
UNITII

Classes

 Logical method to organise data and

functions in a same structure.

 Also known as abstract data type (ADT).

 It’s a User Defined Data-type.

◦ The Data declared in a Class are called Data-

Members of the Class.

◦ The Functions declared or defined in a Class

are called Member-Functions of the Class.

◦ The members of a Class can only be accessed

through Objects of the class.

Syntax

Syntax:

class class_name

{

access specifier:

 member1;

access specifier:

 member function;

...
} [object_name];

for example

class a

 { private;

 int x

 public :

 void show() {cout << a;}

};

Characteristics of a class

 The keyword class specifies abstract data type of
type class name.

 The body of a class is enclosed with in braces and
terminated by a semicolon

 The functions and variables with in the class are
collectively called as members

 The members that have been declared as private
can be accessed only from with in the class.

 Class definition is only a template and does not
create any memory space for a class

 By default all the members are of type private .

Access Specifiers

 Public

◦ Any member declared under this specifier is

Accessible from Outside the class, by using

the object of the Class.

 Syntax :-

Class definition

{ public :

 declarations or definitions

} ;

 Private

◦ Any member declared under this specifier is Not
Accessible from Outside the Class. The Private
members are accessible to only the Member
Functions and Friend Functions in the Class.

Syntax :-

Class definition

{ private :

 declarations or definitions

} ;

 Protected

Any member declared under this specifier is

Not Accessible from Outside the class, by

using the object of the Class.

Syntax :-

Class definition

{ protected :

 declarations or definitions

} ;

Structure Class
Structure can be defined as a collection

of dissimilar data items.

Class can be defined as combination of

data items and functionality applied on

that data

By default all members are public By default all members are private

The size of the structure = size of the

individual data items of a structure

The size of the structure = size of the

individual data items of a class

Separate copy of data members are

created for all structure variables

Separate copy of data members and only

one copy of member functions are

created for class

To create a structure variable use

keyword struct

To create a class variable the keyword

class is optional

It is Not possible to inherit structures It is possible to inherit class

Structure are called as Passive data item Classes are called as Active data items

Member function outside the class

 To declare the member function of a class

outside the class definition the function

prototype declared within the body of a

class and defined them out side the body

of a class.

Objects

 Object can be defined as an Instance of a

class.

 The process of creating objects

(variables) of the class is called class

instantiation.

 In C++ the class variables are called as

objects.

 The complier allocates required memory

for objects.

Memory allocation for objects

 For each object of a class a separate copy

of data members and one copy of

member functions is created.

Variable1

Variable2

Object 1 Object 2 Object 3

Member func. 1

Member func. 2

Common for all objects

Static Data Members

 One copy of the member, shared by all
objects of the class.

 Visible only with in class, but its lifetime is
the entire program.

 By default initialized to 0.

 Also known as class variable.
 For Making data member static we

require:
 a) Declare with in class;
 b) Define it out side the class

Static Member Functions

 A static member function can access only

the static members of class.

 It is called using the name of the class.

 Syntax for calling static member function

 classname : : function-name;

Array of objects

Friend Function

 Private members of a class can be
accessed only by the member functions of
the same class. But there are some cases
where the private member needs to be
accessed by members of other classes.

 This can be achieved by declaring a non-
member function called Friend Function

Note: Just Bcoz of friend function C++
is not fully object oriented.

Friend Functions

 Friend functions are Not member

functions of any class, but they can access

the private, protected and public

members of the class.

 They are declared using “ friend “

keyword.

 They Don’t belong to any specific Class.

 They can be invoked as ordinary

functions, with out using any object.

 They can be defined outside the Class, here
also they are defined like ordinary functions
and Not like member functions.
◦ The access specifiers does not effect the visibility

of Friend Functions.

◦ Usually a friend function receives the object as
arguments.

Syntax :-

friend return-type function-name (input-
arguments) ;

 It is not affected by the access control
keywords.

 We can also declare all the member function of a class as
friend function of another class using “friend class”.

Eg

class first

{ ……………

 friend class second;

};

class second

{ ……….

 ……….

}

