
LECTURE 1

COMPONENTS OF A COMPUTER

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Computer: Definition

A computer is a machine that can be programmed to manipulate symbols.

Its principal characteristics are:

It responds to a specific set of instructions in a well-defined manner.

It can execute a prerecorded list of instructions (a program).

It can quickly store and retrieve large amounts of data.

Therefore computers can perform complex and repetitive procedures
 quickly, precisely and reliably. Modern computers are electronic and
 digital. The actual machinery (wires, transistors, and circuits) is called
 hardware; the instructions and data are called software.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Computer sizes and power

Computers can be generally classified by size and power as follows, though
there is considerable overlap:

Personal computer: A small, single-user computer based on a microprocessor.

Workstation: A powerful, single-user computer. A workstation is like a personal
computer, but it has a more powerful microprocessor and, in general, a higher-
quality monitor.

Minicomputer: A multi-user computer capable of supporting up to hundreds of
users simultaneously.

Mainframe: A powerful multi-user computer capable of supporting many
hundreds or thousands of users simultaneously.

Supercomputer: An extremely fast computer that can perform hundreds of
millions of instructions per second.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Secondary

Storage

Primary

Storage

Control Unit

Arithmetic

Logic Unit

Output Unit Input Unit

CPU

Result

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

All general-purpose computers require the following hardware
components:
Central processing unit (CPU): The heart of the computer, this is the
component that actually executes instructions organized in programs
("software") which tell the computer what to do.

Memory (fast, expensive, short-term memory): Enables a computer to store, at
least temporarily, data, programs, and intermediate results.

Mass storage device (slower, cheaper, long-term memory): Allows a computer
to permanently retain large amounts of data and programs between jobs.
Common mass storage devices include disk drives and tape drives.

Input device: Usually a keyboard and mouse, the input device is the conduit
through which data and instructions enter a computer.

Output device: A display screen, printer, or other device that lets you see what
the computer has accomplished.

In addition to these components, many others make it possible for the basic
components to work together efficiently. For example, every computer requires
a bus that transmits data from one part of the computer to another.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 2

Computer Language

A system for communicating. Written languages use symbols (that

is, characters) to build words. The entire set of words is the

language's vocabulary. The ways in which the words can be

meaningfully combined is defined by the language's syntax and

grammar. The actual meaning of words and combinations of words

is defined by the language's semantics.

In computer science, human languages are known as natural

languages. Unfortunately, computers are not sophisticated enough

to understand natural languages. As a result, we must communicate

with computers using special computer languages.

Computer languages can be classified into :
1. Low level languages

2. High level languages

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

http://www.webopedia.com/TERM/L/system.html
http://www.webopedia.com/TERM/L/character.html
http://www.webopedia.com/TERM/L/syntax.html
http://www.webopedia.com/TERM/L/semantics.html
http://www.webopedia.com/TERM/L/computer_science.html
http://www.webopedia.com/TERM/L/natural_language.html
http://www.webopedia.com/TERM/L/natural_language.html
http://www.webopedia.com/TERM/L/computer.html
http://www.webopedia.com/TERM/L/natural_language.html

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Machine Language

The lowest-level programming language (except for computers that

utilize programmable microcode) Machine languages are the only

languages understood by computers. While easily understood by

computers, machine languages are almost impossible for humans to

use because they consist entirely of numbers. Programmers, therefore,

use either a high-level programming language or an assembly language.

An assembly language contains the same instructions as a machine

language, but the instructions and variables have names instead of

being just numbers.

Programs written in high-level languages are translated into assembly

language or machine language by a compiler. Assembly language

programs are translated into machine language by a program called an

assembler.

Every CPU has its own unique machine language. Programs must be

rewritten or recompiled, therefore, to run on different types of

computers.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

http://63.236.18.118/RealMedia/ads/click_nx.ads/intm/sbc/www.webopedia.com@468x60-1,468x60-2,125x125-1,336x280,125x800,cp1,cp2,cp3,cp4,cp5,cp6,cp7!accessunit
http://mjxads.internet.com/RealMedia/ads/click_lx.cgi/intm/sbc/www.webopedia.com/TERM/M/machine_language.html/1051961891/336x280/OasDefault/Microsoft_MEDC_GEMS_2dj/medcbanner360x300b.gif/37633165326337323435666138353330
http://63.236.18.118/RealMedia/ads/click_nx.ads/intm/sbc/www.webopedia.com@468x60-1,468x60-2,125x125-1,336x280,125x800,cp1,cp2,cp3,cp4,cp5,cp6,cp7!336x280
http://mjxads.internet.com/RealMedia/ads/click_lx.cgi/intm/sbc/www.webopedia.com/TERM/M/machine_language.html/1999771960/accessunit/OasDefault/Microsoft_MEDC_GEMS_2f/medcbannerAUSize.gif/37633165326337323435666138353330
http://63.236.18.118/RealMedia/ads/click_nx.ads/intm/sbc/www.webopedia.com@468x60-1,468x60-2,125x125-1,336x280,125x800,cp1,cp2,cp3,cp4,cp5,cp6,cp7!accessunit
http://www.webopedia.com/TERM/M/programming_language.html
http://www.webopedia.com/TERM/M/microcode.html
http://www.webopedia.com/TERM/M/language.html
http://www.webopedia.com/TERM/M/computer.html
http://www.webopedia.com/TERM/M/programmer.html
http://www.webopedia.com/TERM/M/assembly_language.html
http://www.webopedia.com/TERM/M/instruction.html
http://www.webopedia.com/TERM/M/variable.html
http://www.webopedia.com/TERM/M/name.html
http://www.webopedia.com/TERM/M/program.html
http://www.webopedia.com/TERM/M/high_level_language.html
http://www.webopedia.com/TERM/M/high_level_language.html
http://www.webopedia.com/TERM/M/high_level_language.html
http://www.webopedia.com/TERM/M/compiler.html
http://www.webopedia.com/TERM/M/assembler.html
http://www.webopedia.com/TERM/M/CPU.html
http://www.webopedia.com/TERM/M/compile.html
http://www.webopedia.com/TERM/M/run.html

Assembly Language

A programming language that is once removed from a computer's

machine language. Machine languages consist entirely of numbers

and are almost impossible for humans to read and write. Assembly

languages have the same structure and set of commands as machine

languages, but they enable a programmer to use names instead of

numbers.

Each type of CPU has its own machine language and assembly

language, so an assembly language program written for one type of

CPU won't run on another. In the early days of programming, all

programs were written in assembly language. Now, most programs

are written in a high-level language such as FORTRAN or C.

Programmers still use assembly language when speed is essential or

when they need to perform an operation that isn't possible in a high-

level language.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

http://www.webopedia.com/TERM/A/programming_language.html
http://www.webopedia.com/TERM/A/computer.html
http://www.webopedia.com/TERM/A/machine_language.html
http://www.webopedia.com/TERM/A/command.html
http://www.webopedia.com/TERM/A/programmer.html
http://www.webopedia.com/TERM/A/name.html
http://www.webopedia.com/TERM/A/CPU.html
http://www.webopedia.com/TERM/A/program.html
http://www.webopedia.com/TERM/A/run.html
http://www.webopedia.com/TERM/A/high_level_language.html
http://www.webopedia.com/TERM/A/high_level_language.html
http://www.webopedia.com/TERM/A/high_level_language.html
http://www.webopedia.com/TERM/A/FORTRAN.html
http://www.webopedia.com/TERM/A/C.html

High Level Language

 A programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less

independent of a particular type of computer. Such languages are

considered high-level because they are closer to human languages

and further from machine languages. In contrast, assembly languages

are considered low-level because they are very close to machine

languages.

The main advantage of high-level languages over low-level languages

is that they are easier to read, write, and maintain. Ultimately,

programs written in a high-level language must be translated into

machine language by a compiler or interpreter.

The first high-level programming languages were designed in the

1950s. Now there are dozens of different languages, including Ada,

Algol, BASIC, COBOL, C, C++, FORTRAN, LISP, Pascal, and Prolog.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

http://63.236.18.118/RealMedia/ads/click_nx.ads/intm/sbc/www.webopedia.com@468x60-1,468x60-2,125x125-1,336x280,125x800,cp1,cp2,cp3,cp4,cp5,cp6,cp7!accessunit
http://www.webopedia.com/TERM/H/programming_language.html
http://www.webopedia.com/TERM/H/programming_language.html
http://www.webopedia.com/TERM/H/programming_language.html
http://www.webopedia.com/TERM/H/C.html
http://www.webopedia.com/TERM/H/FORTRAN.html
http://www.webopedia.com/TERM/H/Pascal.html
http://www.webopedia.com/TERM/H/programmer.html
http://www.webopedia.com/TERM/H/program.html
http://www.webopedia.com/TERM/H/computer.html
http://www.webopedia.com/TERM/H/language.html
http://www.webopedia.com/TERM/H/machine_language.html
http://www.webopedia.com/TERM/H/machine_language.html
http://www.webopedia.com/TERM/H/machine_language.html
http://www.webopedia.com/TERM/H/assembly_language.html
http://www.webopedia.com/TERM/H/assembly_language.html
http://www.webopedia.com/TERM/H/assembly_language.html
http://www.webopedia.com/TERM/H/low_level_language.html
http://www.webopedia.com/TERM/H/low_level_language.html
http://www.webopedia.com/TERM/H/low_level_language.html
http://www.webopedia.com/TERM/H/low_level_language.html
http://www.webopedia.com/TERM/H/low_level_language.html
http://www.webopedia.com/TERM/H/compiler.html
http://www.webopedia.com/TERM/H/interpreter.html
http://www.webopedia.com/TERM/H/Ada.html
http://www.webopedia.com/TERM/H/BASIC.html
http://www.webopedia.com/TERM/H/COBOL.html
http://www.webopedia.com/TERM/H/C_plus_plus.html
http://www.webopedia.com/TERM/H/LISP.html
http://www.webopedia.com/TERM/H/Prolog.html

LECTURE 3

FLOW CHART M

Y
cs

v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Diagrammatic representation of the solution of a problem

Input/Output : Represented as a parallelogram. Examples: Get X from the

user; usually containing the word "Start" or "End", or another phrase signaling

the start or end of a process, such as "submit enquiry" or "receive product".

Arrows : Showing what's called "flow of display X.

Conditional (or decision) : Represented as a diamond (rhombus). These

typically contain a Yes/No question or True/False test. This symbol is unique in

that it has two arrows coming out of it, usually from the bottom point and right

point, one corresponding to Yes or True, and one corresponding to No or False.

The arrows should always be labeled. More than two arrows can be used, but

this is normally a clear indicator that a complex decision is being taken, in which

case it may need to be broken-down further, or replaced with the "pre-defined

process" symbol.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

http://en.wikipedia.org/wiki/Parallelogram
http://en.wikipedia.org/wiki/Rhombus

A number of other symbols that have less universal currency, such

as:

A Document represented as a rectangle with a wavy base;

A Manual input represented by rectangle, with the top irregularly sloping

up

 from left to right. An example would be to signify data-entry from a form.

A Manual operation represented by a trapezoid with the longest parallel

side

 utmost, to represent an operation or adjustment to process that can only

be

 made manually.

A Data File represented by a cylinder

 Note: All process symbols within a flowchart should be numbered. Normally a

 number is inserted inside the top of the shape to indicate which step the

 process is within the flowchart.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Flowcharts may contain other symbols, such as connectors, usually

represented as circles, to represent converging paths in the flow chart. Circles

will have more than one arrow coming into them but only one going out. Some

flow charts may just have an arrow point to another arrow instead. These are

useful to represent an iterative process (what in Computer Science is called a

loop). A loop may, for example, consist of a connector where control first enters,

processing steps, a conditional with one arrow exiting the loop, and one going

back to the connector. Off-page connectors are often used to signify a

connection to a (part of a) process held on another sheet or screen. It is

important to remember to keep these connections logical in order. All processes

should flow from top to bottom and left to right.

A flowchart is described as "cross-functional" when the page is divided into

different "lanes" describing the control of different organizational units. A symbol

appearing in a particular "lane" is within the control of that organizational unit.

This technique allows the analyst to locate the responsibility for performing an

action or making a decision correctly, allowing the relationship between different

organizational units with responsibility over a single process.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Loop

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 4

INTRODUCTION TO C

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

HISTORY OF C

ALGOL 1960

BCPL

B

TRADITIONAL C

K & R C

ANSI C

ANSI/ISO C

1967

1970

1972

1978

1989

1990

International Group

ANSI Committee

Ken Thompson

Dennis Ritchie

Kernighan and Ritchie

Martin Richards

ISO Committee

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

IMPORTANCE OF C

Programs written in C are efficient & fast.

Its strength lies in built-in functions which can be used for developing programs.

C is highly portable it means C programs written for one computer can be run on

 another with little or no modification.

It is well suited for structured programming. User think of a problem in terms of

 function modules or blocks. A proper collection of these modules would make a

 complete program. It makes program debugging, testing and maintenance easier.

C has the ability to extend itself.We can add our own functions to C library.

C compiler combines the capabilities of an assembly language with the features of

 high-level languages therefore it is well suited for writing both system software and

 business packages.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

BASIC STRUCTURE OF C PROGRAM

Documentation Section

Link Section

Definition Section

Global Declaration Section

main() Function Section

{

}

Declaration part

Executable part

Subprogram Section

User-defined Functions

function1

function2

function n

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

EXECUTING A C PROGRAM

System Ready

Enter Program

Edit Source Program

Compile Source Program

Link with

 System Library

Syntax

Errors

Execute Object Code

Logic & Data

Errors

Correct Output

Stop

Yes

No Object Code

Executable Object Code

Logic Error

No Errors

Input Data

Data Error

System Library

C Compiler

Program Code
Source Program

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

CHARACTER SET

1. LETTERS : Uppercase A……….Z Lowercase a…………z

2. DIGITS : All decimal digits 0………….9

In C the characters that can be used to form words, numbers

and expressions are grouped into the following categories.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

3. SPECIAL CHARACTERS :

 , comma \ backslash ~ tilde

 & ampersand _ under score $ dollar sign

 . Period % percent sign ^ caret

 ; semicolon * asterisk - minus sign

 : colon + plus sign < opening angle bracket

? Question mark (left parenthesis > closing angle bracket

‘ apostrophe) right parenthesis [left bracket

“ quotation mark { left brace] right bracket

! exclamation } right brace # number sign

| vertical bar / slash

4. WHITE SPACES : Blank space, Horizontal tab, Carriage sign, New line

, Form feed

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

C TOKENS

In a C program the smallest individual units are known as

C tokens. C programs are written using these tokens and

the syntax of the language.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

C Tokens

Keywords

float

while

Identifiers

amount

main

Constants

-15.5

100

Strings

“abc”

“year”

Special Symbols

[,]

{ }

Operators

+, -,*,/

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 keywords are the words whose meaning has already been defined

 by the C compiler. All keywords have fixed meanings and these

 meanings cannot be changed. Keywords serve as basic building

 blocks for program statements. All keywords must be written in

 lowercase.

Keywords :

For Example :

 char, const, int, float, for, struct, union, switch, goto, while

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 identifiers refer to the names of the variables, functions and arrays.

 These are the user-defined names and consist of sequence of letters

 and digits, with a letter as a first character.

Rules for identifiers :

1. First character must be an alphabet or underscore.

2. Must consist of only letters, digits or underscore.

3. Only first 31 characters are significant.

4. Cannot use a keyword.

5. Must not contain white space.

Identifiers :

For Example : Sum, Total, count.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

CONSTANTS

Numeric constant Character constant

Integer

constant

Real

constant

Single character

constant

String

constant

Fixed values that do not change during the execution of a program.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Integer constants An integer constant refers to a sequence of digits.

There are three types of integer constants :

Decimal integer :

Octal integer :

Embedded spaces commas and non digit characters are not permitted.

Hexadecimal integer :

For example : 0X2, 0x9F,0Xbcd

Numeric constants

123, -123, 0 65478

Example : 20,000, 15 750 , $1000

Combination 0f digits 0 through 7 with a leading 0.

For example: 037, 0, 0435,0551

Sequence of digits preceded by 0x or 0X they may include

alphabets A through F or a through f.

It consist of a set of digits 0 through 9, preceded by an

optional – or + sign M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Real constants Numbers containing fractional parts are called

real (floating point) constants.

For example : 0.0083, -0.75, 435.36

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Character constants

Single character constant Single character enclosed within a pair of single

quotes.

For example : „5‟, „X‟

String constant
Sequence of characters enclosed within a pair of

double quotes.

For example : “hello”, “1234”, “well done”, “X”

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Backslash Character constants

C supports some special backslash character constants that are used in output

functions.

 „\a‟ audible alert

 „\b‟ blank space

 „\f‟ form feed

 „\n‟ new line

 „\r‟ carriage return

 „\t‟ horizontal tab

 „\v‟ vertical tab

 „\‟‟ single quote

 „\”‟ double quote

 „\?‟ question mark

 „\\‟ backslash

 „\0‟ null

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 5

D A T A

T Y P E S

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

C language is rich in data types. The variety of data

types available allow the programmer to select the type

appropriate to the needs of the application as well as

machine.

C supports three classes of data types :

1 Primary (or fundamental) data types

2. Derived data types

3. User-defined data types

Data types in C

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

PRIMARY DATA TYPES

Integer

Integer Type :

signed unsigned

 int unsigned int

short

int long int
unsigned short int
unsigned long int

Character

char

signed char

unsigned char

Floating point type

float double long double
void

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Type Size Range

char or signed char

unsigned char

int or signed int

unsigned int

short int or signed short int

unsigned short int

long int or signed long int

unsigned long int

float

double

long double

8

8

16

16

8

8

32

32

32

64

80

-128 to 127

0 to 255

-32,768 to 32,767

0 to 65535

-128 to 127

0 to 255

-2,147,483,648 to 2,147,483,647

0 to 4,294,967,295

3.4E-38 to 3.4E+38

1.7E-308 to 1.7E+308

3.4E-4932 to 1.1E+4932

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Derived data types : arrays, functions, structures and pointers

void types : The void has no values. This is usually used to

specify the type of functions. The type of

function is said to be void when it does not

return any value to calling function. It can also

play the role of a generic type, meaning that it

can represent any of the other standard types.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

USER DEFINED TYPE DECLARATION

C supports a feature known as “type definition” that allows users to define an

identifier that would represent an exiting data type. The user-defined data type

identifier can later be used to declare variables.

It takes the general form :

typedef type identifier ;

Where type refers to an exiting data type and identifier refers to new name

given to the data type. The exiting data type may belong to any class of type ,

including the user-defined ones.

The main advantage of typedef is that we can create meaningful data type

names for increasing the readability of the program.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 Another user-defined data type is “enumerated data type” provided by ANSI
standard.

 It is defined as follows:

 enum identifier {value1,value2,………….,valuen};

 The “identifier” is a user-defined enumerated data type which can be used to

declare variables that can have one of the values enclosed with in the braces.
Known as enumeration constants .

 Syntax used to declare variables to be of this new type :

 enum identifier v1,v2,…………,vn;

 The definition and declaration of enumerated variables can be combined in one

statement.

 e.g. enum day {Monday, Tuesday,……… ,Sunday} week_st, week_end;

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

TYPE CONVERSION IN EXPRESSIONS

C permits mixing of constants and variables of different type in an expression.

 C automatically converts any intermediate values to the proper type so that the

 expression can be evaluated without losing any significance.

This automatic conversion is known as implicit type conversion.

C uses the rule that, in all expressions except assignments, any implicit type

conversions are made from a lower size type to a higher size type.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 CONVERSION HIERARCHY

short char

int

unsigned int

long int

unsigned long int

float

double

long double

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

EXPLICIT CONVERSION

C performs type conversion automatically. However there are instances when we want

to force a type conversion in a way that is different from the automatic conversion.

This type of local conversion is known as explicit conversion or casting a value.

The general form of a cast is :

(type-name)expression

For example :

b= double(sum)/n

a=(int)21.3/(int)4.5

y=(int)(a+b)

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

VARIABLES

A variable is a data name that may be used to store a data value.

A variable may take different values at different times during

 execution.

A variable name may be chosen in a meaningful way so as to reflect

 its function or nature in program.

For Example : average, sum, Total, count, breadth, length,

sum_even, class_strength

A variable name may consist of letters, digits, and underscore _

 character.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Rules for forming a variable

 They must begin with a letter.

 Length should not be normally more than eight characters.

 Uppercase and lowercase are significant. That is Total is

 not same as total or TOTAL.

 It should not be a keyword.

 White space is not allowed.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Declaring a variable

After assigning a suitable variable names, we must declare them to

the compiler.

Declaration does two things :

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

The syntax for declaring a variable is as follows :

data-type v1,v2,…………….,vn;

Where v1,v2,………….,vn are the names of variables. Variables are

separated by commas. A declaration statement must end with a

semicolon.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

data-type v1,v2,…………….,vn;

For example :

int count;

float number,total;

double ratio;

int i=0,j=0;

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 6

OPERATORS M

Y
cs

v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

OPERATORS

An operator is a symbol that tells the computer to perform certain mathematical

or logical manipulation. Operators are used in programs to manipulate data and

variables. They usually form a part of the mathematical or logical expression.

8. Special operators

3. Logical operators

4. Assignment operators

2. Relational operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

1. Arithmetic operators

C operators can be classified into following categories

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

ARITHMETIC OPERATORS

+ Addition or unary plus

- Subtraction or unary minus

* Multiplication

/ Division

% Modulo division

Example : a+b, a-b, a*b, a/b, a%b

Here a & b are known as operands

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

RELATIONAL OPERATORS

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

These are the operators used to compare quantities.

For example: to compare age of two persons or the price of two

quantities.

For example : age1>=age2, sal1<=sal2, x!=y

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

ASSIGNMENT OPERATOR =

Assignment operators are used to assign the result of an

expression to a variable.

In addition to to usual „=„ operator C has a set of shorthand

assignment operator of the form

For example : c=a+b

v op = exp;

Where v is a variable, exp is an expression and op is a C binary

arithmetic operator.

op= is known as the shorthand assignment operator.

It is equivalent to v=v op (exp);

For example : a*=b means a=a*b

 a+=b means a=a+b

 a/=b means a=a/b

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LOGICAL OPERATORS

C has three logical operators

&& AND

|| OR

! NOT

The Logical operator && and || are used when we want to

test more than one condition and make decisions

if(age>55 && salary<1000)

if(number<0||number>100)

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

INCREMENT & DECREMENT OPERATOR

++ adds 1 to operand

-- subtracts 1

Both are unary operator and takes the following form:

++m or m++ equivalent to m=m+1

--m or m-- equivalent to m=m-1

Example : m=5 than y=++m;

 y=m++;

 In this case value of y would be 5 and m would be 6

In this case the value of y and m would be 6

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

RULES FOR ++ AND -- OPERATOR

• Increment and decrement operators are unary operators and they require

 variable as their operands.

• When postfix ++ or - - is used with a variable in an expression , the

 expression is evaluated first using the original value of the variable and then

 the variable is incremented or decremented by one.

• When prefix ++ or - - is used in an expression , the variable is incremented or

 decremented first and then the expression is evaluated using the new value of

 the variable.

• The precedence and associatively of ++ and - - operators are the same as those

 of unary + and unary -

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

CONDITIONAL OPERATOR

A ternary operator pair “?:” is available in C to construct conditional

expression of the form :

exp1 ? exp2 : exp3

Where exp1,exp2,exp3 are expressions.

For eg: a=10;

b=15;

x=(a>b) ? a : b ;

if(a>b)

x=a;

else

x=b;

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

BITWISE OPERATORS

These are the operators that manipulate data at bit level.

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

<< shift left

>> shift right

Example : a=4=0100

 b=3=0011

 a | b =0111

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

X=0100 1001 1100 1011

X<<3 = 0100 1110 0101 1000

X>>3 = 0000 1001 0011 1001

~X = 1011 0110 0011 0100

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

OPERATOR PRECEDENCE AND
ASSOCIATIVITY

Each operator in C has a precedence associated with it. This precedence is
used to determine how an expression involving more than one operator is
evaluated. There are distinct level of precedence and an operator may belong
to one of these levels. The operator at high level of precedence are evaluated
first. The operators of the same precedence are evaluated from left to right or
from right to left depending on the level.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

This is known as associativity property of an operator.

SPECIAL OPERATORS

sizeof Operator – Returns number of bytes the operand occupies.

Example : m=sizeof(sum);

Comma Operator - Used to link the related expression together.

Example : value=(x=10,y=5,x+y);

Pointer Operators – & address of

* value at

Member Selection Operators - . and –>

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

RULES OF PRECEDENCE AND
ASSOCIATIVITY

Precedence rules decodes the order in which different operators are
applied.

Associativity rule decodes the order in which multiple occurrence of the
same level operator are applied.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Arithmetic * Multiplication

 / Division

 % Reminder (modulus)

+ Binary plus

Associativity : L-> R

 - Binary minus

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

For example : X=a-b/3+c*2-1 a=9, b=12, c=3

9-12/3+3*2-1

9-4+3*2-1

9-4+6-1

5+6-1

11-1

10

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Expression

An expression is a combination of variables, constants and operators
written according to the syntax of the language.

In C every expression evaluates to a value i.e. every expression results
in some value of a certain type that can be assigned to a variable.

Variable=expression

For example : x=a*b-c

 z=a-b/c+d

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Rules for evaluation of Expression

1. First, parenthesized sub expression from left to right are evaluated.

2. If parentheses are nested, the evaluation begins with the innermost

 sub-expression.

3. The precedence rule is applied in determining the order of application of

 operators in evaluating sub-expressions

4. The associativity rule is applied when two or more operators of the same

 precedence level appear in a sub-expression.

5. Arithmetic expressions are evaluated from left to right using the rules of

 precedence.

6. When parentheses are used, the expressions within parentheses assume

 highest priority.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 7

INPUT/OUTPUT
OPERATIONS

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Input/output operations in C :

Unlike other high-level languages, C does not have any built-in input/output

statements as part of its syntax. All input/output operations are carried out

through function calls such as printf and scanf. There exist several functions

that have more or less become standard for input and output operations in C.

Those functions are collectively known as the standard I/O library.

Each program that uses a standard input/output function must contain the

statement :

 #include<stdio.h>

The file name stdio.h is an abbreviation for standard input output header file.

This instruction tells the compiler to search for a file named stdio.h and place its

contents at this point in program. The contents of the header file become part of

the source code when it is compiled.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Reading a character :

The simplest of all input/output operations is reading a character from the

standard input unit (usually the keyboard) and writing it to the standard output

unit (usually the screen).

Reading a single character can be done by using the function getchar.

variable_name=getchar();

variable_name is a valid C name that has been declared as char type.

When this statement is encountered, the computer waits until a key is pressed

and then assigns this character as a value to getchar function. Since getchar is

used on the right hand side of an assignment statement, the character value of

getchar in turn assigned to the variable on the left.

For example :

char choice;

choice=getchar();

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Writing a character :

Writing a single character to the terminal can be done by using the function

puchar.

It takes the following form :

putchar(variable_name);

Where variable name is a type char variable containing a character.

This statement displays the character contained in the variable at the

terminal.

For example :

char choice=‘y’;

putchar(choice);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 8

FORMATTED INPUT
AND OUTPUT

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 Formatted Input

Formatted input refers to an input data that has been
arranged in a particular format.

For example : 15.75 123 jhon

Here first part should be read into a variable float, the
second into int, the third part into char.

This is possible in C using scanf function (scanf means scan
formatted).

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

The general form of scanf is :

scanf(“control string”, arg1, arg2, arg3,…………………, argn);

The control string specifies the field format in which the
data is to be entered and the arguments arg1, arg2,
arg3,……………………………., argn specify the address of
locations where the data is stored. Control string and
arguments are separated by commas.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Control string also known as format string contains field
specifications, which direct the interpretation of input data. It
may include :

1. Field (or format) specifications, consisting of the
conversion character %, a data type character (or type
specifier), and an optional number specifying the field
width.

2. Blanks, tabs or newlines.

Blanks, tabs and newlines are ignored. The data type
character indicates the type of data that is to assigned to
the variable associated with the corresponding argument.
The fiel width specifier is optional.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Commonly used scanf format codes

Code Meaning

%c reads a single character

%d reads a decimal integer

%e reads a floating point value

%f

%g

%h

%i

%o

%s

%u

%x

%[..]

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Scanf width specifier

The field specification for reading an integer is :

%wd

Here w is an integer number that specifies the field width of the number to
be read.

For example : scanf(“%2d%5d”,&num1, &num2);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

FORMATTED OUTPUT

It is desirable that the outputs are produced in such a way
that they are understandable and are in an easy-to-use
form.

The printf statement provides certain features that can be
effectively exploited to control the alignment and spacing of
print outs on the terminal.

The general form of printf statement is :

Printf(“control string”, arg1, arg2, arg3,……………, argn);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Control string consists of three types of items :

1. Characters that will be printed on the screen as they
appear.

2. Format specifications that define the output format for
display of each item.

3. Escape sequence characters such as \n, \t and \b.

The control string indicates how many arguments follow and

what their types are. The arguments arg1, arg2,

arg3,…………………, argn are the variables whose values are

formatted and printed according to the specifications of the

control string. The arguments should match in number,

order and type with the format specifications.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Output of integer numbers

The format specification for printing an integer number is :

%wd

Where w specifies the minimum field width for the output.

However, if a number is greater then the specification

 field width, it will be printed in full, overriding the

 minimum specification.

d specifies that the value to be printed is an integr. The

 number is written in right-justified in the given field

 width. Leading blanks will appear as necessary.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

int x=9876;

printf(“%d”,x);

printf(“%6d”,x);

printf(“%2d”,x);

It is possible to force the printing to be left-justified by

placing a minus sign directly after the % character.

printf(“%-6d”,x);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Output of real numbers

The format specification for printing a real number is :

%w.pf

The integer w indicates the minimum number of positions

 that are to be used for the display of the value

The integer p indicates the number of digits to be

 displayed after the decimal point (precision).

The value when displayed , is rounded to p decimal places

 and printed right-justified in the field of w columns.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

float y=98.7654;

printf(“%7.4”,y);

printf(“%7.2f”,y);

printf(“%-7.2f”,y);

printf(“%f”,y);

printf(”%10.2e”,y);

printf(“%11.4e”,-y);

printf(“%-10.2e”,y);

printf(“%e”,y);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Printing a single character

A single character can be displayed in a desired position

using the format :

%wc

The character will be displayed right-justified in the field of

w columns.

We can make the display left-justified by placing a minus

sign before the integer w. the default value for w is 1.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Printing of strings

The format specification for outputting string is :

%wp.s

Where w specifies the field width for display and p instructs

that only the first p characters of the string are to be

displayed. The display is right-justified.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

printf(“%s”,s1);

printf(“%20s”,s1);

printf(“%20.10s”,s1);

printf(“%.5s”,s1);

printf(“%-20.10s”,s1);

printf(“%5s”,s1);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 9

DECISION MAKING

 AND

BRANCHING

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

There may be situations where we want to change the order of

execution of statements based on certain decisions or repeat a

group of statement until specified conditions are met. This

involves a kind of decision making to see whether a particular

condition has occurred or not and then direct the computer to

execute certain statements accordingly.

C possesses decision making by supporting following statements :

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

These statements are popularly known as decision-making

statement. Since these statements control the flow of execution,

they are also known as control statements.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Test expression

 ?

Entry

False

True

It is a basically two-way decision statement and is
used in conjunction with an expression.

if statement

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Different forms of if statement are :

1. Simple if statement

2. if………else statement

3. Nested if……..else statement

4. else if ladder

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Simple if statement

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

It takes the following form :

if(test expression)

{

 statement-block;

}

 statement x;

Test expression

 ?

Entry

False

True

statement-block

statement - x

Next statement

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

if……else statement

if(test expression)

{

 true-block statement;

}

else

{

 false-block statement

}

 statement-x

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Test expression

 ?

False True

False statement-block

statement - x

True statement-block

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

if(n>=0)

sq=sqrt(n);

else

printf(“not possible”);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 10

DECISION MAKING

 AND

BRANCHING

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Nested if……….else statement

When a series of decisions are involved, we may have to use

more than one if……….else statement in nested form.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

if(test condition-1)

{

 if(test condition-2)

 {

 statement-1;

 }

 else

 {

 statement-2;

 }

 else

{

 statement-3;

}

statement-x;

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Test condition1

 ?

False True

statement - x

 statement-3

Test condition 2

 ?

True

 statement-1 statement-2

Next statement

False

Entry

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

if(condition 1)

 statement –1;

else if(condition 2)

 statement – 2;

 else if(condition 3)

 statement – 3;

 else if(condition n)

 statement – n;

 else

 default - statement;

Statement – x;

else if ladder

This is used when multipath decisions are involved. A multipath decision is a

chain of ifs in which the statement associated with each else is an if.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

condition1

True false

statement - x

 statement-1

condition 2

false

 statement-3

 statement-2

Next statement

true

Entry

condition 3

true false

 statement-n

condition n

true false

Default

statement

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

switch statement

switch(expression)

{

 case value-1:

 block-1

 break;

 case value-2:

 block-2

 break;

 ……………………

 …………………….

 default :

 default block

 break;

}

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Entry

switch

expression

block 1

block 1

default

block

Statement - x

No match default

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

? : operator

The C language has an unusual operator, useful for making two-

way decisions. This operator is a combination of ? And : and

takes three operands. This operator is popularly known as

conditional operator.

The general form of conditional operator is :

conditional expression ? expression1 : expression2

The conditional expression is evaluated first. If the result is

nonzero, expression1 is evaluated and is returned as the value of

the conditional expression. Otherwise, expression2 is evaluated

and its value is returned.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Salary =

4x + 100 for x < 40

 300 for x = 40

4.5x + 150 for x> 40

Can be written as :

Salary=(x<40) ? (4*x+100):(x>40)?(4.5x+150):300;

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 11

goto STATEMENT

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

goto statement

C supports the goto statement to branch unconditionally from

one point to another in the program.

The goto requires a label in order to identify the place where

the branch is to be made. A label is any valid variable name,

and must be followed by a colon. The label is placed

immediately before the statement where the control is to be

transferred.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

goto label;

…………….

…………….

label:

statement;

label:

statement;

…………….

…………….

goto label;

The label can be anywhere in the program either before or after

the goto label: statement.

If the label is before the statement goto label; a loop will be

formed and some statement will be executed repeatedly. Such a

jump is known as a backward jump.

If the label: is placed after the goto label; some statements will be

skipped and the jump is known as a forward jump.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 12

LOOPING

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LOOPING

In looping a sequence of statements are executed until some
conditions for the termination of the loop are satisfied.

A program loop consist of two segments , one known as
body of loop and the other known as control statement .

The control statement test certain conditions and then directs
the repeated execution of the statements contained in the
body of the loop.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

A looping process includes the following steps :

 Setting and initialization of a condition variable

Execution of the statements in the loop

Test for a specified value of the condition variable for the

 execution of the loop

Increment or updating the condition variable

The test may be either to determine whether the loop has been
repeated the specified number of times or to determine
whether a particular condition has been met.

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Depending on the position of the control statement in the
loop, a control structure may be classified as:

Entry-controlled loop :

Exit-controlled loop :

Control conditions are tested before the start of the loop

execution

Control conditions are tested at the end of the body of the

loop

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 Test condition

?

Body

of the loop

False

Entry

True

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 Test condition

?

Body of the loop

False

Entry

True

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

Based on the nature of control variable and the kind of value
assigned to it for testing the loop may be classified as :

1. Counter-controlled loops or Definite repetition loop :

2. Sentinel-controlled loops or Indefinite repetition loop :

It is used when we know in advance exactly how many times the
loop will be executed

In this type of loop a special value called a sentinel value is used to
change the loop expression from true to false

For example –1 and 999

Control variable is known as counter.

Control variable is known as sentinel variable

For example : 10, 20

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

while statement

{

 body of loop

}

while(test condition)

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

For example :

n=1;

while(n>=10)

{

 printf(“%d”,n);

 n=n+1;

}

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

do statement

{

 body of loop

}

do

while(test condition);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

For example :

n=1;

 do

{

 printf(“%d”,n);

 n=n+1;

}while(n>=10);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

LECTURE 13

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

for loop

for(initialization ; test-condition ; increment)

{

 body of loop

}

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

For example :

for(n = 0; n < = 10; n + +)

{

 printf(“%d” , n);

} M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 The for Repetition Structure

• For loops can usually be rewritten as while loops:
 initialization;
while (loopContinuationTest) {
 statement;
 increment;
}

• Initialization and increment

• Can be comma-separated lists

• Example:

for (int i = 0, j = 0; j + i <= 10; j++, i++)

 printf("%d\n", j + i);

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 The for Structure: Notes and Observations

• Arithmetic expressions

• Initialization, loop-continuation, and increment can contain arithmetic
expressions. If x equals 2 and y equals 10

for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to

for (j = 2; j <= 80; j += 5)

• Notes about the for structure:

• "Increment" may be negative (decrement)

• If the loop continuation condition is initially false

• The body of the for structure is not performed

• Control proceeds with the next statement after the for structure

• Control variable

• Often printed or used inside for body, but not necessary

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 The break and
continue Statements
• break

• Causes immediate exit from a while, for, do/while or
switch structure

• Program execution continues with the first statement after the
structure

• Common uses of the break statement

• Escape early from a loop

• Skip the remainder of a switch structure

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 The break and
continue Statements
• continue

• Skips the remaining statements in the body of a while, for or
do/while structure

• Proceeds with the next iteration of the loop

• while and do/while

• Loop-continuation test is evaluated immediately after the
continue statement is executed

• for

• Increment expression is executed, then the loop-continuation test is
evaluated

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

1. Initialize variable

2. Loop

3. Print

Program Output

M
Y

cs
v
tu

 N
o

te
s

w
w

w
.m

yc
sv

tu
n

o
te

s.
in

 1 /* Fig. 4.12: fig04_12.c

 2 Using the continue statement in a for structure */

 3 #include <stdio.h>

 4

 5 int main()

 6 {

 7 int x;

 8

 9 for (x = 1; x <= 10; x++) {

10

11 if (x == 5)

12 continue; /* skip remaining code in loop only

13 if x == 5 */

14

15 printf("%d ", x);

16 }

17

18 printf("\nUsed continue to skip printing the value 5\n");

19 return 0;

20 }

1 2 3 4 6 7 8 9 10

Used continue to skip printing the value 5

