 including its sign bit 
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Representation of -14 is 

• In signed magnitude representation 

  1  0001110 

• In signed-1’s complement representation 

  1  1110001 

• In signed-2’s complement representation 

  1  1110010 
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Introduction to Arithmetic 
Processor 
  • Arithmetic instructions in digital computers 

manipulate data to produce results necessary for 

the solution of computational problems. 

• The 4 basic arithmetic operations are addition, 

subtraction, multiplication and division. 

• An arithmetic processor is the part of a processor 

unit that executes arithmetic operations. 

• An arithmetic instruction may specify binary or 

decimal data, and in each case the data may be in 

fixed-point or floating point form. 

• Fixed points numbers may represent integers or 

fractions 
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• The arithmetic processor is very simple if only a 

binary fixed point add  instruction is included. 

• It would be more complicated if it includes all 

four arithmetic operations for binary and decimal 

data in fixed point and floating point 

representation. 

• Earlier we are taught to perform the basic 

arithmetic operations in signed magnitude 

representation. 

• We see various arithmetic algorithm and also 
see the procedure for implementing them with 
digital hardware 
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We consider addition, subtraction, 
multiplication and division for the following 
types of data 
• Fixed point binary data in signed- magnitude  representation. 

• Fixed point binary data in signed-2’s complement 
representation 

• Floating point binary data 

• Binary coded decimal data 
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Fixed Point Arithmetic Addition & 
Subtraction 
• As stated before there are 3 ways of 

representing negative fixed point binary 
numbers. 

• Signed-Magnitude form. 

• Signed 1’s complement form. 

• Signed 2’s complement form. 
• Most computers use the signed 2’s complement 

representation when performing arithmetic 
operations with integer. 
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• For floating point operations, most computers use the sign 
magnitude representation. 
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Addition & Subtraction with signed 
Magnitude Data 
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Addition (Subtraction) 
Algorithm 

• When the signs of A and B are identical 
(different), add the two magnitudes and attach 
the sign of A to the result. 

• When the signs of A and B are different 
(identical), compare the magnitudes and subtract 
the smaller number from the larger. 

• Choose the sign of the result to be the same as A 
if A>B or the complement of sign of A if A<B 

• If the two magnitudes are equal, subtract B from 
A and make the sign of the result positive 
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Hardware Implementation For 
Signed Magnitude Add & Sub 
• To implement the two arithmetic operations 

with hardware, it is first necessary that the two 
numbers be stored in registers. 

• Let A and B be 2 registers that holds the 
magnitudes of the number, and As  and Bs  be 2 
flip flops that hold the corresponding signs. 

• The result of the operation may be transferred to 
the third register 

• However, a saving is achieved if the result is 
transferred into A & As. 
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• Thus A and As  together form an accumulator 
register. 

•  Consider now the hardware implementation of 
the algorithm above. 

• Firstly, a parallel adder is needed to perform the 
micro operation A + B 

• Second, a comparator circuit is needed to 
establish if A > B, A = B, or A < B 

• Third, Two parallel subtractor circuits are 
needed to perform the microoperations A – B 
and B – A 

• The sign relation ship can be determined from 
an exclusive OR gate with As  and Bs  as inputs. 
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• This procedure requites a magnitude comparator, an 
adder, & two subtractors. 

• However, a different procedure can be found that 
requires  less equipments. 

• First, we know that subtraction can be accomplish by 
means of complement and add. 

• Second, the result of a comparison can be determined  
from the end carry after the subtraction 

• Careful investigation of the alternatives reveals that 
the use of 2’s complement for subtraction and 
comparison is an efficient procedure that requires 
only an adder and a complementer 
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• Figure 10.1 shows a block diagram of the hardware 
for implementing the addition and subtraction 
operation. 

• It consists of register A & B and sign flip flop’s As 

and Bs.                      
 

•   Subtraction is done by adding A to the 2’s 
complement of B.  

•  The output carry is transferred to flip flop  E, 
where it can be checked to determine the relative 
magnitude’s of the two numbers. 

• The add-overflow flip flop AVF holds the overflow 
bit when A and B are added. 

 

D
es

ig
n

ed
 B

y 
: D

ee
p

ak
 B

h
al

la
  

M
Yc

sv
tu

 N
o

te
s 



• The addition of A plus B is done through the 
parallel adder. 

• The S (sum) output of the adder is applied to the 
input of the A register 

• The complementer provides and output of B or 
the complement of B depending on the state of 
the mode control M. 

• The complementer consists of exclusive OR gates 
and the parallel adder consists of a full adder 
circuit as shown in fig 4.7. 

• The M signal is also applied to the input carry of 
the adder. 

• When M = 0, the output of B is transferred to the 
adder, the input carry is 0, and the output of adder 
is equal to the sum A + B 
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• When M = 1, the 1’s complement of B is applied to 
the adder, the input carry is 1 and the output S = A 
+ B’ + 1. 

• This equal to A plus 2’s complement of B, which is 
equivalent of A – B. 
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Assignment 

 Write an algorithm for adding and subtracting numbers 
unsigned 2’s complement representation 
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Multiplication Algorithm 
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Process for multiplication 
• The process consists of looking at successive bits 

of the multiplier, least significant bit first. 

• If the multiplier bit is a 1, the multiplicand is 
copied down;otherwise, zeroes are copied down. 

• The numbers copied down in successive lines are 
shifted one position to the ;left from the previous 
number. 

• Finally the numbers are added and their sum 
forms the product. 

• The sign of product is determined by the sign of 
multiplicand and multiplier. 

• If they are alike the sign of the product is positive , 
if they are unlike the sign of the product are 
negative 
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Hardware Implementation for signed 
magnitude data 
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Booth Multiplication Algorithm 
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Numerical Example for binary multiplier 
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Division Algorithm 
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• Figure shows a machine algorithm that corresponds to the long 
division process. 

• The divisor is placed in the M register, the dividend in the Q register. 

• At each step, the A and Q registers together are shifted to the left 1 
bit. 

• M is subtracted  
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