MYcsvtu Notes

LECTURE 14

£
%)
(]
-
o
=
3
=
>
)]
O
>
€
=
=
=

ONE DIMENSIONAL ARRAYS

Array :

An array is a fixed sized sequenced collection of related data items

same data type.

MYcsvtu Notes

In its simplest form an array can be used to represent a list of numbers ¢
list of names using a single name.
We can use an array name salary to represent a set of salaries of a grc

employees in an organization. We can refer to the individual salaries

www.mycsvtunotes.in

writing a number called index or subscript in brackets after the array na
for example salary[10] represents the salary of 10th employee.
While the complete set of values referred to as an array, individual val

are called elements.

C supports the following types of arrays :

1. One-dimensional arrays
2. Two-dimensional arrays

3. multidimensional arrays

0
Q
fd
(@)
=
-
dd
S
0
O
>—
=
=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

One-dimensional arrays :

A list of items can be given one variable name using only one subscript ¢
such a variable is called a single-subscripted variable or one-dimensional &

Declaration of one-dimensional arrays:

Like any other variable, arrays must be declared before they are used.
The general form of array declaration is :

type variable _name[size];
type specifies the type of elements of array, such as int, float or char and t

www.mycsvtunotes.in MYcsvtu Notes

size indicates the maximum number of elements that can be stored inside
array.

For example :
float height[10];
declares the height to be an array containing 10 real elements.

|

S9JON NIASOAIN UI'S9]0UNIASIAL MMM

LECTURE 15

Arrays

* Array elements are like normal variables
c[] 0] = 3;
printf("%d", c[0]);
Perform operations in subscript. If x equals 3
c[5 -2] =c¢c[3] =~c[x]

MYcsvtu Notes

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

Declaring Arrays

* When declaring arrays, specify
Name
Type of array

MYcsvtu Notes

Number of elements
arrayType arrayName[numberOfElements];

Examples:
int c[10];
float myArray[3284];

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

* Declaring multiple arrays of same type
Format similar to regular variables

Example:
int b[100], x[27 1;

Examples Using Arrays

* Initializers
intn[5] =1{1, 2, 3, 4, 5 };
If not enough initializers, rightmost elements become 0
intn[f 5] ={ 0}
All elements O

MYcsvtu Notes

If too many a syntax error is produced syntax error
C arrays have no bounds checking

* |f size omitted, initializers determine it
intn[1] =4{1, 2, 3, 4, 5 };

5 initializers, therefore 5 element array

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

1 /* Fig. 6.8: fig06_08.c

2 Histogram printing program */

3 #include <stdio.h>

4 #define SIZE 10

5 1. Initialize arra

6 int main()

7 {

8 int n[SIZE] = { 19, 3, 15, 7, 11, 9, 13, 5, 17, 1 }; 2. LOOp

9 int i, j; o
10 g
11 printf("%$s%13s%17s\n", "Element", "Value", "Histogram"); 3. Print =
12 é
13 for (1 =0; i <= SIZE - 1; i++) { E
14 printf("%$7d%13d ", i, n[11]) ; -
15 :"_-,’i
16 for (J =1; j <=n[i]; j++) /* print one bar */ Q
17 printf("%c", '*'); é
18 S
19 printf("\n"); g
20 } g
21

22 return O;

23 }

S9JON NIASOAIN UI'S9]0UNIASIAL MMM

Program Output

LECTURE 16

MYcsvtu Notes

TWO DIMENSIONAL ARRAYS

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

Two-dimensional arrays :

One-dimensional array can store a list of values. There co

situations where a table of values will have to be stored.

We can think of a table as a matrix consist of rows and columns
C allows to define such table of items by using two-dimen

array such as v[3][4].

www.mycsvtunotes.in MYcsvtu Notes

The general form of declaration of a two-dimensional
array is :

type array_name[row_size][column_size];

Each dimension of array is indexed from zero to its maximum ¢

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

minus one, the first index selects the row and the second in

selects the column within that row.

Column O Column 1 Column 2 Column 3

Row o @al01[01 ja[0][1] |a[0]1[2] |a[0]1[3]

Row 1 a[1][0] a[1]1[1] al[l][2] a[1]1[3]

MYcsvtu Notes

Row 2
a[2][0] a[2][1] a[2][2] a[2][3]

'S 'S 'S

£
%)
(]
-
o
=
3
=
>
)]
O
>
€
=
=
=

Column subscript

Array name

Row subscript

* Initialization
int b[2][2]={{1,2},{3,4}};

Initializers grouped by row in braces

MYcsvtu Notes

If not enough, unspecified elements set to zero
int b[2][2]={{1},{3,41}};
* Referencing elements

Specify row, then column
printf("%sd",b[0][1])

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

LECTURE 17

MYcsvtu Notes

MULTIDIMENSIONAL ARRAYS

=
%)
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

Multi-dimensional array :

C allows arrays of three or more dimensions. The exact limit is determined &

complier.

The general form of multi-dimensional array is :
type array _name[sl1][s2][S3[]......-.. [sm];

Where si is the size of ith dimension .

For example :
int survey[3][5][12];
float table[5][4][5][3];

www.mycsvtunotes.in MYcsvtu Notes

survey is athree-dimensional array, whereas table is a four-dimensional arra

MYcsvtu Notes

LECTURE 13

STRINGS

£
%)
(]
-
o
=
3
=
>
)]
O
>
€
=
=
=

Strings

A string is sequence of characters that is treated as a single data item. Any

of characters defined between double quotation marks is a string constant.

Declaring strings :
C does not support strings as a data type. However, it allows us to represent st

MYcsvtu Notes

as character arrays. In C therefore, a string variable is any valid C vaiable name
is always declared as an array of characters.

char string_name/[size];

the size determines the number of characters in string.

www.mycsvtunotes.in

For example :
char city[10];
when compiler assigns a character string to a character array, it automat
supplies a null character (‘\0’) at the end of the string. Therefore, the size s

be equal to the maximum number of characters in the string plus one.

Reading strings from terminal

Using scanf function :

The familiar input function scanf can be used with %s format specification to
in a string of characters.

For example :

char address[15];

scanf(“%s”,address);

the problem with the scanf function is that it terminates its input on the first
space it finds.

MYcsvtu Notes

=
7,3
(]
-+
o
=
3
4
>
)]
O
>
€
=
=
=

Reading with getchar and gets functions :
A single character can be read from the keyboard using getchar. We can use this functi
repeatedly to read successive single characters from the input and place them into a
character array. The reading is terminated when newline character (‘\n’) is entered an
null character is then inserted at the end of the string.
The getchar function call takes the form :

char ch;

ch=getchar();

Another and more convenient method of reading a string of text containing whitespac
to use the library function gets available in the <stdio.h> header file. This is simple fu
with one string parameter and called as under:

gets(str);

str is a string variable declared properly. It reads characters into str from the keyboard
a newline character is encountered and then appends a null character to the string. Un
scanf, it does not skip whitespaces.

MYcsvtu Notes

www.mycsvtunotes.in

LECTURE 19

MYcsvtu Notes

ARITHMATIC OPERATIONS ON
STRINGS

=
0
Q
hd
(@)
c
S
)
>
0
O
>
=
=
P
P2

C allows us to manipulate characters the same way we
with numbers.

Whenever a character constant or character variable is
used in an expression, it is automatically converted int
integer value by the system.

To write a character in its integer representation, we
write it as an integer.

www.mycsvtunotes.in MYcsvtu Notes

For example :
char x="a’;
printf(“%d",x);
Will display 97 ASCII value of a on the screen.

It is also possible to perform arithmetic operations on the charact
and variables

For example :
int x;
x='2'-1;

is a valid statement. The ASCII value of z is 122 and therefore t
statement will assign 121 to x.

www.mycsvtunotes.in MYcsvtu Notes

S9JON NIASOAIN UI'S9]0UNIASIAL MMM

-
N
[1]
ad
-
=
O
[1]
—

String-Handling Functions

C library supports a large number of string-handling functions that can be
used to carry out many of the string manipulations.

Most commonly used string functions are :

strcat() — concatenates two strings
strcmp() — compares two strings

strcpy — copies one string into another

%))
()
s
o
=
35
s
>
()]
O
P
=
£
%)
()
-+
o
=
3
4
>
)]
O
>
€
=
=
=

strlen —finds the length of a string

These functions are defined in string.h header file.

strcat function

The strcat function joins two strings together.

It takes the following form :

strcat(string1,string2);

Where stringl & string two are character arrays.

When the strcat function is excuted, string two is appended to strin

It does so by removing the null character at the end of stringl &
placing string2 from there.

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
=
-+
>
)]
O
>
€
=
=
=

The string at string2 remains unchanged.
Size of stringl should be enough to accommodate the final string.

strcat function may also append a string constant to a string variab

strcmp() function

The strcmp compares two functions identified by the arguments a
has a value of 0 if they are equal.

If they are not, it has numeric difference between the fir
nonmatching characters in the strings.

It takes the form :
strcmp(stringl,string2);

stringl and string2 may be string variables or string constants.

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

strcpy function

strcpy copies one string into another.

It takes the form :

strcpy(stringl,string2);

It assigns the contents of string2 to stringl.

string2 may be a character array variable or a string constant.

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

strlen function

This function counts and returns the number of characters In
string.

It takes the form :
n=strlen(string);

Where n is an integer variable, which receives the value of t
length of the string.

The argument may be a string constant.

%))
(]
s
o
=
3
s
>
()]
O
>_
=
£
%)
(]
-+
o
=
3
=
>
)]
O
>
€
=
=
=

The counting ends at the first null character.

Other string handling functions

strncpy — it copies the left-most n characters of the sourse string
the target string variable.

This is a three parameter function & has the following form :

strncpy(stringl,string2,n);

strncmp — this fuction has three parameter and has the following

form :

strncmp(stringl,string2,n);

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

This compares the left-most n characters of stringl to string2
and returns :

a) Oif they are equal.

b) Negative number, if stringl is less than string?2.

c) Positive number, otherwise.

strncat - This function concatenates the left-most n characters of
second string to the end of first string.

It takes the following form :

strncat(stringl,string2,n);

strstr — It is a two-parameter function that can be used to locate a
sub-string in a string.

It takes the form :

strstr(stringl,string2);

%))
()
s
o
=
35
-+
>
()]
O
P
=
£
%)
()
=
o
=
3
-+
>
)]
O
>
€
=
=
=

The function strstr searches the stringl to see whether the string2
contained in stringl.

If yes function returns the position of the first occurrence of the su
string. Otherwise, it returns a NULL pointer.

