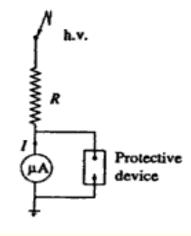


High Voltage Measurement Techniques

Туре	Method/Technique
(a) DC Voltages	 (i) Series Resistance Microammeter (ii) Resistance Potential Divider (iii) Generating Voltmeter (iv) Sphere and Other Spark gaps
(b) AC Voltages (Power Frequency)	 (i) Series impedance Ammeter (ii) Potential dividers (iii) Potential Transformers (iv) Electrostatic Voltmeters ^{BY V.BALAJI, AP/EEE, DCE} 2

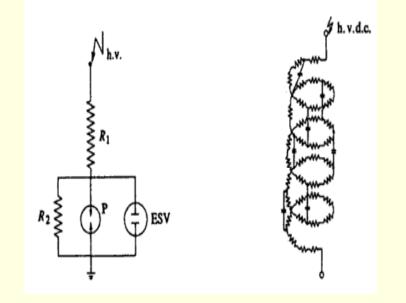
High Voltage Measurement Techniques

Туре	Method/Technique
(c) AC high frequency Voltages, Impulse voltages, and other rapid change voltages	 (i) Potential dividers with CRO (ii) Peak Voltmeters (iii) Sphere gaps


High Current Measurement Techniques

Туре	Method/Technique
(a) Direct Currents	 (i) Resistive Shunts with milliammeter (ii) Hall Effect Generators (iii) Magnetic Links
(b) Alternating Currents (Power Frequency)	(i) Resistive shunts(ii) Electromagnetic current Transformers
(c) High frequency AC, impulse and rapid change currents	 (i) Resistive shunts (ii) Magnetic Potentiometers (Rogowski Coils) (iii) Magnetic Links (iv) 門細門徑所管ででGenerators ⁴

HVDC Measurement


- Series Resistance Ammeter
- Resistance Potential Dividers
- Generating Voltmeter
- Oscillating Spheroid
- Ripple Voltage Measurement

Series Resistance Ammeter

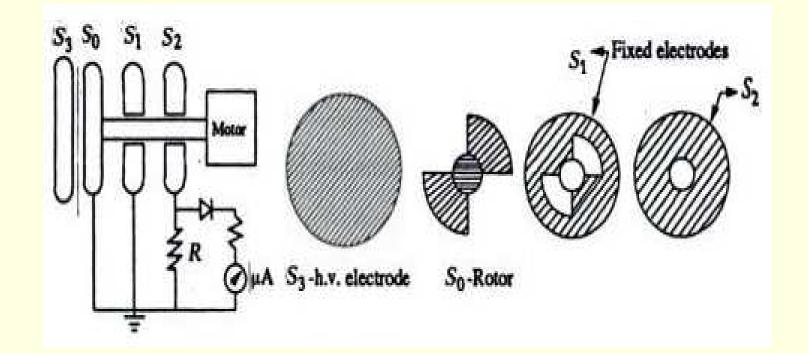
- Voltage drop in meter negligible
- Permissible 5 kV/cm in air 20 kV/cm in good oil
- Limitations:
 - Power Dissipation and Source Loading
 - Temperature effects and Long time stability
 - Voltage dependence of resistive elements
 - Sensitivity to mechanical stresses

Resistance Potential Dividers

- a) Resistance Potential divider with an electrostatic voltmeter
- b) Series resistor with parallel capacitors for potential linearization for transient voltages
- **P-Protective devices**
- **ESV-Electrostatic Voltmeter**

- Influence of temp and voltage is eliminated
- HV magnitude. = $(1+[R_1/R_2]) V_2$
- Voltage controlling capacitors- avoid sudden changes switching operations, flash over due to stray and ground capacitance.
- Accuracy
 - 0.05% upto 100 kV
 - 0.1% upto 300 kV
 - 0.5% for 500 kV

BY V.BALAJI, AP/EEE, DCE


Generating Voltmeter

Variable capacitor electrostatic voltage generator

Current through the capacitor,

I = dq / dt = VdC/dt + CdV/dtFor dc voltages, i=VdC/dt $C=C_0 + C_m \sin\omega t$ i= i_m cos ωt where, i_m=VC_m ω Rms value of the current = VC_m $\omega /\sqrt{2}$ Current proportional to Applied Voltage

Generating Voltmeter

BY V.BALAJI, AP/EEE, DCE

Generating Voltmeter

- Ac flowing through two halves
 i=n ΔC V /30
 Where, n=speed of synchronous motor,
 ΔC =C_{max}-C_{min}
 HV source is connected to S₃
 S₀ is driven by const speed synchronous
 - motor.

Advantages and Disadvantages

Advantages:

- No source loading by the meter
- No direct connection to HV electrode
- Scale is linear and extension of range is easy
- Convenient instrument for electrostatic devices such as Van de Graaf Generator and Particle accelerators

Disadvantages:

- Require calibration
- Careful construction and cumbersome instrument requiring an auxiliary drive
- Disturbance in position and mounting of the electrodes make the calibration invalid

Oscillating Spheroid

- Period of oscillation ∞ Applied electric field E ∞ V ∞ [f²-f₀²]
- Spacing 50 cm
- One electrode earthed, other is connected to HV DC source.
- Measured voltages 200 kV, accuracy 0.1%
- 145 cm diameter with 45cm spacing.
- Complicated, and time consuming method.
- Not widely used

Ripple Voltage measurement

- Simple RC Circuit.
- If V₁- DC Source Voltage, V₂= voltage across resistance. Then Ripple Voltage

 $V_r = V_1(t) - V_{dc}$

- C is rated for peak voltage
- S is closed when CRO is connected to the source
- C should be larger than capacitance of cable and input capacitance

Measurement of HVAC

- Series impedance Voltmeters
- Capacitance potential dividers and Capacitance Voltage Transformers
- Potential Transformers (Magnetic Type)
- Electrostatic Voltmeter
- Peak reading AC Voltmeter
 - Series Capacitor
 - Potential divider