Unit Il

Constructor

» Special member function.

» Allocate resources.

» Initialize the objects of that class.
» Same name as class.

» Executed automatically.

» Constructor which doesn’t take arguments
explicitly is called default constructor.

» It has no return type.

Constructor is the first member function to
be executed

Svyntax of Constructor

Class ClassName
.............. / /private members

.............. / /public members

CiassNarme(

ClassName::ClassName()

{ Constructor Definition

§

p—

Parameterised Constructor

» Constructor with argument.

» Constructor which doesn’t take arguments
explicitly is called default constructor.

» Each class can have one and only one default
constructor.

-
m

Destructor

» Invoked when object is destroyed.

» For local non-static objects, destructor called
when function is about to terminate.

» For static or global objects called before
program terminates.

» A class can not have more than one
destructor.

» Destructor neither take arguments, nor return
values.

» Object created most recently is the first one
to destroy.

Constructor Overloading

» A class can have multiple constructor.

p—

Destructor Syntax

Class ClassName
.............. / /private members

.............. / /public members
~ClassName();

}. Constructor prototype
)

ClassName::~ClassName()
{

} Constructor Definition

p—

Difference b/w constructor &
destructor

» Arguments cannot be passed to destructor.

» Only one destructor can be declared for a
class. Destructors can not be overloaded.

» Destructors can be virtual.

p—

Constructor with default
arguments

Nameless Objects

» Unnamed objects can also be created.

m Arg. to constructor

classname(arguments);

» The scope of a nameless object is limited
only to the statement in which it is created.

p—

Dynamic initialization through
constructor

» Object’s data members can be dynamically
initialized during runtime, even after their
creation.

Copy Constructor

» TWO ways:
> Classname c1(c2);
> Classname c1=c2;

p—

Where the copy constructor is
invoked

» When we use previously.
» When objects are passed by value.
» When objects are returned from function.

p—

Constant object & Constant
member function

» A constant object can call only const member
functions.

» Any const member function can’t change the
value of data members of a object.

-

Dynamic Allocation of memory/
Runtime management of memory

» Used when the memory requirement is not
known at runtime.

» Memory allocation can be done during
execution.

» Two operators are used for this purpose:
° new
> delete

p—

» Syntax:

Datatype * new datatype[size in integer];
» Example:

Int *a;

a=new int[10];

Note: This is the case of one dimensional
integer array.

» Example:
int **a;
a=new int*[10];
for (int i=0;i<9;++1i)
alil=new int[10];

Note: This is the case of two dimensional
integer array.

Delete operator

» To free the memory allocated before delete is used.

» Example
Int *a;
a=new int[10];
delete a;
» Example
Int **a;
a=new int*[10];
for (int i=0;i<9;++1i)
ali]l=new int[10];
for(l—O i <9 ++i)

Operator Overloading

» It is another form of polymorphism.

» This concept works in two areas:

- Extending capability of operators to operate on user
defined data.

o Data conversion.

-

Operators can’t be overloaded

» Class member access operators (., .*)
» Scope resolution operator (::)

» Size operator (size of)

» Conditional operator(? :)

p—

Syntax

Function
g return-type

Operator to
@ be overloaded

Arg to
operator

function

Returntype operator operatorsymbol([arg1],[arg?2])
{

/ /body of overloaded function

Type Co to nversion

» Conversion from basic data type to class
object.

- A parameterized constructor have to be made in the
class.

» Conversion from class object to basic data

type.
- A member function has to be made in the class as:
- Operator basicDataType()

{
}

-

» Conversion from class object to other class
object.

- A member has to be made in the class which is to
be converted as:

- Operator otherClassName()
o {
>}

p—

