
UNIT V

GENERIC PROGRAMMING WITH
TEMPLATES

 Templates supports generic programming.

 Reusable components can be developed.

 Template declared for functions

 Template declared for class

Function
template

Class Template

Function Template

 Drawback of a simple function is that they
can be used with only a particular data type.

 This can be overcome by function template or
generic functions.

Syntax of function template

template <class T,……….>

Returntype Functionname(arguments)

{

 ……………………………………

 ……………………………………

}

Keyword Template
datatype

At least one
argument must

be template
type

Overriding of function
templates
 Function templates can be overridden by

normal functions.

 If the program has both the function and
function template with the same name, the
compiler first selects the normal function.

Errors while using function
template

 No-argument template function.

 Template-type argument unused.

 Usage of partial number of template
arguments.

Overloaded Function Template

 The function templates can also be
overloaded with multiple declarations.

 Must differ either in number or type of
arguments.

Multiple arguments function
template

 Multiple generic arguments can also be
taken.

User defined template
arguments

Class Template

 Class can also be declared to work on
different data types.

 This generic class will support similar
operations for different data types.

Syntax of class template

template <class T1,class T2,……>

class ClassName

{

 T1 data;

 ………..

void func1(T1 a, T2 b);

 ……………..

};

Keyword
Template datatypes

T1,T2,….

Syntax for class template
instantiation

 ClassName <char> object1;

 ClassName <int> object2;

Datatype to be
substituted for

template datatype

Template arguments

 A template can have character strings,
function names etc as template type
arguments.

 Example:

Template <class T1, int size>

Class myClass

{

 T arr[size];

};

 The object of the class will be created as:

 myClass <float,10> new1;

Member function definition
outside the class

CONSOLE I/O OPERATION

 C++ uses concept of streams and stream
classes to implement I/O operation with
console and disk files.

C++ Streams

 I/O system in C++ supplies an interface to the
user that is independent of device being used.

 This interface is called streams.

 Stream is a sequence of bytes.

Input
device

program

Output
Device

Input Stream

Output Stream

Extraction

from input

stream

Insertion

into

output

stream

C++ Stream Classes

ios

istream streambuf ostream

iostream

istream_withassign iostream_withassign ostream_withassign

• Base class for istream and ostream

• Declares constants and functions that are
necessary for handling formatted input and
output operations.

ios

• Inherits ios

• Declares input functions such as get(),
getline() and read()

• Conatins overloaded insertion operator

istream

• Inherits ios

• Declares output functions put() and write() ostream

• Inherits ios, istream, ostream

• Contains all the input and output functions iostream

Unformatted I/O operations

 put() & get() functions

 Handle the single character input//output
operations.

 getline() & write() functions

 Line oriented input/output functions.

Formatted Console I/O
Operations
 Functions

 width()

 precision()

 fill()

 setf()

 unsetf()

 Manipulators

 setw()

 setprecision()

 setfill()

iomanip.h

FILE I/O OPERATION

 Data is stored using the concept of files.

 A file is a collection of related data stored in a
particular area on the disk.

 Program contains two type of operations for
these files:

 Data transfer b/w the console unit and the
program.

 Data transfer b/w the programs and a disk file.

Data files

External Memory

Program + Data

Internal Memory

Read data

from files
Write

data to

files

Console Unit

Put data to

screen
Get data from

keyboard
screen

Keyboard

program

Input Stream

Output Stream

Disk Files

Read

data

Write

data

Data

input

Data

output

ios

istream streambuf ostream

iostream

ifstream fstream ofstream filebuf

fstreambase

• Base for fstream, ifstream, ofstream.

• Contains open() and close() functions. fstreambase

• Provides input operations.

• Contains open() with default input mode.

• Inherits get(), getline(), read(), seekg() and tellg().
ifstream

• Provide output operations

• Contains open() with default output mode.

• Inherits put(), write(), seekp(), tellp().
ofstream

• Provide support for simultaneous input and output
operations.

• Inherits all the functions from istream and ostream
through iostream.

fstream

Opening & Closing a File

 Opening a file using constructor of the class.

 ofstream is used to create output stream.

 ifstream is used to create input stream.

 Initialize the file object with file name.

 Opening a file using open ()

 It can be used to open multiple files using the
same stream object .

Detecting eof

 eof() function can be used. It’s the member
function of ios.

 Return non-zero value when end-of-file
encountered.

File Modes

File pointers and their
manipulations
 Each file has two pointers:

 Input pointer (get pointer)

 Output pointer (put pointer)

Functions for manipulating
file pointers
 seekg()

 seekg(offset, refposition)

 seekp()

 seekp(offset,refposition)

 tellg()

 tellp()

ios::beg

ios::cur ios::end

Sequential I/O Operation

 put() and get() functions

 write() and read() functions:

 infile.read((char*) & V, sizeof(v));

 outfile.write((char*) & V, sizeof(v));

 Reading and writing of class object.

Error handling during file
operations
 A file which we are attempting to open for reading does

not exist.

 The fine name used for a new file may already exist.

 We may attempt an invalid operation such as reading
past the end-of-file.

 There may not be any space in the disk for storing more
data.

 We may use an invalid file name.

 We may attempt to perform an operation when the file is
not opened for that purpose.

• Non-zero if end-of-file
encountered. eof()

• True when I/O operation failed.
fail()

• True when unrecoverable error
occurred. bad()

• True if no error has occurred.
Means all other functions are false. good()

EXCEPTION HANDLING

Two common bugs

 Logical error – due to poor understanding of
solution & problem procedure.

 Syntactical Error – due to poor understanding
of language.

Two kinds of exceptions

 Synchronous – Errors under control, like out
of range index, overflow.

 Asynchronous – Errors occurred beyond the
control of program.

Steps for error handling

 Find the problem(Hit the exception)

 Inform that error has occurred(Throw the
exception)

 Receive the error information (Catch the
exception)

 Take corrective actions(Handle the exception)

Try block

Detects and throws

a exception

catch block

Catches and

handles exception

Exception

Object

