Unit 2
Arithmetic Processor Design

Number System

* We have already mentioned that computer ¢
handle with two type of signals, therefore,
represent any information in computer, we ha
to take help of these two signals.

* These two signals correspond to two levels
electrical signals, and symbolically we represé
them as 0 and 1.

* In our day to day activities for arithmetic,
use the Decimal Number System. The deci
number system is said to be of base, or radix
because it uses ten digits and the coefficie
are multiplied by power of 10

Designed By : Deepak Bhalla MYcsvtu Notes

* A decimal number such as 5273 represents
guantity equal to 5 thousands plus 2 hundre
plus 7 tens, plus 3 units. The thousan
hundreds, etc. are powers of 10 implied by t
position of the coefficients. To be more preci
5273 should be written

In decima3ix10® + 2x10 +7x10" + 3x10’ eed
different symbols. But in computer we ha
provision to represent only two symbols.
directly we cannot use decimal number syste
in computer arithmetic.

* For computer arithmetic we use binc
number system.

Designed By : Deepak Bhalla MYcsvtu Notes

* The binary number system uses two symbols
represent the number and these two symbols are
and 1.

* The binary number system is said to be of base 2
radix 2, because it uses two digits and the coefficie
are multiplied by power of 2.

* The binary number 110011 represents the quantity
equal to:

(in decima

1x2? +1x 2" + 02 +0x2% +1 =2+ 1x2" =35

* To distinguish between radix numbers, the digits wil
be enclosed in parenthesis and the radix of the
number inserted as a subscript.

* For example, to show the equality between decimal
and binary forty-five we will write

(101101), = (45),,

(%)
()
e
]
P
>
)
>
4
>
=
L
©
<
[as]
L]
>
[as]
o
()
=
.90
(%]
()
(a)

* Besides decimal and binary number syste
the octal number system are there

* Octal Number : The octal number system is sz
to be of base, or radix 8, because it uses 8 dig
and the coefficients are multiplied by power o
8.

Eight digits used in octal system are: O, 1, 2,
4,5 6 and 7.

* Hexadecimal number : The hexadeci
number system is said to be of base, or radix
because it uses 16 symbols and the coefficie
are multiplied by power of
Sixteen digits used in hexadecimal syste
are: 0,1,2,3,4,5,6,7,8,9,A,B,C, D, Eand

Designed By : Deepak Bhalla MYcsvtu Notes

For example, octal 736.4 is

converted to decimal as follows:
(736.4),=7x8% +3x8 +6x8° +4x81

=7x64 +3x8 +6x1 +4/8=(478.5),

vtu Notes

For example, Hex. Decimal F3 1s
converted to decimal as follows:

(F3),,=Fx16+3=15x16+3
= (243)4,

8
=
L
“©
<=
(aa]
i

©

Q.

()

Q
(@)

>

(aa]
©

Designe

Octal and Hexadecimal
Numbers

* The conversion from and to binary, octal, and
hexadecimal representation plays an important
part in digital computers.

Since 23 = 8 and 2 = 16 each octal digit
represents to 3 binary digits and each
hexadecimal digit corresponds to 4 binary digits.

(%)
()
+—
]
P
>
)
>
4
>
>
L
©
<
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
(%]
()
(@]

* The conversion of binary to octal is easily
accomplished by partitioning the binary number
into groups of three bits each.

n
]
e
©
=z
S5
)
>
S
>
=

00111010 072

10100010 242 A2 162
Binary representation of 41.6875 is 101001.1011

Therefore any real number can be converted to binary
number system

There are two schemes to
represent real number :

*Fixed-point representation

vtu Notes

*Floating-point representation

4]
=
L
©
<=
(aa]
i

©

o

(O}

()
(@)

>

(aa]
©

Designe

Fixed Point Representation

* Binary representation of 41.6875
101001.1011

* To store this number, we have to store t
information,
-- the part before decimal point a
-- the part after decimal point.

* This is known as fixed-point representati
where the position of decimal point is fixed a
number of bits before and after decimal poi
are also predefined.

)
()
+—
]
P
>
)
>
4
>
>
L
©
<
o
i
©
o
(V)
]
(@]
>
(aa]
o
()
=
)
(%]
()
(@]

* If we use 16 bits before decimal point and 7 bits after
decimal point, in signed magnitude form

* One bit is required for sign information, so the total size of
the number is 24 bits

(1(sign) + 16(before decimal point) + 7(after decimal
point)).

(%)
()
+—
]
=
>
)
>
4
>
>
L
‘©
<=
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
%)
()
(@]

Integer Representation

Representation of Unsigned Integers

* Any integer can be stored in computer in bina
form.

* As for example:
The binary equivalent of integer 107 is
1101011, so 1101011 are stored to represe
107.

* What is the size of Integer that can be stored
a Computer?

(%)
()
+—
]
P
>
)
>
4
>
>
L
©
<
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
(%]
()
(@]

* It depends on the word size of the Computer.
we are working with 8-bit computer, then we ¢
use only 8 bits to represent the number. The eig
bit computer means the storage organization
data is 8 bits.

* In case of 8-bit numbers, the minimum numt
that can be stored in computer is 00000000

and maximum number is 11111111 (255) (if
are working with natural numbers).

* In general, for n-bit number, the range for natu
number is from

Designed By : Deepak Bhalla MYcsvtu Notes

0t 2° -1

Any arithmetic operation can be performed w
the help of binary number system. Consider t
following two examples, where decimal and binzg
additions are shown side by side.

01101000 104 :
00110001 49 :
10011001 153 :

In the above example, the result is an 8
number, as it can be stored in the 8-bit comp
so we get the correct results.

10000001 129
10101010 178

100101011 307
> In the above example, the result is a 9-bit nu

but we can store only 8 bits, and the
significant bit (MSB) cannot be stored.

> The result of this addition will be storec
(00101011) which is 43 and it is not the des
result. Since we cannot store the complete re
of an operation, and it is known as the over

Case.

ned By ' Deepck Bhalla MYcsvtu Notes

Desie

Signed Integer

* When a integer binary number is positive , the sign is
represented by O and a magnitude by a positive binary numbe

* When a number is negative , the sign is represented by 1 but
rest of the numbers may be represented by one of the 3
possible ways:

Signed-Magnitude form.
Signed 1’s complement form.
Signed 2’s complement form.

(%)
()
+—
]
P
>
)
>
4
>
>
L
=
<
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
(%]
()
(@]

Signed magnitude form:

* In signed-magnitude form, one particular bit
used to indicate the sign of the number, whet
it is a positive number or a negative number.

* Other bits are used to represent the magnitude
the number.

* Generally, Most Significant Bit (MSB) is used
indicate the sign and it is termed as signed bit
in signed bit indicates positive number and 1
signed bit indicates negative number.

Designed By : Deepak Bhalla MYcsvtu Notes

* For example, consider the sighed num 14 storec
in an 8 bit register

* +14 is represented by a sign bit of O in the left
most position followed by the binary equivalent

of 14 : 00001110.

* Note that each of the 8 bits of the register must
have a value and therefore 0’s must be inserted
the most significant positions following the sign
bit.

* Although there is one way to represent +14

* But there is 3 ways to represent -14 with eight
bits.

In signed magnitude representation 1
0001110

The sighed magnitude representation of -1¢
is obtained from +14 by complementing on
the sign bits.

%)
[V}
s}
]
2
>
)
>
4]
>
=
L
©
<
o
i
©
o
(O}
()
o
>
[an]
©
()
=
)
0
()
()]

The Concept of Complement
* The concept of complements is used to represe
signed number.

* Consider a number system of base-r or radi
There are two types of complements,

* The radix complement or the r’'s complement.

* The diminished radix complement or the (
1)’s complement.

(%)
()
+—
]
P
>
)
>
4
>
>
L
©
<
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
(%]
()
(@]

Diminished Radix Complement :

Given a number N in base r having n digits , the
1)’s complement of N is defined «c#~* - 13 - &F

For decimal numbers,r=10 andr-1 =9
, so the 9’s complementof N is . (107 - 1) - &

e.g., 9s complement
of 5642 is 9999 - 5642 = 4357.

Designed By : Deepak Bhalla

Radix Complement:

* The r’s complement of an n-digit number in base ris
definedas for N!=0 and Ofor N=0.

* r’s complement is obtained by adding 1tothe (r-1
complement, since

(F® - A = [[r” -1 -N]+1

* e.g.,, 10's complement
of 5642 is 9's complement of 5642+ 1, i.e., 43
1 =4358

* e.g.,, 2's complement
of 1010 is 1's complement of 1010+ 1, i.e., 01Q
1 =0110.

(%)
()
e
]
P
>S5
)
>
4]
>
>
B
=
B
o
i
©
(o}
Q
)
(@]
>
(aa]
o
()
C
)
(%]
()
(@]

Representation of Signed integer
in 1's complement form:

* Consider the eight bit number 01011100, 1's
complements of this number is 10100011. If we
perform the following addition:

* If we perform the following addition:

01011100
10100011
11111111

* |f we add 1 to the number, the result is 1700000000

(%)
()
+—
]
=
>
)
>
4
>
>
L
=
<=
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
%)
()
(@]

* Since we are considering an eight bit number,
the 9th bit (MSB) of the result can not be store
Therefore, the final result is 00000000.

* Since the addition of two number is O, so one ca
be treated as the negative of the other number.
1's complement can be used to represent negati
number.

* The signed -1’s complement representation of -1
is obtained by complementing all the bits of +14
including sign bit.

(%)
)
)
]
P
>
)
>
4
>
>
L
©
<
[as]
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
(%]
()
(@]

Representation of Signed integer
in 2's complement form:

* Consider the eight bit number 01011100
* 2's complements of this number is 10100100

* The signed-2’s of -14 is obtained by taking the 2’s
complement of +14 including its sign bit

vtu Notes

4]
=
L
©
<=
(aa]
i

©

o

(O}

()
(@)

>

(aa]
©

Designe

Representation of -14 is

* In signed magnitude representation

1 0001110
* In signed-1’s complement representation
1 1110001

* In signed-2’s complement representation
1 1110010

(%)
()
+—
]
=
>
)
>
4
>
>
L
=
<=
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
%)
()
(@]

4B A WA WU OA OVA @ A O AA WS A AL A VAAAAA S5 WA @

Processor

* Anithmetic mstructions m digital compute

manipulate data to produce results necessary
the solution of computational problems.

* The 4 basic arithmetic operations are additic
subtraction, multiplicaion and division.

* An arnthmetic processor 1s the part of a proces
unit that executes arithmetic operations.

* An anthmetic mstruction may specity bmary
decimal data, and 1n each case the data may be

Designed By : Deepak Bhalla MYcsvtu Notes

fixed-point or floating point form.

* Fixed points numbers may represent mtegers
fractions

* The arithmetic processor 1s very simple 1f onl
binary fixed pomnt add mstruction 1s included.

* It would be more complicated 1f 1t includes
four arithmetic operations for binary and deci
data m fixed pomt and floating po
representation.

* Farlier we are taught to perform the ba
arithmetic operattions 1n signed magnit
representation.

(%)
()
o+
(@)
=
>S5
L
>
4]
>
>
=
©
B
o
v
©
Q.
(V)
)
(@]
>
(aa]
o
()
c
0
%]
()
(@]

* We see various arithmetic algorithm and a
see the procedure for implementing them w
digital hardware

We consider addition, subtractio
multiplication and division for the followi
types of data

Fixed point binary data in signed- magnitude representatio

Fixed point binary data in signed-2's complement
representation

Floating point binary data

Binary coded decimal data

(%)
()
+—
]
=
>
)
>
4
>
>
L
=
<=
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
%)
()
(@]

Fixed Point Arithmetic Addition &
Subtraction

* As stated before there are 3 ways of
representing negative fixed point binary
numbers.

Signed-Magnitude form.

vtu Notes

Signed 1’s complement form.

S
>
=
e
©
B
[aa)
—~Z

@©

(o}

(V)

V)
o

>

(aa]
©

(V)

C
)

0

[V
o

Signed 2’s complement form.

* Most computers use the signed 2’s complement
representation when performing arithmetic
operations with integer.

* For floating point operations, most computers use the sig
magnitude representation.

MYcsvtu Notes

L
©
<=
(aa]
i
©
Q.
(O}
()
(@)
>
(aa]
©
()
=
e
n
()
()

Addition & Subtraction with signed
Magnitude Data

Addition and Subtraction with Signed'Magni.tude paf:nit'ar e,
The tepresentation of numbers In signed-magmtude 1sf ; dd’m parsibac
sed ineveryday arfhmefic clculations. The procedure or

| 1 is simple and straight
ing two signed binr} umbers with paper and penct 8 SITP

forward, A eview of procedure vl be helplfor derting the hardware

aloanthm, 4Ol Lawn ke A and R, Whﬁhe

algonithin

We designate the
mbes are added or subtzec

magnifude of the tHO qumbers by A and B. When the
signed od, we ind that there are cight different
conditions to consider depending on the sign of the mumbers and the opera-
st colum of Table 10-4

ton performed. These conditons are isted n e
The other columnsin th fabl dhow the actual operaton 1 be performed with

the magnitide of the numbers. The last column 8 needed to preventa negative
Jeto. In other words, when B0 equal numbers & subtracted, the resu

hould be +0 not =
VIS B st dasivad TR the table

P}
——

chould e #0000

Thedlgoians
dcnbestted 8 follow fhe v

o addon and o e deed I e 0
dsinie peness o e ed

Add / Subtract Signed-Magnitude

Subtract Magnitudes
Add

Operation Magnitudes When A>B WhenA<B WhenA =8B

(+A) + (+B) +(A + B)

(+A) + (-B) +(A - B) -(B - A) +(A - 3)
(=A) + (+B) -(A - B) +(B - A) +(A - B)
(-A4) +(-B) —(A +B)

(+A) - (+B) +(A - B) ~(B - A) +A - EB)

(+A) = (—8) +(A + B)
(=A) - (+B) —(A + B)
(=A) - (~B) -(A - B) +HB - A) +(A - B)

]

Forces zero to be positive

Addition (subtraction)
Algorlthm

* When the signs A and B are identi
(different), add the two magnitudes and atta
the sign of A to the result.

* When the signs of A and B are differe
(identical), compare the magnitudes and subtr:
the smaller number from the larger.

* Choose the sign of the result to be the same a:
if A>B or the complement of sign of A if A<B

Designed By : Deepak Bhalla ~ MYcsvtu Notes

* If the two magnitudes are equal, subtract B frg
A and make the sign of the result positive

Hardware Implementation For
Signed Magnitude Add & Sub

* To implement the two arithmetic operations
with hardware, it is first necessary that the two
numbers be stored in registers.

*Let A and B be 2 registers that holds the
magnitudes of the number, and A, and B, be 2
flip flops that hold the corresponding signs.

vtu Notes

* The result of the operation may be transferred to
the third register

S
>
=
e
©
<
(an}
—~Z

@©

Q

(&}

[}
o

>

(aa)
e

(&}

c
)

7}

[}
o

* However, a saving is achieved if the result is
transferred into A & A

* Thus A and A, together form an accumulator
register.

* Consider now the hardware implementation ¢
the algorithm above.

* Firstly, a parallel adder is needed to perform t
micro operation A+ B

* Second, a comparator circuit is needed to
establishif A>B,A=B,orA<B

* Third, Two parallel subtractor circuits are
needed to perform the microoperations A—B
and B—A

* The sign relation ship can be determined fro
an exclusive OR gate with A, and B, as inputs.

Designed By : Deepak Bhalla MYcsvtu Notes

This procedure requites a magnitude comparato
adder, & two subtractors.

However, a different procedure can be found that
requires less equipments.

First, we know that subtraction can be accomplish
means of complement and add.

Second, the result of a comparison can be determi
from the end carry after the subtraction

Careful investigation of the alternatives reveals
the use of 2’s complement for subtraction
comparison is an efficient procedure that req
only an adder and a complementer

(%]
[V}
+—
O
b
S5
)
>
S
>
=
=
©
B
o
—~Z
@©
Q.
(O}
()
(&)
>
(=]
©
()
(o
20
(%]
()
(]

Hardware

M (Mode control

Load sum

* Figure 10.1 shows a block diagram of the hardwz
for implementing the addition and subtracti
operation.

* It consists of register A & B and sign flip flop’s A,
and B..

* Subtraction is done by adding A to the 2’s
complement of B.

* The output carry is transferred to flip flop E,
where it can be checked to determine the relativ
magnitude’s of the two numbers.

* The add-overflow flip flop AVF holds the overflo
bit when A and B are added.

(%)
()
+—
]
P
>
)
>
4
>
=
L
©
<
[as]
i
©
o
(V)
)
(a)
>
[as]
o
()
=
)
(%]
()
(a)

* The addition of A plus B is done through the
parallel adder.

* The S (sum) output of the adder is applied to the
input of the A register

* The complementer provides and output of B or
the complement of B depending on the state of
the mode control M.

* The complementer consists of exclusive OR gate
and the parallel adder consists of a full adder
circuit as shown in fig 4.7.

* The M signal is also applied to the input carry of
the adder.

* When M =0, the output of B is transferred to the
adder, the input carry is 0, and the output of adc
is equal to the sum A +B

Designed By : Deepak Bhalla MYcsvtu Notes

* When M =1, the 1’s complement of B is applied
the adder, the input carry is 1 and the output S
+ B + 1.

* This equal to A plus 2’s complement of B, which
equivalent of A — B.

(%)
()
+—
]
=
>
)
>
4
>
>
L
=
<=
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
%)
()
(@]

Swubtract operation Add operation

Minuend in 4 Augend in 4
Subtrahend in 8 Addend in B

A< B

A A

B R S S—

A -
-1

A
+

1

&

s

END
(result isin 4 and 4,)

,———}‘-}-Figurc 10—2 Flowchart {Or ddd o T B O T T e

Hardware Algoithm)
The fowchat for the hardvare elgort peseted n i, 1 T}ge m;o
dyns A, and B are compared by exclusive-OR e fthe output o the t§ae
s thesigns e dentical:iftis 1, thesignsare diferent, Foranad operaﬁon,
et sins dicatetat the magnifudes be added. Fora st gpedra oxrwé
fifferent sgns dicate tht th magnitudes De added.' The n}agmt;l\ tes am |
xdded i 2 micoaperaton EA A © B, wher E{% s ¢ register g ;(t 's
ines Eand 4, The caryin £ afethe dcicin consaftes ovgrﬂow 1/&/ ;
oqual 01, The vlue ofE1stransfeed ?nto‘the §dd-overﬂow liplop AVt

i e | "I“' A nAA

\,\luua DWW @9 ®emww ¥V WS
The two magnitudes are subtracted if the signs are ditterent for an A4

operation or identical for a subtract operation. The magnitudes are subtracted
by adding A to the 2's complement of B. No overflow can occur if the nurnbers
are subtracted so AVE is cleared to 0. A 1in E indicates that A = B and the
number in A is the correct result. If this number is zero, the sign A, must be
made positive to avoid a negative zefo. A 0in E indicates that A < B. For this
case it is necessary to take the 's complement of the value in A. This operation
can be done with one microoperation A 7 + 1, However, we assume that
the A register has circuits for microoperations complement and increment, SO the
2's complement is obtained from these tio microoperations. In other paths of
the flowchart, the sign of the result is the same as the sign of A, 50 no change
in A, is required, However, when A < B, the sign of the result s the comple-
ment of the original sign of A. It is then necessary to complement A, to obtain

the correctsign. The final resultis found in register A and s sign in A, The
Valuein AVF providesan overflow indication. The il Value of Eis immateria],

Assignment

Write an algorithm for adding and subtracting numbers
unsigned 2’s complement representation

(%)
()
+—
]
=2
>
)
>
4
>
>
L
‘©
<=
o
i
©
o
(V)
)
(@]
>
(aa]
o
()
=
)
%)
()
(@]

Multiplication Algorithn.

10-3 Multiplication Algorithms

Multiplication of tWO fixed-point binary numbers in signed-magnitude ﬂ
sentation is done with paper and pencil by a process of successive Shi
add operations. This process is best illustrated with a numerical examze

23 10111 Multiplicand
19 x 10011 Multiplier
10111
10111
00000
00000

10111
437 110110101 Product

Process for multiplicatio

* The process consists of looking at successive bits
of the multiplier, least significant bit first.

* If the multiplier bitis a 1, the multiplicand is
copied down;otherwise, zeroes are copied dow

* The numbers copied down in successive lines arg
shifted one position to the ;left from the previo
number.

* Finally the numbers are added and their sum
forms the product.

* The sign of product is determined by the sign of
multiplicand and multiplier.

* If they are alike the sign of the product is positiv
if they are unlike the sign of the product are
negative

(%)
()
+—
]
P
>
)
>
4
>
=
L
©
<
[as]
i
©
o
(V)
)
(a)
>
[as]
o
()
=
)
(%]
()
(a)

‘Hardaware Implementation for signed

magnitude data
Hardware Implementation for Signed-Magnitude Data

When multiplication is implemented in a digital computer, it is convenient to
change the process slightly. First instead of providing registers to store-ard
add simultaneously as many binary numbers as there are bits in the multiplier,
it is convenient to provide an adder for the summation of only two binary
qurnbers and successively accumulate the partial products in a register. Sec-
ond instead of shifting the multiplicand to the left, the partial product 1s
shifted to the right, which results in leaving the partial product and the
multiplicand in the required relative positions. Third, when the corresponding
bit of the multiplier is 0, there is no need to add all zeros to the partial product

since it will not alter its value.

ik

Th e ol consist e equpment 0w 1
4 pls o mor g, Tese egtes ot Wi gt Aand!
reshowmin iy, 103 The mulpter red nthe) registe and s s
(), Thesequenecoute & il e 0 numbeequelotheumde
i he i, The e ecenentd e formng et
i product en teconer o the ot eches e, e prouct

ormed and the proces tops

Initaly he multplcandsin egiter Band the multplerin). The sum

of A and B forms a par

al productwhichis transfrre o the EA epiter Both

partalproductand multpleare hifed o theright. Thisshifwillbedenoted

L

byt statementshe EAQ o designat he ighthif depictedn Fig, 105, The

least significant bit of A is shifted into the most significant position of | %
bit from E is shifted into the most significant position of A, and (1is shiftes s
E. After the shift, one bit of the partial product is shifted into (), pushing %
multiplier bits one position to the right. In this manner, the rightmost fip-fis
inregister (), designated by Q,, will hold the bit of the multipher, which s

be inspected next.

Hardware

B register Sequence counter (SC)
Complementer and
paralkel adder
| A
e (nightmost bit)
A, ZI Q,
| ! L f -
0 —.{B—.{ A register l—t- Q register

Description

e O multiplier

e B multiplicand

| 0

e SC number of bits 1n mmultiplier
o F overflow bit for 4

e Do SC times

m If low-order bitof Q 15 1
41— A4+E
m Shitt right EAQ

e Productismn AQ

Hardware Algorithm

Figu;e 10-6 1 a flowchart of the hardware multiply aigorithm. Initially. %
multiplicand is in B and the multiplier in Q. Their corresponding Signs am
B, and (,, respectively. The signs are compared, and both A and () are s =

correspond to the sign of the product since 2 dotble-length product will be
stored in registers A and (). Registers A and E are cleared and the sequence
counter SC's set to a number equal to the number of bits of the multipler. We
are assuming here that operands are transferred to registers from a memory
unit that has words of bis. Since an operand must be stored with s sigh,
onebit oftheword ill e ccupied by the sign and the magnitude il consist
of n = 1 bits.

g

—

After the initialization, the low-order bit of the multiplier in (), is tested.
Ititis a 1, the multipicend in B is added to the present partia product in A,
lfitis a 0, nothing is done, Register EAQ is then shitted once to the right to
form the new partal product. The sequence counter s dectemented by 1 and
its new value checked. If it is not equal to zero, the process Is repeated and a
new partial product is formed. The process stops when 5C = 0. Note that the
partial product {ormed in A s shifted into O one bit at time and eventualy
replaces the multipler, The final productis ava able in both A and Q, with A
holding the most significant bits and () holding the leas significant bits.

The previous numerical example is repeated in Table 10-2 to clariy the

hardware multiplication process. The procedure follows the steps outlined in
the flowchart

—_—— —
!!lgtlt‘e OWCHIaITE 10T multlp[y OpPpCcration.

AMulriply operation

Multiplicand in B
Mulrtiplier in O

A, — Q. DB,
o, —C. P E,;
A —0, K — 0O
SC <+—n — 1

A4 «— a4 + 8B

shr £ 14
SC—SC — 1

Q

Booth Multiplication Algorithm .

Booth Multiplication Algorithm

Booth lgorithmgives procedure for maliplying binry ntegers signed-2's
complement represenfation. T operats on the fc that strings of 0's in tne
multipler require no addifion but just shifting, and a string of 1's in the
multipler from bit weight 2o weight 2" can be freated as -3

example, th binary rumber 001110 (+14) has a sing of 1's from ’to?

Example: 23 x 19 =437

Multiplicand B = 10111 E A Q SC
Multiplier in Q 0 00000 10011 1CG1
Q,=1;add B 10111
First partial product 0 10111
Shift nght EAQ 0 01011 11001 10
Q,=1;add B 10111
Second partial product 1 00010
Shift right EAQ 0 10001 01100 01
Q. = 0; shift nght EAQ 0 01000 10110 019
Q. = 0; shift right EAQ 0 00100 01011 0G1
Q.=1,add B 10111
Fifth partial product 0 11011
Shift nght EAQ 0 01101 10101 000

Final product in AQ = 0110110101

Numerical Example for binary multiplier

Multiply Signed-2's Complement

¢ Booth algorithm
e OR multiplier
e O, least significant bit of OR

* previous least significant bit of OR

=+
e BR multiplicand
e AC 0

o SC number of bits in multiplier

-

Division Algorith

00001 1_(}_’__ &~ uotient
Divisor ——p 1011/ 10010011 «—— Dividend

1011¥
001110
ol 1011
i 001111
remainders
1011

10() €= Remainder

Figure 903 Example of Division of Unsigned Binary Integers

Ao
Al < Divisor

O <« Dividend
CTount «— #

Qy— 0
A A+

Count < Count — 1§

No

Quotient in Q
Remainder in A

Figure 9.16 Flowchart for Unsigned Binary Division

Figure shows a machine algorithm that corresponds to the long
division process.

The divisor is placed in the M register, the dividend in the Q reg
At each step, the A and Q registers together are shifted to the |
bit.

M is subtracted

MYcsvtu Notes

Designed By : Deepak Bhalla

S9JON NIASIAIN e[leyg yedaaq : Ag paudisaq

