
Unit 2
Arithmetic Processor Design

D
es

ig
n

ed
 B

y
 :

 D
ee

p
a

k

B
h

a
ll

a

M
Yc

sv
tu

 N
o

te
s

Number System
• We have already mentioned that computer can

handle with two type of signals, therefore, to
represent any information in computer, we have
to take help of these two signals.

• These two signals correspond to two levels of
electrical signals, and symbolically we represent
them as 0 and 1.

• In our day to day activities for arithmetic, we
use the Decimal Number System. The decimal
number system is said to be of base, or radix 10,
because it uses ten digits and the coefficients
are multiplied by power of 10

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• A decimal number such as 5273 represents a
quantity equal to 5 thousands plus 2 hundred,
plus 7 tens, plus 3 units. The thousands,
hundreds, etc. are powers of 10 implied by the
position of the coefficients. To be more precise,
5273 should be written as:

• In decimal number system, we need 10
different symbols. But in computer we have
provision to represent only two symbols. So
directly we cannot use decimal number system
in computer arithmetic.

• For computer arithmetic we use binary
number system.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• The binary number system uses two symbols to
represent the number and these two symbols are 0
and 1.

• The binary number system is said to be of base 2 or
radix 2, because it uses two digits and the coefficients
are multiplied by power of 2.

• The binary number 110011 represents the quantity
equal to:

• To distinguish between radix numbers, the digits will
be enclosed in parenthesis and the radix of the
number inserted as a subscript.

• For example, to show the equality between decimal
and binary forty-five we will write

 (101101)2 = (45)10

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

 (in decimal)

M
Yc

sv
tu

 N
o

te
s

• Besides decimal and binary number systems,
the octal number system are there

• Octal Number : The octal number system is said
to be of base, or radix 8, because it uses 8 digits
and the coefficients are multiplied by power of
8.
Eight digits used in octal system are: 0, 1, 2, 3,
4, 5, 6 and 7.

• Hexadecimal number : The hexadecimal
number system is said to be of base, or radix 16,
because it uses 16 symbols and the coefficients
are multiplied by power of 16.
Sixteen digits used in hexadecimal system
are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

For example, octal 736.4 is
converted to decimal as follows:
(736.4)8= 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1

 = 7 x 64 + 3 x 8 + 6 x 1 + 4 / 8 = (478.5)10

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

For example, Hex. Decimal F3 is
converted to decimal as follows:

(F3)16= F x 16 + 3 = 15 x 16 + 3

 = (243)10

M
Yc

sv
tu

 N
o

te
s

Octal and Hexadecimal
Numbers
• The conversion from and to binary, octal, and

hexadecimal representation plays an important
part in digital computers.

• Since 23 = 8 and 24 = 16, each octal digit
represents to 3 binary digits and each
hexadecimal digit corresponds to 4 binary digits.

• The conversion of binary to octal is easily
accomplished by partitioning the binary number
into groups of three bits each.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Binary Octal Hexadecimal Decimal

01101000 150 68 104

00111010 072 3A 58

--------------- ------ ------ -----

10100010 242 A2 162

Binary representation of 41.6875 is 101001.1011

Therefore any real number can be converted to binary
number system

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

There are two schemes to
represent real number :

•Fixed-point representation

•Floating-point representation

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Fixed Point Representation

• Binary representation of 41.6875 is
101001.1011

• To store this number, we have to store two
information,

-- the part before decimal point and
-- the part after decimal point.

• This is known as fixed-point representation
where the position of decimal point is fixed and
number of bits before and after decimal point
are also predefined.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• If we use 16 bits before decimal point and 7 bits after
decimal point, in signed magnitude form

• One bit is required for sign information, so the total size of
the number is 24 bits

 (1(sign) + 16(before decimal point) + 7(after decimal
point)).

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Integer Representation
 Representation of Unsigned Integers

• Any integer can be stored in computer in binary
form.

• As for example:
The binary equivalent of integer 107 is
1101011, so 1101011 are stored to represent
107.

• What is the size of Integer that can be stored in
a Computer?

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• It depends on the word size of the Computer. If
we are working with 8-bit computer, then we can
use only 8 bits to represent the number. The eight
bit computer means the storage organization for
data is 8 bits.

• In case of 8-bit numbers, the minimum number
that can be stored in computer is 00000000 (0)
and maximum number is 11111111 (255) (if we
are working with natural numbers).

• In general, for n-bit number, the range for natural
number is from

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• Any arithmetic operation can be performed with
the help of binary number system. Consider the
following two examples, where decimal and binary
additions are shown side by side.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

01101000 104

00110001 49

--------------- ------

10011001 153
 In the above example, the result is an 8-bit

number, as it can be stored in the 8-bit computer,
so we get the correct results.

M
Yc

sv
tu

 N
o

te
s

 10000001 129

 10101010 178

----------------- ------

100101011 307

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

 In the above example, the result is a 9-bit number,
but we can store only 8 bits, and the most
significant bit (MSB) cannot be stored.

 The result of this addition will be stored as
(00101011) which is 43 and it is not the desired
result. Since we cannot store the complete result
of an operation, and it is known as the overflow
case.

M
Yc

sv
tu

 N
o

te
s

Signed Integer
• When a integer binary number is positive , the sign is

represented by 0 and a magnitude by a positive binary numbers.

• When a number is negative , the sign is represented by 1 but the
rest of the numbers may be represented by one of the 3
possible ways:

• Signed-Magnitude form.

• Signed 1’s complement form.

• Signed 2’s complement form.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Signed magnitude form:
 • In signed-magnitude form, one particular bit is

used to indicate the sign of the number, whether
it is a positive number or a negative number.

• Other bits are used to represent the magnitude of
the number.

• Generally, Most Significant Bit (MSB) is used to
indicate the sign and it is termed as signed bit. 0
in signed bit indicates positive number and 1 in
signed bit indicates negative number.

• For example, consider the signed num 14 stored
in an 8 bit register

• +14 is represented by a sign bit of 0 in the left
most position followed by the binary equivalent

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

of 14 : 00001110.

• Note that each of the 8 bits of the register must
have a value and therefore 0’s must be inserted in
the most significant positions following the sign
bit.

• Although there is one way to represent +14

• But there is 3 ways to represent -14 with eight
bits.

• In signed magnitude representation 1
0001110

• The signed magnitude representation of -14
is obtained from +14 by complementing only
the sign bits.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

The Concept of Complement

• The concept of complements is used to represent
signed number.

• Consider a number system of base-r or radix-r.
There are two types of complements,

• The radix complement or the r’s complement.

• The diminished radix complement or the (r -
1)’s complement.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Diminished Radix Complement :
 Given a number N in base r having n digits , the (r -

1)’s complement of N is defined as

For decimal numbers , r = 10 and r - 1 =9
, so the 9’s complement of N is .

 e.g., 9’s complement
of 5642 is 9999 - 5642 = 4357.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Radix Complement :
• The r’s complement of an n-digit number in base r is

defined as for N != 0 and 0 for N = 0.

• r’s complement is obtained by adding 1 to the (r - 1)’s
complement, since

• e.g., 10's complement
of 5642 is 9's complement of 5642 + 1, i.e., 4357 +
1 = 4358

• e.g., 2's complement
of 1010 is 1's complement of 1010 + 1, i.e., 0101 +
1 = 0110.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Representation of Signed integer
in 1's complement form:

• Consider the eight bit number 01011100, 1's

complements of this number is 10100011. If we
perform the following addition:

• If we perform the following addition:

 0 1 0 1 1 1 0 0
 1 0 1 0 0 0 1 1

 1 1 1 1 1 1 1 1
• If we add 1 to the number, the result is 100000000

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• Since we are considering an eight bit number, so
the 9th bit (MSB) of the result can not be stored.
Therefore, the final result is 00000000.

• Since the addition of two number is 0, so one can
be treated as the negative of the other number. So,
1's complement can be used to represent negative
number.

• The signed -1’s complement representation of -14
is obtained by complementing all the bits of +14
including sign bit.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Representation of Signed integer
in 2's complement form:

• Consider the eight bit number 01011100

• 2's complements of this number is 10100100

• The signed-2’s of -14 is obtained by taking the 2’s
complement of +14 including its sign bit

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Representation of -14 is

• In signed magnitude representation

 1 0001110

• In signed-1’s complement representation

 1 1110001

• In signed-2’s complement representation

 1 1110010

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Introduction to Arithmetic
Processor
 • Arithmetic instructions in digital computers

manipulate data to produce results necessary for

the solution of computational problems.

• The 4 basic arithmetic operations are addition,

subtraction, multiplication and division.

• An arithmetic processor is the part of a processor

unit that executes arithmetic operations.

• An arithmetic instruction may specify binary or

decimal data, and in each case the data may be in

fixed-point or floating point form.

• Fixed points numbers may represent integers or

fractions

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• The arithmetic processor is very simple if only a

binary fixed point add instruction is included.

• It would be more complicated if it includes all

four arithmetic operations for binary and decimal

data in fixed point and floating point

representation.

• Earlier we are taught to perform the basic

arithmetic operations in signed magnitude

representation.

• We see various arithmetic algorithm and also
see the procedure for implementing them with
digital hardware

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

We consider addition, subtraction,
multiplication and division for the following
types of data
• Fixed point binary data in signed- magnitude representation.

• Fixed point binary data in signed-2’s complement
representation

• Floating point binary data

• Binary coded decimal data

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Fixed Point Arithmetic Addition &
Subtraction
• As stated before there are 3 ways of

representing negative fixed point binary
numbers.

• Signed-Magnitude form.

• Signed 1’s complement form.

• Signed 2’s complement form.
• Most computers use the signed 2’s complement

representation when performing arithmetic
operations with integer.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• For floating point operations, most computers use the sign
magnitude representation.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Addition & Subtraction with signed
Magnitude Data

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Addition (Subtraction)
Algorithm

• When the signs of A and B are identical
(different), add the two magnitudes and attach
the sign of A to the result.

• When the signs of A and B are different
(identical), compare the magnitudes and subtract
the smaller number from the larger.

• Choose the sign of the result to be the same as A
if A>B or the complement of sign of A if A<B

• If the two magnitudes are equal, subtract B from
A and make the sign of the result positive

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Hardware Implementation For
Signed Magnitude Add & Sub
• To implement the two arithmetic operations

with hardware, it is first necessary that the two
numbers be stored in registers.

• Let A and B be 2 registers that holds the
magnitudes of the number, and As and Bs be 2
flip flops that hold the corresponding signs.

• The result of the operation may be transferred to
the third register

• However, a saving is achieved if the result is
transferred into A & As.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• Thus A and As together form an accumulator
register.

• Consider now the hardware implementation of
the algorithm above.

• Firstly, a parallel adder is needed to perform the
micro operation A + B

• Second, a comparator circuit is needed to
establish if A > B, A = B, or A < B

• Third, Two parallel subtractor circuits are
needed to perform the microoperations A – B
and B – A

• The sign relation ship can be determined from
an exclusive OR gate with As and Bs as inputs.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• This procedure requites a magnitude comparator, an
adder, & two subtractors.

• However, a different procedure can be found that
requires less equipments.

• First, we know that subtraction can be accomplish by
means of complement and add.

• Second, the result of a comparison can be determined
from the end carry after the subtraction

• Careful investigation of the alternatives reveals that
the use of 2’s complement for subtraction and
comparison is an efficient procedure that requires
only an adder and a complementer

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

• Figure 10.1 shows a block diagram of the hardware
for implementing the addition and subtraction
operation.

• It consists of register A & B and sign flip flop’s As

and Bs.

• Subtraction is done by adding A to the 2’s
complement of B.

• The output carry is transferred to flip flop E,
where it can be checked to determine the relative
magnitude’s of the two numbers.

• The add-overflow flip flop AVF holds the overflow
bit when A and B are added.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• The addition of A plus B is done through the
parallel adder.

• The S (sum) output of the adder is applied to the
input of the A register

• The complementer provides and output of B or
the complement of B depending on the state of
the mode control M.

• The complementer consists of exclusive OR gates
and the parallel adder consists of a full adder
circuit as shown in fig 4.7.

• The M signal is also applied to the input carry of
the adder.

• When M = 0, the output of B is transferred to the
adder, the input carry is 0, and the output of adder
is equal to the sum A + B

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

• When M = 1, the 1’s complement of B is applied to
the adder, the input carry is 1 and the output S = A
+ B’ + 1.

• This equal to A plus 2’s complement of B, which is
equivalent of A – B.

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

Assignment

 Write an algorithm for adding and subtracting numbers
unsigned 2’s complement representation

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Multiplication Algorithm

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Process for multiplication
• The process consists of looking at successive bits

of the multiplier, least significant bit first.

• If the multiplier bit is a 1, the multiplicand is
copied down;otherwise, zeroes are copied down.

• The numbers copied down in successive lines are
shifted one position to the ;left from the previous
number.

• Finally the numbers are added and their sum
forms the product.

• The sign of product is determined by the sign of
multiplicand and multiplier.

• If they are alike the sign of the product is positive ,
if they are unlike the sign of the product are
negative

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Hardware Implementation for signed
magnitude data

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

Booth Multiplication Algorithm

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

Numerical Example for binary multiplier

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

Division Algorithm

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

• Figure shows a machine algorithm that corresponds to the long
division process.

• The divisor is placed in the M register, the dividend in the Q register.

• At each step, the A and Q registers together are shifted to the left 1
bit.

• M is subtracted

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

D
es

ig
n

ed
 B

y
: D

ee
p

ak
 B

h
al

la

M
Yc

sv
tu

 N
o

te
s

