

 Programming paradigm can be categorised
as:

 Monolithic Programming

 Procedural Programming

 Structured Programming

 Object Oriented Programming

 Contains only global data and sequential
code.

 Jumps statements are used.
 Code is duplicated.

 Assembly Language and BASIC

1:
2: ………………..
 goto 100
 ………………..
 goto 55
 ………………..
 …..................
 goto 3
 ………………..
100: ……………...

Global Data

 Data items are global.
 Program organised in the form of sub

routines.
 Controls through jump statements.
 Suitable for medium sized applications.
 Difficult to maintain.

Example: FORTRAN and COBOL

Global Data

Sub
programs

 Emphasis on algorithm than data.
 Divided into individual procedures.
 Independent of each other.
 Have their own local data and processing logic.
 Supports modular programming.
 Maintenance of large software system is costly.
 Concepts of user defined data type.

 Example : PASCAL and C

Sub
programs

Global Data

Module 1 Module 2 Module 3

 Improvement over structured programming
paradigm.

 Emphasis on data rather than algorithm.
 Data abstraction is introduced.
 Data and associated operations are unified

into single unit.

 Examples: C++, Smalltalk, Java.

 Main Program

 Func-5

 Func-1 Func-2 Func-3

 Func-6 Func-4

 Emphasis is on doing things (Algorithms).
 Large programs are divided into smaller programs

known as function.
 Most of the functions share global data.
 Data move openly around the system from function

to function.
 Functions transform data from one form to another.
 Employs top-down approach in program design.

Data Data

Data

 Function Function

 Function

Communication

Object -A

Object -C

Object -B

 Emphasis is on data rather than procedure.
 Programs are divided into what are known as Objects.
 Data structures are designed such that they characterize

the objects.
 Functions that operate on the data of an object are tied

together in the data structure.
 Data is hidden and cannot be accessed by external

functions.
 Objects may communicate with each other through

functions.
 New data and functions can be easily added whenever

necessary.
 Follows bottom-up approach in program design.

 Procedural languages express programs as a
collection of procedures (subroutines).

 Object Oriented languages express programs
as a collection of object types (classes).

 Comments
 Stream based I/O
 Scope Resolution Operator
 Variable definition at the point of use
 Strict type checking
 Type Conversion

 Syntax: Data type(Variable)

 Character Set

 Variables (Definition and initialization)
 Data type and sizes

Tokens

Keywords

Variables Constants

Special

Characters

Operators

 Qualifiers
 Compound Assignment Operator
 Constants (const, #define, enum)

Operators

Arithmetic
Relational

Logical Assignment Increment &

Decrement

Conditional
Bitwise

Special

 Branching Statements

 if statement

 if-else statement

 switch statement

 goto statement

 Looping Statements

 for statement

 while statement

 do-while statement

 Statements and block
 Example

{

 int a;

 int b=10;

 a=b+10;

 …..

}

 One dimensional integer array

 Searching

▪ Linear Searching

▪ Binary Searching

 Sorting

▪ Bubble Sorting

▪ Insertion Sorting

▪ Selection Sorting

 Two dimensional array

 Matrix addition

 Matrix Multiplication

 Strings

 Various Programs

 String Manipulation Functions

 Advantages:

 Modular Programming

 Amount of work and development time reduced

 Debugging is easy

 Code Reusability

 Reduction in size

 Library can be designed

 Function Declaration/ Prototype
 Parameters
 Function Definition
 Return statement
 Function Call

 Function Name
 Return Type
 Parameters type

 Function Header/ Function Declarator
 Function Body

 Type of variables in C++

 Value Variable

 Address Variable

 Reference Variable(only in C++ not in C)

 Simple as value variable
 Powerful as pointer variable
 Syntax

Data type & ReferenceVariable = ValueVariable;

Standard or user defined data type

C++ alias variable

Reference Operator

C++ Value

Variable

 One or more arguments can be omitted in
C++

 Default values can be provided in the function
prototype

 Use inline keyword before the function
header in function definition

 Multiple functions share same name.
 Different arguments.
 Not permitted if only return type is different.

 If an exact match is not found then the
compiler converts the arguments as follows.
▪ char to int

▪ float to double

▪ int to float or double

▪ All these conversions take place to find a match.

