UNIT |




EVOLUTION OF
PROGRAMMING PARADIGM



Programming paradigm can be categorised
as:

Monolithic Programming
Procedural Programming

Structured Programming
Object Oriented Programming



Monolithic Programming

Contains only global data and sequential

code.
Jumps statements are used.
Code is duplicated.

Assembly Language and BASIC






Procedural Programming

Data items are global.

Program organised in the form of sub
routines.

Controls through jump statements.
Suitable for medium sized applications.
Difficult to maintain.

Example: FORTRAN and COBOL



Sub
programs




Structured Programming

Emphasis on algorithm than data.

Divided into individual procedures.
ndependent of each other.

Have their own local data and processing logic.
Supports modular programming.

Maintenance of large software system is costly.
Concepts of user defined data type.

Example : PASCAL and C



<

pros_i]l::ms .




Object Oriented Programming

Improvement over structured programming
paradigm.

Emphasis on data rather than algorithm.
Data abstraction is introduced.

Data and associated operations are unified
into single unit.

Examples: C++, Smalltalk, Java.



Structure of procedure-Oriented

Programs

Main Program

Func-1

Func-4

\

Func-2

Func-3

Func-g

Func-6




Characteristics of POP

Emphasis is on doing things (Algorithms).

Large programs are divided into smaller programs
known as function.

Most of the functions share global data.

Data move openly around the system from function
to function.

Functions transform data from one form to another.
Employs top-down approach in program design.



Structure of OOP

Object -A

Data

A

y

Function

Communication

Object -B

Data

\

Object -C

Function

Data

A 4

Function




Characteristics of OOP

Emphasis is on data rather than procedure.

Programs are divided into what are known as Objects.
Data structures are designed such that they characterize
the objects.

Functions that operate on the data of an object are tied
together in the data structure.

Data is hidden and cannot be accessed by external
functions.

Objects may communicate with each other through
functions.

New data and functions can be easily added whenever
necessary.

Follows bottom-up approach in program design.



Procedural vs. Object Oriented

Procedural languages express programs as a
collection of procedures (subroutines).
Object Oriented languages express programs
as a collection of object types (classes).



Moving from C to C++



Comments

Stream based I/O

Scope Resolution Operator

Variable definition at the point of use
Strict type checking

Type Conversion

Syntax: Data type(Variable)



Character Set

Tokens

Keywords : Operators
Special

Variables Constants Characters

Variables (Definition and initialization)
Data type and sizes



Operators

Special
Arithmetic Bitwise
Relational Conditional
Logical Assignment Increment &
Decrement
Qualifiers

Compound Assignment Operator
Constants (const, #define, enum)



Branching Statements
if statement

if-else statement
switch statement

gOtO statement
Looping Statements

for statement
while statement
do-while statement



Statements and block
Example

{

Int a;

int b=10;
a=b+10;



One dimensional integer array

Searching
Linear Searching
Binary Searching

Sorting
Bubble Sorting

Insertion Sorting
Selection Sorting



Two dimensional array
Matrix addition
Matrix Multiplication



Strings

Various Programs
String Manipulation Functions



Functions

Advantages:
Modular Programming
Amount of work and development time reduced
Debugging is easy
Code Reusability
Reduction in size
Library can be designed



Function Components

Function Declaration/ Prototype
Parameters

Function Definition

Return statement

Function Call



Function Prototype

Function Name
Return Type
Parameters type



Function Definition

Function Header/ Function Declarator
Function Body



Reference Variable

Type of variables in C++

Value Variable
Address Variable
Reference Variable(only in C++ not in C)



Simple as value variable
Powerful as pointer variable

Syntax

Standard or user defined data type

L C++ alias variable L C++ Value

Variable

)

——Reference Operator



Default Arguments

One or more arguments can be omitted in
C++

Default values can be provided in the function
prototype



Inline Functions

Use inline keyword before the function
header in function definition



Function Overloading/

Polymorphism

Multiple functions share same name.
Different arguments.
Not permitted if only return type is different.



If an exact match is not found then the
compiler converts the arguments as follows.

charto int
float to double
int to float or double

All these conversions take place to find a match.



