

 Programming paradigm can be categorised
as:

 Monolithic Programming

 Procedural Programming

 Structured Programming

 Object Oriented Programming

 Contains only global data and sequential
code.

 Jumps statements are used.
 Code is duplicated.

 Assembly Language and BASIC

1:
2: ………………..
 goto 100
 ………………..
 goto 55
 ………………..
 …..................
 goto 3
 ………………..
100: ……………...

Global Data

 Data items are global.
 Program organised in the form of sub

routines.
 Controls through jump statements.
 Suitable for medium sized applications.
 Difficult to maintain.

Example: FORTRAN and COBOL

Global Data

Sub
programs

 Emphasis on algorithm than data.
 Divided into individual procedures.
 Independent of each other.
 Have their own local data and processing logic.
 Supports modular programming.
 Maintenance of large software system is costly.
 Concepts of user defined data type.

 Example : PASCAL and C

Sub
programs

Global Data

Module 1 Module 2 Module 3

 Improvement over structured programming
paradigm.

 Emphasis on data rather than algorithm.
 Data abstraction is introduced.
 Data and associated operations are unified

into single unit.

 Examples: C++, Smalltalk, Java.

 Main Program

 Func-5

 Func-1 Func-2 Func-3

 Func-6 Func-4

 Emphasis is on doing things (Algorithms).
 Large programs are divided into smaller programs

known as function.
 Most of the functions share global data.
 Data move openly around the system from function

to function.
 Functions transform data from one form to another.
 Employs top-down approach in program design.

Data Data

Data

 Function Function

 Function

Communication

Object -A

Object -C

Object -B

 Emphasis is on data rather than procedure.
 Programs are divided into what are known as Objects.
 Data structures are designed such that they characterize

the objects.
 Functions that operate on the data of an object are tied

together in the data structure.
 Data is hidden and cannot be accessed by external

functions.
 Objects may communicate with each other through

functions.
 New data and functions can be easily added whenever

necessary.
 Follows bottom-up approach in program design.

 Procedural languages express programs as a
collection of procedures (subroutines).

 Object Oriented languages express programs
as a collection of object types (classes).

 Comments
 Stream based I/O
 Scope Resolution Operator
 Variable definition at the point of use
 Strict type checking
 Type Conversion

 Syntax: Data type(Variable)

 Character Set

 Variables (Definition and initialization)
 Data type and sizes

Tokens

Keywords

Variables Constants

Special

Characters

Operators

 Qualifiers
 Compound Assignment Operator
 Constants (const, #define, enum)

Operators

Arithmetic
Relational

Logical Assignment Increment &

Decrement

Conditional
Bitwise

Special

 Branching Statements

 if statement

 if-else statement

 switch statement

 goto statement

 Looping Statements

 for statement

 while statement

 do-while statement

 Statements and block
 Example

{

 int a;

 int b=10;

 a=b+10;

 …..

}

 One dimensional integer array

 Searching

▪ Linear Searching

▪ Binary Searching

 Sorting

▪ Bubble Sorting

▪ Insertion Sorting

▪ Selection Sorting

 Two dimensional array

 Matrix addition

 Matrix Multiplication

 Strings

 Various Programs

 String Manipulation Functions

 Advantages:

 Modular Programming

 Amount of work and development time reduced

 Debugging is easy

 Code Reusability

 Reduction in size

 Library can be designed

 Function Declaration/ Prototype
 Parameters
 Function Definition
 Return statement
 Function Call

 Function Name
 Return Type
 Parameters type

 Function Header/ Function Declarator
 Function Body

 Type of variables in C++

 Value Variable

 Address Variable

 Reference Variable(only in C++ not in C)

 Simple as value variable
 Powerful as pointer variable
 Syntax

Data type & ReferenceVariable = ValueVariable;

Standard or user defined data type

C++ alias variable

Reference Operator

C++ Value

Variable

 One or more arguments can be omitted in
C++

 Default values can be provided in the function
prototype

 Use inline keyword before the function
header in function definition

 Multiple functions share same name.
 Different arguments.
 Not permitted if only return type is different.

 If an exact match is not found then the
compiler converts the arguments as follows.
▪ char to int

▪ float to double

▪ int to float or double

▪ All these conversions take place to find a match.

