Unit 2

Arithmetic Processor Design

Number System

- We have already mentioned that computer can handle with two type of signals, therefore, to represent any information in computer, we have to take help of these two signals.
- These two signals correspond to two levels electrical signals, and symbolically we represen them as 0 and 1 .
- In our day to day activities for arithmetic, use the Decimal Number System. The decimaig number system is said to be of base, or radix 10, because it uses ten digits and the coefficients are multiplied by power of 10
- A decimal number such as 5273 represents a quantity equal to 5 thousands plus 2 hundred, plus 7 tens, plus 3 units. The thousands, hundreds, etc. are powers of 10 implied by the position of the coefficients. To be more precise e_{x} 5273 should be written
- In decima $5 \times 10^{3}+2 \times 10^{2}+7 \times 10^{1}+3 \times 10^{0}$ eed different symbols. But in computer we have\% provision to represent only two symbols. directly we cannot use decimal number syste in computer arithmetic.
- For computer arithmetic we use binary number system.
- The binary number system uses two symbols represent the number and these two symbols are 0 and 1.
- The binary number system is said to be of base 2 or radix 2 , because it uses two digits and the coefficients are multiplied by power of 2 .
- The binary number 110011 represents the quantity equal to:

$$
1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=51
$$

- To distinguish between radix numbers, the digits will be enclosed in parenthesis and the radix of the number inserted as a subscript.
- For example, to show the equality between decimal and binary forty-five we will write

$$
(101101)_{2}=(45)_{10}
$$

- Besides decimal and binary number systems, the octal number system are there
- Octal Number : The octal number system is said to be of base, or radix 8 , because it uses 8 digits and the coefficients are multiplied by power of 8.

Eight digits used in octal system are: $0,1,2,3$, 4, 5, 6 and 7.

- Hexadecimal number : The hexadecima number system is said to be of base, or radix 16 . because it uses 16 symbols and the coefficie are multiplied by power of $16 \frac{\text { gr }}{\text { a }}$ Sixteen digits used in hexadecimal system are: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F.

For example, octal 736.4 is converted to decimal as follows:
$(736.4)_{8}=7 \times 8^{2}+3 \times 8^{1}+6 \times 8^{0}+4 \times 8^{-1}$

$$
=7 \times 64+3 \times 8+6 \times 1+4 / 8=(478.5)_{10}
$$

For example, Hex. Decimal F3 is converted to decimal as follows:

$$
\begin{aligned}
(\mathrm{F} 3)_{16} & =\mathrm{F} \times 16+3=15 \times 16+3 \\
& =(243)_{10}
\end{aligned}
$$

Octal and Hexadecimal Numbers

- The conversion from and to binary, octal, and hexadecimal representation plays an important part in digital computers.
- Since $2^{3}=8$ and $2^{4}=16$ each octal digit represents to 3 binary digits and each hexadecimal digit corresponds to 4 binary digits.
- The conversion of binary to octal is easily accomplished by partitioning the binary number into groups of three bits each.

Binary	Octal	Hexadecimal	Decimal
01101000	150	68	104
00111010	072	$3 A$	58
-----------	------	------	----
10100010	242	A2	162

Binary representation of 41.6875 is 101001.1011
Therefore any real number can be converted to binary number system

There are two schemes to

 represent real number :- Fixed-point representation
- Floating-point representation

Fixed Point Representation

- Binary representation of 41.6875 is 101001.1011
- To store this number, we have to store two information,
-- the part before decimal point and $\frac{\frac{5}{3}}{3}$ -- the part after decimal point.
- This is known as fixed-point representation $\frac{\text { ̄̊ㄹ }}{}$ where the position of decimal point is fixed ancer number of bits before and after decimal pointigio are also predefined.
- If we use 16 bits before decimal point and 7 bits after decimal point, in signed magnitude form
- One bit is required for sign information, so the total size of the number is 24 bits
(1(sign) +16 (before decimal point) +7 (after decimal point)).

Integer Representation

Representation of Unsigned Integers

- Any integer can be stored in computer in bina form.
- As for example:

The binary equivalent of integer 107 is 1101011, so 1101011 are stored to represent 107.

- What is the size of Integer that can be stored a Computer?
- It depends on the word size of the Computer If we are working with 8-bit computer, then we can use only 8 bits to represent the number. The eight bit computer means the storage organization for data is 8 bits.
- In case of 8 -bit numbers, the minimum numbe that can be stored in computer is 00000000 and maximum number is 11111111 (255) (if are working with natural numbers).
- In general, for n-bit number, the range for natu number is from

$$
0 \text { to } 2^{n}-1
$$

- Any arithmetic operation can be performed with the help of binary number system. Consider the following two examples, where decimal and binary additions are shown side by side.

01101000104 00110001
 49
 10011001 153

$>$ In the above example, the result is an 8 -bit number, as it can be stored in the 8 -bit computer, so we get the correct results.

10000001
 129
 10101010178

100101011307

$>$ In the above example, the result is a 9-bit number ${ }^{\frac{8}{2}}$, but we can store only 8 bits, and the mest significant bit (MSB) cannot be stored.
$>$ The result of this addition will be stored (00101011) which is 43 and it is not the desirèㅇㅇd result. Since we cannot store the complete resiillt of an operation, and it is known as the overflow case.

Signed Integer

- When a integer binary number is positive , the sign is represented by 0 and a magnitude by a positive binary numbers.
- When a number is negative, the sign is represented by 1 but the rest of the numbers may be represented by one of the 3 possible ways:
- Signed-Magnitude form.
- Signed 1's complement form.
- Signed 2's complement form.

Signed magnitude form:

- In signed-magnitude form, one particular bit is used to indicate the sign of the number, whether it is a positive number or a negative number.
- Other bits are used to represent the magnitude the number.
- Generally, Most Significant Bit (MSB) is used indicate the sign and it is termed as signed bit in signed bit indicates positive number and 1 signed bit indicates negative number.
- For example, consider the signed num 14 stored in an 8 bit register
- +14 is represented by a sign bit of 0 in the left most position followed by the binary equivalent
of $14: 00001110$.
- Note that each of the 8 bits of the register must have a value and therefore 0's must be inserted the most significant positions following the sign bit.
- Although there is one way to represent +14
- But there is 3 ways to represent -14 with eight bits.
- In signed magnitude representation 1 0001110
- The signed magnitude representation of -14 is obtained from +14 by complementing only the sign bits.

The Concept of Complement

- The concept of complements is used to represent signed number.
- Consider a number system of base-r or radix There are two types of complements,
- The radix complement or the r's complement.
- The diminished radix complement or the 1)'s complement.

Diminished Radix Complement :

Given a number N in base r having n digits, the 1)'s complement of N is defined $i\left(r^{n}-1\right)-N$

For decimal numbers, $r=10$ and $r-1=9$
, so the 9's complement of N is . $\left(10^{n}-1\right)-N$

$$
\begin{aligned}
& \text { e.g., 9's complement } \\
& \text { of } 5642 \text { is } 9999-5642=4357 .
\end{aligned}
$$

Radix Complement :

- The r 's complement of an n-digit number in base r is defined as for $N!=0$ and 0 for $N=0$.
- r 's complement is obtained by adding 1 to the ($r-1$ complement, since

$$
\left(r^{n}-N\right)=\left[\begin{array}{ll}
\left(r^{n}-1\right) & -N]+1
\end{array}\right.
$$

- e.g., 10's complement of 5642 is 9 's complement of $5642+1$, i.e., 435 $1=4358$
- e.g., 2's complement of 1010 is 1's complement of $1010+1$, i.e., $0101 \stackrel{\%}{+}$ $1=0110$.

Representation of Signed integer in 1's complement form:

- Consider the eight bit number 01011100, 1's complements of this number is 10100011 . If we perform the following addition:
- If we perform the following addition:

$$
\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}
$$

11111111

- If we add 1 to the number, the result is 100000000
- Since we are considering an eight bit number, the 9th bit (MSB) of the result can not be stored. Therefore, the final result is 00000000 .
- Since the addition of two number is 0 , so one car be treated as the negative of the other number. 1's complement can be used to represent negative number.
- The signed -1's complement representation of -14 is obtained by complementing all the bits of +14 including sign bit.

Representation of Signed integer in 2's complement form:

- Consider the eight bit number 01011100
- 2's complements of this number is 10100100
- The signed-2's of -14 is obtained by taking the 2's complement of +14 including its sign bit

Representation of - 14 is

- In signed magnitude representation 10001110
- In signed-1's complement representation $1 \quad 1110001$
- In signed-2's complement representation 11110010

Processor

- Arithmetic instructions in digital computers manipulate data to produce results necessary for the solution of computational problems.
- The 4 basic arithmetic operations are addition subtraction, multiplication and division.
- An arithmetic processor is the part of a processo unit that executes arithmetic operations.
- An arithmetic instruction may specify binary decimal data, and in each case the data may be fixed-point or floating point form.
- Fixed points numbers may represent integers or fractions
- The arithmetic processor is very simple if only a binary fixed point add instruction is included.
- It would be more complicated if it includes four arithmetic operations for binary and decimal data in fixed point and floating poin representation.
- Earlier we are taught to perform the basi arithmetic operations in signed magnitud representation.
- We see various arithmetic algorithm and a see the procedure for implementing them w digital hardware

We consider addition, subtractio multiplication and division for the followin types of data

- Fixed point binary data in signed- magnitude representation
- Fixed point binary data in signed-2's complement representation
- Floating point binary data
- Binary coded decimal data

Fixed Point Arithmetic Addition \& Subtraction

- As stated before there are 3 ways of representing negative fixed point binary numbers.
- Signed-Magnitude form.
- Signed 1's complement form.
- Signed 2's complement form.
- Most computers use the signed 2's complement representation when performing arithmetic operations with integer.
- For floating point operations, most computers use the sign magnitude representation.

Addition \& Subtraction with signed

 Magnitude Data
Addition and Subtraction with Signed Magnitude Data

The representation of numbers in signed.-magnitude is familiar because it is usedine everyday arithmetic calculations. The procedure for adding or subtract. ing two signed binary numbers with paper and pencil is simple and striaghtforward. A review of this procedure will be hep pul for deriving the hardware alonithm.

Lem hr A and R. When the

algorithm.

We designate the magnitude of the two numbers by A and B. When the signed numbers are added or subtracted, we find that there are eight different conditions to consider, depending on the sign of the numbers and the operation performed. These conditions are listed in the first column of Table 10-1. The other columns in the table show the actual operation to be performed with the magnitude of the numbers. The last column is needed to prevent a negative zero. In other words, when two equal numbers are subtracted, the resilit should be -0 not -0 .

should be tu not -v.

The agorithms for addition and subtraction are derived fiom the rable and an be sated as follows the words inside pareetheseses should be used do:

Add / Subtract Signed-Magnitude

Subtract Magnitudes

Add

Operation

$(+A)+(+B) \quad+(A+B)$
$\begin{array}{ll}(+A)+(-B) & \\ (-A)+(+B) & \\ (-A)+(-B) \quad-(A+B)\end{array}$
$(+A)-(+B)$
$(+A)-(-B) \quad+(A+B)$
$(-A)-(+B) \quad-(A+B)$
$(-A)-(-B)$
Magnitudes
When $A>B$ When $A<B \quad$ When $A=B$

$$
\begin{equation*}
-(A-B) \quad+(B-A) \quad+(A-B) \tag{A-B}
\end{equation*}
$$

$(+A)+(+B)$	$+(A+B)$			
$(+A)+(-B)$		$+(A-B)$	$-(B-A)$	$+(A-B)$
$(-A)+(+B)$		$-(A-B)$	$+(B-A)$	$+(A-B)$
$(-A)+(-B)$	$-(A+B)$			
$(+A)-(+B)$		$+(A-B)$	$-(B-A)$	$+(A-B)$
$(+A)-(-B)$	$+(A+B)$		$+(B-A)$	
$(-A)-(+B)$	$-(A+B)$	$-(A-B)$	$+(A-B)$	
	Forces zero to be positive			

Addition (Subtraction)

Algorithm

- When the signs of A and B are identical (different), add the two magnitudes and attach the sign of A to the result.
- When the signs of A and B are differen (identical), compare the magnitudes and subtract the smaller number from the larger.
- Choose the sign of the result to be the same as if $A>B$ or the complement of sign of A if $A<B$
- If the two magnitudes are equal, subtract B fron ${ }^{\frac{10}{9}}$ A and make the sign of the result positive

Hardware Implementation For

Signed Magnitude Add \& Sub

- To implement the two arithmetic operations with hardware, it is first necessary that the two numbers be stored in registers.
- Let A and B be 2 registers that holds the magnitudes of the number, and A_{s} and B_{s} be 2 flip flops that hold the corresponding signs.
- The result of the operation may be transferred to the third register
- However, a saving is achieved if the result is transferred into A \& A_{s}.
- Thus A and A_{s} together form an accumulator register.
- Consider now the hardware implementation of the algorithm above.
- Firstly, a parallel adder is needed to perform th micro operation A + B
- Second, a comparator circuit is needed to establish if $A>B, A=B$, or $A<B$
- Third, Two parallel subtractor circuits are needed to perform the microoperations $A-B$ and B - A
- The sign relation ship can be determined from an exclusive $O R$ gate with A_{s} and B_{s} as inputs.
- This procedure requites a magnitude comparator, an adder, \& two subtractors.
- However, a different procedure can be found that requires less equipments.
- First, we know that subtraction can be accomplish means of complement and add.
- Second, the result of a comparison can be determined from the end carry after the subtraction
- Careful investigation of the alternatives reveals the use of 2 's complement for subtraction comparison is an efficient procedure that requires only an adder and a complementer

Hardware

- Figure 10.1 shows a block diagram of the hardware for implementing the addition and subtraction operation.
- It consists of register A \& B and sign flip flop's A_{s} and B_{s}.
- Subtraction is done by adding A to the 2's complement of B.
- The output carry is transferred to flip flop E, where it can be checked to determine the relative magnitude's of the two numbers.
- The add-overflow flip flop AVF holds the overflow bit when A and B are added.
- The addition of A plus B is done through the parallel adder.
- The S (sum) output of the adder is applied to the input of the A register
- The complementer provides and output of B or the complement of B depending on the state of the mode control M .
- The complementer consists of exclusive OR gates and the parallel adder consists of a full adder circuit as shown in fig 4.7.
- The M signal is also applied to the input carry of the adder.
- When $M=0$, the output of B is transferred to the adder, the input carry is 0 , and the output of adder is equal to the sum $A+B$
-When $M=1$, the 1 's complement of B is applied the adder, the input carry is 1 and the output $S=A$ $+B^{\prime}+1$.
- This equal to A plus 2's complement of B, which equivalent of $A-B$.

Hardware Algorithm

The flowchart for the hardware algoithm is presented in Fig. 10.2 . The two signo A, and B, are compared by an exclusive-OR gate. II the outputo of the gate is0, the signgarareidentical; ifitis1, the signs ared different: For annaddo operation, identical signns dictate that the magnitudes be added. For a subtract operation, differents signs dicatat that the magnitudes be added. The magnitudes are added with a microoperation $E A+A+B$, where $E A$ is a register that combines E and A. The carry inE Eater the addition constitutes an overflow ifit is equal to 1. The value of E is transfered into the add-overfow fipp-10p AVF

The two magnitudes are subtracted if the signs are different for an ada operation or identical for a subtract operation. The magnitudes are subtracted by adding A to the 2 's complement of B. No overflow can occur if the numbers are subtracted so $A V F$ is cleared to 0 . A 1 in E indicates that $A \geq B$ and the number in A is the correct result. If this number is zero, the sign A_{s}, must be made positive to avoid a negative zero. $A 0$ in E indicates that $A<B$. For this case itis necessary to take the 2's complement of the value in A. This operation can be done with one microoperation $A \leftarrow \bar{A}+1$. However, we assume that the A register has circuits for microoperations complement and increment, so the 2 's complement is obtained from these two microoperations. In other paths of the flowchart, the sign of the result is the same as the sign of A, so no change in A_{s} is required. However, when $A<B$, the sign of the result is the complement of the original sign of A. It is then necessary to complement A_{5} to obtain
the correct sign. The final result is found in register A and its sign in A, The value in $A V F$ provides an overflow indication. The final value of E is immaterial.

Assignment

Write an algorithm for adding and subtracting numbers unsigned 2's complement representation

Multiplication Algorithm

10.3 Multiplication Algorithms

Multiplication of two fixed-point binary numbers in signed-magnitude sentation is done with paper and pencil by a process of successive shi? add operations. This process is best illustrated with a numerical examt
2310111
$\frac{\text { Multiplicand }}{19} \times \frac{10011}{10111}$ Multiplier
10111
$00000+$
00000
$437 \frac{10111}{110110101}$ Product

Process for multiplicatio

- The process consists of looking at successive bits of the multiplier, least significant bit first.
- If the multiplier bit is a 1 , the multiplicand is copied down;otherwise, zeroes are copied down
- The numbers copied down in successive lines are shifted one position to the ;left from the previous number.
- Finally the numbers are added and their sum forms the product.
- The sign of product is determined by the sign of multiplicand and multiplier.
- If they are alike the sign of the product is positive , if they are unlike the sign of the product are negative

Hardware Implementation for signed

magnitude data

Hardware Implementation for Signed-Magnitude Data
When multiplication is implemented in a digital computer, it is convenient to change the process slightly. First, instead of providing registers to store and add simultaneously as many binary numbers as there are bits in the multiplier, it is convenient to provide an adder for the summation of only two binary numbers and successively accumulate the partial products in a register. Second, instead of shifting the multiplicand to the left, the partial product is shifted to the right, which results in leaving the partial product and the multiplicand in the required relative positions. Third, when the corresponding bit of the multiplier is 0 , there is no need to add all zeros to the partial product since it will not alter its value.

The hardware for multipiciation consists o: the equipment shown in tig
10.1 pus tro more registers. These registers together with requisters A and are shown in Fig. 10.5. The multhplier is stored in the O Iegister and its sigo inf.: The sequencecounter SC'isinitaly setto a numberequal to the number of bits in the multipier, The counter is deccemented by 1 a theer forming ead patial product. When the content of the counter reaches zero, the product tomed and the processs stopss.

Intialy, the multiplicandisin register Band the multipierinQ. The sum

 of A and B Forms a partial product which his transferred to the EA register: Both partial productand multipilier are shifted to the inght. This shitt will bedenoted by the statement shin EAQ todesignate the right shititdepicted in Fig. 10-5. Theleast significant bit of A is shifted into the most significant position of biffrom Eis shifted into the most siggificant position of f, and 0is shi E. After the shitt, one bit of the partial product is shiffed into Q, pus multipier bits one position to the right. In this manner, the rightmost in register \mathbb{O}, designated by ℓ_{w} will hold the bito f the multipier, whic be inspected next.

Hardware

Description

- $Q \quad$ multiplier
- B multiplicand
- A
- $S C$
number of bits in multiplier
- E
overflow bit for A
- Do $S C$ times
- If low-order bit of Q is 1
- $A \leftarrow A+B$
- Shift right $E A Q$
- Product is in $A Q$

Hardware Algorithm

Figure $10-6$ is a flowchart of the hardware multiply algorithm. Initial multiplicand is in B and the multiplier in Q. Their corresponding signs B_{s} and $Q_{s,}$ respectively. The signs are compared, and both A and Q are correspond to the sign of the product since a double-length product will be stored in registers A and Q. Registers A and E are cleared and the sequence counter SC is set to a number equal to the number of bits of the multiplier. We are assuming here that operands are transferred to registers from a memory unit that has words of n bits. Since an operand must be stored with its sign, one bit of the word will be occupied by the sign and the magnitude will consist of $n-1$ bits.

Atter the initialization, the low-order bito of the multiplier in Qn is tested. If it is a1, the multiplicand in B is added to the present partial product in A. If it is a 0 , nothing is done. Register EAQ is then shifted once to the right to form the new partial product. The sequence counter is decremented by 1 and its new value checked. Ifitis not equal to zero, the process is repeated and a new partial productis formed. The process stops when $S C=0$. Note that the partial product formed in A is shitted into Q one bit a a t time and eventualy replaces the multiplier. The final productis available in both A and ℓ, with A holding the most significant bits and Q holding the least significant bits.

The previous numerical example is repeated in Table $10-2$ to clarify the hardware multiplication process. The procedure follows the steps outlined in the flowchart.

Figure iO-6 Flowchatt for multiply operation.

Booth Multiplication Algorithm

Booth Multipiliation Algorithm

Booth algoithm gives a procedure formultplying binary integeres ins signed.2's complement representation. It operates on the fact that strings of O s in the multiplier require no addition but just shiffing, and a string of 1 's in the multipier from bit weight 2^{k} to weight 2^{m} can be treated as $2^{2+1}-2^{n}$. For example, the binary number $001110(+14)$ has a string of 11 's from 2^{3} to 2^{1}

Example: $23 \times 19=437$

Multiplicand $B=10111$
E $\quad A$
Q
SC

Multiplier in Q
$Q_{n}=1$; add B
First partial product
Shift right EAQ
$Q_{n}=1 ;$ add B
Second partial product
Shift right EAQ
$Q_{n}=0$; shift right $E A Q$
$Q_{n}=0$; shift right $E A Q$
$Q_{n}=1 ;$ add B
Fifth partial product
Shift right EAQ
Final product in $A Q=0110110101$

0	00000	10011	101
	$\frac{10111}{10111}$		
0			
0	01011	11001	$1 € 0$
	$\frac{10111}{00010}$		
1			
0	10001	01100	011
0	01000	10110	010
0	00100	01011	001
	$\frac{10111}{11011}$		
0	01101	10101	000

Multiply Signed-2's Complement

- Booth algorithm
- QR multiplier
- $Q_{n} \quad$ least significant bit of $Q R$
- $Q_{n+1} \quad$ previous least significant bit of $Q R$
- $B R$ multiplicand
- $A C$

0

- $S C$ number of bits in multiplier

Division Algorithm

$00001101 \longleftarrow$ Quotient Divisor $\longrightarrow 1011 \sqrt{10010011} \rightleftarrows$ Dividend Partial $\longrightarrow \frac{1011 \downarrow|\mid}{\substack{001110}} \xrightarrow{\left.\frac{1011}{} \downarrow \right\rvert\,}$ remainders

1011
 $100 \longleftarrow$ Remainder

Figure 9.15 Example of Division of Unsigned Binary Integers

Figure 9.16 Flowchart for Cisigned Binary Division

- Figure shows a machine algorithm that corresponds to the long division process.
- The divisor is placed in the M register, the dividend in the Q register.
- At each step, the A and Q registers together are shifted to the left 1 bit.
- M is subtracted

