
Daniele Bochicchio
Stefano Mostarda
Marco De Sanctis

Includes 106 practical techniques

M A N N I N G

IN PRACTICE

ASP.NET 4.0 in Practice

ASP.NET 4.0 in Practice

DANIELE BOCHICCHIO
STEFANO MOSTARDA

MARCO DE SANCTIS

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditor: Joan Celmer
PO Box 261 Typesetter: Gordan Salinovic
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN 9781935182467
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.manning.com

brief contents
PART 1 ASP.NET FUNDAMENTALS ..1

1 ■ Getting acquainted with ASP.NET 4.0 3

2 ■ Data access reloaded: Entity Framework 30

3 ■ Integrating Entity Framework and ASP.NET 52

PART 2 ASP.NET WEB FORMS...75

4 ■ Building the user interface with ASP.NET Web Forms 77

5 ■ Data binding in ASP.NET Web Forms 104

6 ■ Custom controls 135

7 ■ Taking control of markup 162

PART 3 ASP.NET MVC ...185

8 ■ Introducing ASP.NET MVC 187

9 ■ Customizing and extending ASP.NET MVC 219

PART 4 SECURITY ..257

10 ■ ASP.NET security 259
v

11 ■ ASP.NET authentication and authorization 282

BRIEF CONTENTSvi

PART 5 ADVANCED TOPICS...317

12 ■ Ajax and RIAs with ASP.NET 4.0 319

13 ■ State 348

14 ■ Caching in ASP.NET 366

15 ■ Extreme ASP.NET 4.0 396

16 ■ Performance and optimizations 416

contents
preface xv
acknowledgments xvii
about this book xix
about the authors xxiii
about the cover illustration xxv

PART 1 ASP.NET FUNDAMENTALS1

1 Getting acquainted with ASP.NET 4.0 3
1.1 Meet ASP.NET 4

1.2 Typical architecture in ASP.NET applications 7

1.3 Your first ASP.NET Web Form 13

1.4 What’s new in ASP.NET 4.0 17

1.5 ASP.NET Web Forms in practice 20
TECHNIQUE 1 Handling PostBack 20
TECHNIQUE 2 Form validation 23
TECHNIQUE 3 Page header, styling, and CSS 26

1.6 Summary 28
vii

CONTENTSviii

2 Data access reloaded: Entity Framework 30
2.1 Designing an application 31

2.2 Using an ORM to build a data layer 35

2.3 Introducing Entity Framework 37
TECHNIQUE 4 Creating a model using Entity

Framework 38
TECHNIQUE 5 Generating POCO code 41
TECHNIQUE 6 Reading data using Entity Framework 43
TECHNIQUE 7 Writing data using Entity Framework 48

2.4 Summary 51

3 Integrating Entity Framework and ASP.NET 52
3.1 Understanding context lifetime 53

TECHNIQUE 8 First approach: one context per method 53
TECHNIQUE 9 A better approach: one context per ASP.NET

request 55
TECHNIQUE 10 Instantiating the context using modules 58

3.2 Using the context the right way 59
TECHNIQUE 11 Persisting entity modifications 60
TECHNIQUE 12 Persisting only selected properties 61
TECHNIQUE 13 Persisting an entity using ViewState 65
TECHNIQUE 14 Keep concurrency in mind 66

3.3 Optimizing performance in an ASP.NET environment 69
TECHNIQUE 15 Optimizing fetching 69
TECHNIQUE 16 Avoiding multiple query execution 70
TECHNIQUE 17 Optimizing queries that retrieve a single

element 71
TECHNIQUE 18 Disabling change tracking 73

3.4 Summary 74

PART 2 ASP.NET WEB FORMS ...75

4 Building the user interface with ASP.NET Web Forms 77
4.1 The UI and Web Forms 78

TECHNIQUE 19 Better markup generation in ASP.NET 4.0 81
TECHNIQUE 20 Controlling ClientID generation 83

4.2 Defining a common UI: using master pages 85
TECHNIQUE 21 Using nested master pages 86
TECHNIQUE 22 Setting a master page programmatically 88

CONTENTS ix

4.3 URL rewriting and routing with ASP.NET 91
TECHNIQUE 23 URL routing with Web Forms 93
TECHNIQUE 24 Advanced URL routing scenarios 97
TECHNIQUE 25 Rewriting in practice: UrlRewriting.NET 101

4.4 Summary 103

5 Data binding in ASP.NET Web Forms 104
5.1 Displaying data 105

TECHNIQUE 26 How to display data using Repeater 106
TECHNIQUE 27 ListView in ASP.NET 4.0 109

5.2 Modifying data 111
TECHNIQUE 28 Using data source controls 111
TECHNIQUE 29 EntityDataSource and Entity Framework 114
TECHNIQUE 30 What’s new in GridView, FormView, and

ListView 115

5.3 Filtering and sorting data 118
TECHNIQUE 31 The QueryExtender control 118

5.4 Working with Dynamic Data controls 123
TECHNIQUE 32 The first application 123
TECHNIQUE 33 Working with metadata and templates 127
TECHNIQUE 34 Extending Dynamic Data 131

5.5 Summary 134

6 Custom controls 135
6.1 The basics of custom controls 136

TECHNIQUE 35 Simple controls 136
TECHNIQUE 36 Composite controls 139
TECHNIQUE 37 Handling PostBack 144

6.2 Complex controls 147
TECHNIQUE 38 Container controls 147
TECHNIQUE 39 Templated controls 149
TECHNIQUE 40 Data binding in custom controls 153

6.3 Advanced controls 156
TECHNIQUE 41 Control builders 156

6.4 Summary 161

7 Taking control of markup 162
7.1 ASP.NET adaptive rendering 163

TECHNIQUE 42 Add OptionGroups to DropDownList 164
TECHNIQUE 43 Build a table-less control adapter for the
DataList 170

CONTENTSx

7.2 ASP.NET 4.0 browser capabilities 177
TECHNIQUE 44 Building a custom browser capabilities

provider 178
TECHNIQUE 45 Validating ASP.NET pages with the W3C

validator 182

7.3 Summary 183

PART 3 ASP.NET MVC..185

8 Introducing ASP.NET MVC 187
8.1 A new way to build web applications 188

8.2 Your first experience with ASP.NET MVC 190
TECHNIQUE 46 The model 191
TECHNIQUE 47 The controller 194
TECHNIQUE 48 The view 197

8.3 Routing in ASP.NET MVC 200
TECHNIQUE 49 Partitioning using Areas 204

8.4 Accepting user input 207
TECHNIQUE 50 Handling user input at the controller

level 207
TECHNIQUE 51 Validating posted data 212

8.5 Summary 217

9 Customizing and extending ASP.NET MVC 219
9.1 Building reusable elements in ASP.NET MVC 220

TECHNIQUE 52 Building customized data templates 221
TECHNIQUE 53 Componentized markup through HTML

helpers 226
TECHNIQUE 54 Inject logic using action filters 229

9.2 User input handling made smart 235
TECHNIQUE 55 Custom model binders for domain

entities 236
TECHNIQUE 56 Building a new model binder from

scratch 243

9.3 Improving ASP.NET MVC routing 249
TECHNIQUE 57 Routes with consistent URL termination 249

9.4 Summary 255

CONTENTS xi

PART 4 SECURITY ..257

10 ASP.NET security 259
10.1 What is security in ASP.NET applications? 260

10.2 Filtering and blocking incoming requests 262
TECHNIQUE 58 Handling improper parameter values 263
TECHNIQUE 59 Monitoring and blocking bad requests 264

10.3 Protecting applications from SQL injection 266
TECHNIQUE 60 Handling SQL queries using parameters 267
TECHNIQUE 61 Dynamic queries with multiple values 269

10.4 Dealing with XSS (cross-site scripting) 271
TECHNIQUE 62 Handling and displaying user input 271
TECHNIQUE 63 Using Microsoft’s Anti-XSS Library 275

10.5 Controlling path composition: path canonicalization
vulnerabilities 278

TECHNIQUE 64 Dynamically building a path 278

10.6 Summary 281

11 ASP.NET authentication and authorization 282
11.1 Authentication and authorization basics 283

TECHNIQUE 65 Using FormsAuthentication and
UrlAuthorization 284

11.2 Handling user authentication: introducing the Membership
API 288

TECHNIQUE 66 Implementing a user login using the Membership
API 289

11.3 Adding support to roles using the Roles API 294
TECHNIQUE 67 Implementing a role-enabled login using Roles

API 294

11.4 Custom providers for the Membership and Roles APIs 298
TECHNIQUE 68 Other providers 298
TECHNIQUE 69 Building custom Membership and Role

providers 300
TECHNIQUE 70 Integrating Windows Live ID with your

application 309

11.5 Summary 315

CONTENTSxii

PART 5 ADVANCED TOPICS...317

12 Ajax and RIAs with ASP.NET 4.0 319
12.1 Understanding Ajax 320

12.2 Working with ASP.NET Ajax 323
TECHNIQUE 71 Creating a classic page 323
TECHNIQUE 72 Ajaxize a page using the update

panel 324
TECHNIQUE 73 Optimizing UpdatePanel using

triggers 326
TECHNIQUE 74 Optimizing a page with multiple

UpdatePanels 327
TECHNIQUE 75 Intercepting client-side pipeline 328

12.3 Focusing on the client: jQuery 330
TECHNIQUE 76 Invoking REST web services with

jQuery 336
TECHNIQUE 77 Invoking page methods with

jQuery 339
TECHNIQUE 78 Invoking MVC actions with

jQuery 341
TECHNIQUE 79 Enriching the interface via

jQueryUI 342

12.4 Summary 347

13 State 348
13.1 Handling state 349

TECHNIQUE 80 Per-request state 349
TECHNIQUE 81 Per-session state 351

13.2 Advanced user state 354
TECHNIQUE 82 Using the Profile API 355
TECHNIQUE 83 A custom provider for the Profile API 359

13.3 Summary 365

14 Caching in ASP.NET 366
14.1 Per-application state: Cache 367

14.2 Using OutputCache 368
TECHNIQUE 84 Leveraging OutputCache to speed up your

pages 368

CONTENTS xiii

14.3 OutputCache in ASP.NET MVC 371
TECHNIQUE 85 Deterministically removing items from

OutputCache 372
TECHNIQUE 86 OutputCache and partial views 378

14.4 Data caching techniques 381
TECHNIQUE 87 Implementing data caching in

ASP.NET 381

14.5 Building custom cache providers 386
TECHNIQUE 88 Custom cache provider 388
TECHNIQUE 89 Custom OutputCache provider 393

14.6 Summary 395

15 Extreme ASP.NET 4.0 396
15.1 Using HttpModules 397

TECHNIQUE 90 Modifying the response flow with
HttpModules 398

TECHNIQUE 91 Intercepting and handling mobile device
requests 400

15.2 Logging and handling errors 402
TECHNIQUE 92 Intercepting, and handling errors with a custom

module 403

15.3 Extending ASP.NET HttpRuntime 407
TECHNIQUE 93 Running your site from the database 407

15.4 Summary 415

16 Performance and optimizations 416
16.1 Increasing download performance by minifying 417

TECHNIQUE 94 Building a request filter to minify HTML 417
TECHNIQUE 95 Building an HTTPHandler to minify CSS 422
TECHNIQUE 96 Building an HTTPHandler to minify

JavaScript 425

16.2 Reducing computing time with multithreading 426
TECHNIQUE 97 Increasing performance with

multithreading 427
TECHNIQUE 98 Using ParallelFX 435

16.3 Optimize your web.config 438
TECHNIQUE 99 Tips for your web.config 438

16.4 Summary 439

CONTENTSxiv

appendix A ASP.NET and IIS 7.x 441
TECHNIQUE 100 Modifying IIS behavior with managed

modules 443
TECHNIQUE 101 Configuring application warm-up in IIS 7.5 445

appendix B Data access fundamentals 448
TECHNIQUE 102 UsiQuerying the database using ADO.NET 449
TECHNIQUE 103 Using stored procedures to query the

database 452
TECHNIQUE 104 Persisting data into the database 453
TECHNIQUE 105 Writing XML 456
TECHNIQUE 106 Generating XML from a data source 458
TECHNIQUE 107 Reading XML 459

index 463

preface
This has been a very long journey. We found that writing this book was a challenging
task, a much harder one than we had anticipated, but there were also moments of joy
and discovery along the way! The idea for the book first came to us 18 months ago,
and many days and nights have come and gone between the first sentence we wrote
and the final book you hold today.

 This is not our first book—it is the ninth book for Daniele, the seventh for Stefano,
and the fourth for Marco—but it is the most complex one we’ve attempted because of
the Techniques format we implement in the book. In addition, we were coauthoring
another book for Manning Publications, Entity Framework 4 in Action, at roughly the
same time.

 Our aim in writing this book was not to create a typical reference book: there are
plenty of those around. We felt that because ASP.NET has now reached a high level of
maturity, the time was ripe for a book of best practices, and that is what we set out to
do. Instead of focusing on how a class is implemented or what members offer, this
book shows you how to get tasks done, the right way.

 If your days (and nights) are spent on implementing web applications, you know
that the best way to learn is from experience. This book contains all the tips we have
learned in more than 10 years of working with ASP.NET. Everything in this book comes
from our own day-by-day experience working as consultants as well from ASP.NET com-
munity members. We learned a lot from other people’s problems, and we are happy to
now share the solutions and best practices with you.
xv

PREFACExvi

 In this book you will find everything you need to build your web applications using
a Problem/Solution/Discussion approach. Each scenario is motivated, then resolved,
and finally discussed and explained.

 This is a book that we felt was missing from the market. We hope we have filled
that need successfully and we invite you to send us your feedback and let us know if we
have been successful in attaining our goal.

 We hope that our efforts will help you in your daily work. Enjoy the read, get your
hands dirty, and have some fun!

acknowledgments
We can’t mention by name all the individuals who made contributions to this book,
adding to its value in ways both large and small. All of them deserve our sincere
thanks, but here we will mention only a few whose help was invaluable to us during
the writing process.

 Cynthia Kane—Cynthia is our development editor at Manning. She was there for
us from the the beginning, providing support and guidance, and has proved a master
at transforming a bunch of words and images into an appealing book. Thank you.

 Scott Guthrie—Scott, also known as ScottGu, is the man behind a number of prod-
ucts in the Microsoft Developer Division, including ASP.NET. Scott was always willing to
let us solve some of the problems that we encountered with a beta. Thank you.

 The Developer Division at Microsoft—thanks to everyone for their help and for
building such a great product.

 All the folks at ASPItalia.com, our “mother ship”—if we managed to collect enough
scenarios for your problem-solving enjoyment, part of the credit has to go to the mem-
bers of our community.

 Many individuals at Manning worked hard on this book to bring it to our readers.
A big thank-you to Michael Stephens and Marjan Bace for believing in us, and to the
production team of Mary Piergies, Joan Celmer, Susan Harkins, Gordan Salinovic, and
Janet Vail for their efforts.

 Our peer reviewers deserve special mention. Their suggestions and feedback were
invaluable and made this a much better book. We thank Alex Thissen, Dave Corun,
Anil Radhakrishna, Philippe Vialatte, Nikander Bruggeman, Margriet Bruggeman,
xvii

ACKNOWLEDGMENTSxviii

Jason Jung, David Barkol, Perga Massimo, Braj Panda, Alessandro Gallo, Gary Bushey,
Eric Swanson, Amos Bannister, and Andrew Siemer. We would also like to thank the
technical proofreader, Matteo Casati, for his outstanding job of reviewing the final
manuscript during production.

 Last but not least, thank you, dear reader, for your trust in this book. Our hope is that
it will help you in your day-to-day work and make you more productive with ASP.NET!

 In addition to the people mentioned above, there are others who are important in
Daniele’s, Stefano’s, and Marco’s private lives. Even if they didn’t directly work on the
book, they contributed in other important ways to keep the authors on track.

Daniele would like to thank his wife Noemi for her support and patience and for giving
him his beautiful sons, Alessio and Matteo. A big thank-you to my parents for letting
me play with computers when I was a kid, and to my family in general for supporting
me. A special thank-you to my coauthors for helping me on this journey: you guys rock!
And thanks to Alessio, Marco, Cristian, Matteo, and Riccardo at ASPItalia.com for all
their help and support.

Stefano wants to thank his wife Sara for being supportive and extremely patient, and
his family (yes, the book is finally finished!). Special thanks to my closest friends (in
alphabetical order), Federico, Gabriele, Gianni, and Riccardo. Of course, I can’t help
mentioning Filippo, who already bought a copy of the book. Finally, a big thank-you to
William and Annalisa for their friendship and their support. My last words are for
Marco and Daniele: thanks guys!

Marco thanks Stefano and Daniele because it’s always a privilege when you have the
chance to work with such smart and funny guys. I would also like to thank the whole
ASPItalia.com team: I’m so proud to be a part of it. Special thanks to my family, and to
Barbara, for their support and for the patience they’ve shown me. You have all my love.

about this book
ASP.NET is a Microsoft technology for building web applications that leverages all the
fantastic technologies you can find in .NET Framework.

 The book will move you from apprentice to master of ASP.NET by giving you spe-
cific techniques to solve problems you are likely to encounter. Each technique has a
problem, solution, and discussion section. You might think of this book as a guided
tour through ASP.NET best practices; we’ll introduce each scenario, solve the problem,
and then discuss the results. Once you’ve read this book, you’ll have a better under-
standing of the most important aspects of designing, building, and maintaining
ASP.NET-based applications.

 You’re going to find many devices in this book that will help you in the learning
process:

■ Figures—Pictures that show a workflow or summarize concepts
■ Listings and snippets—Pieces of code that show the solution to a problem
■ Tables—Visuals that summarize a list of features or options

We hope these devices will help make concepts clearer and the learning process faster.

Who should read this book?
This book targets developers who are working on everything from the smallest home
application to the largest enterprise application. ASP.NET can be useful in simple sce-
narios, where you can apply most of the RAD features provided by Visual Studio 2010,
xix

ABOUT THIS BOOKxx

as well as in enterprise applications, where its roots in .NET Framework offer a wider
range of possibilities.

Roadmap
This book is designed for you to improve your ASP.NET expertise and is organized into
sixteen chapters divided into five parts and two appendixes.

Part 1: ASP.NET fundamentals

In part 1, we introduce ASP.NET fundamentals. For those of you who are already some-
what familiar with ASP.NET, this part serves as a refresher before moving forward.

 Chapter 1 provides an introduction to ASP.NET, with a focus on the Web Form’s
model.

 Chapters 2 and 3 cover data access strategies in web applications. You’ll learn the
best practices for data access and how to leverage them in your application.

Part 2: ASP.NET Web Forms

Part 2 covers how to use ASP.NET Web Forms, the original model provided in ASP.NET
to build the user interface.

 Chapter 4 takes a tour into ASP.NET Web Forms, covering the most common sce-
narios. You’ll also learn about the new features offered by version 4.0, how to use mas-
ter pages to their fullest extent, and how to leverage URL routing.

 Chapter 5 deals with one of the most common activities for a developer: using data
binding and how to fully integrate this feature into your applications.

 Chapter 6 covers an important extensibility point in ASP.NET Web Forms and shows
how to build custom controls. You’ll start with the basics and analyze complex scenarios.

 Finally, chapter 7 explains how to control the markup generated by ASP.NET. You’ll
learn how to produce better markup and how adaptive rendering works.

Part 3: ASP.NET MVC

In part 3, we investigate the option to build your UI with ASP.NET MVC; after all, Web
Forms aren’t the only model you can use to do that.

ASP.NET MVC is a new option added in ASP.NET 3.5 SP1 and directly integrated
into ASP.NET 4.0 as ASP.NET MVC 2.0. It’s not the new Web Forms, but rather a dif-
ferent approach to solve the same problem. ASP.NET MVC lets you use the Model-
View-Controller (MVC) pattern, and is built with testability and great markup con-
trol in mind.

 Chapter 8 contains an introduction to ASP.NET MVC and shows the potential that
this new toolkit offers when you’re building the UI. You’ll learn how to perform the
basic actions that you’re already acquainted with in ASP.NET Web Forms.

 Chapter 9 covers how to customize and extend ASP.NET MVC in order to unlock
the full potential that it offers.

ABOUT THIS BOOK xxi

Part 4: Security

In part 4, we take a look at one of the most important concerns of every web applica-
tion: how to protect and make your code secure.

 In chapter 10, we analyze the most common issues when dealing with security.
You’ll learn how to build stronger applications, how to avoid common errors, and how
to preserve your application’s integrity. You’ll find plenty of helpful suggestions
throughout the chapter.

 Chapter 11 covers authentication and authorization in ASP.NET. It will show you
how to build a secure area, how to leverage ASP.NET’s infrastructure, and how to build
a custom provider to extend the existing features provided by ASP.NET’s Membership
and Roles APIs.

Part 5: Advanced topics

Finally, part 5 is dedicated to more advanced scenarios and combines many of the top-
ics previously addressed in this book. These chapters cover both ASP.NET Web Forms
and MVC.

 Chapter 12 covers how to integrate an ASP.NET application into an Ajax-enabled
application and RIAs (Rich Internet Applications). We’ll also take a look at how to
leverage jQuery and ASP.NET Ajax.

 In chapter 13, you’ll learn how to handle state in ASP.NET—from cookies, to
ViewState, to new features introduced in version 4, like the ability to compress the
SessionState.

 Chapter 14 is dedicated to caching. You’ll find plenty of tips on how to achieve bet-
ter scalability by implementing a good caching strategy. You’ll also learn how to build
custom cache providers and how Microsoft AppFabric caching works.

 Chapter 15 contains miscellaneous topics related to fully extending ASP.NET, from
HttpRuntime, to logging, to building a virtual path provider.

 Last, chapter 16 offers some tips on how to build applications that perform better,
with topics like content minifying, multithreading, and ParallelFX.

Code conventions and downloads
All the code used in this book is in a monospace font like this. The .NET code is in
both C# and Visual Basic so that you’re comfortable with the code, regardless of the
language you are using. The language is indicated immediately above the relevant
code. For longer lines of code, a wrapping character might be used so the code is
technically correct while conforming to the limitations of a printed page. Code anno-
tations accompany many of the listings, highlighting important concepts. In some
cases, numbered bullets link to explanations that follow the listing.

 Source code for all working examples in this book is available for download from
the publisher’s website at www.manning.com/ASP.NET4.0inPractice.

www.manning.com/ASP.NET4.0inPractice

ABOUT THIS BOOKxxii

Author Online
The purchase of ASP.NET 4.0 in Practice includes free access to a private forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and other users. You can access and sub-
scribe to the forum at www.manning.com/ASP.NET4.0inPractice. This page provides
information on how to get on the forum after you’re registered, what kind of help is
available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

 In addition to the Author Online forum available on Manning’s website, you can
also contact us regarding this book, or anything else, through one of the following
avenues:

■ Book website—http://www.aspnetinpractice.com/
■ Daniele’s blog—http://blogs.5dlabs.it/daniele/
■ Stefano’s blog—http://blogs.5dlabs.it/stefano/
■ Marco’s blog—http://blogs.5dlabs.it/marcodes/

All comments sent to these blogs are moderated. We post nearly all comments; but if
you include your email address or phone number, we won’t post the comment out of
respect for your privacy.

http://www.aspnetinpractice.com/
http://blogs.5dlabs.it/daniele/
http://blogs.5dlabs.it/stefano/
http://blogs.5dlabs.it/marcodes/
www.manning.com/ASP.NET4.0inPractice

about the authors
DANIELE BOCHICCHIO is the cofounder of 5DLabs.it, a consulting agency specializing in
ASP.NET, Silverlight, Windows Phone 7, and .NET Framework. He has worked on a lot
of cool projects with many different technologies. Daniele is a well-known speaker and
author, and you can find him at the main developer-focused events worldwide. He has
also written several books, in both Italian and English. He’s the coauthor of Manning’s
Entity Framework 4 in Action. Daniele is the network manager of ASPItalia.com, the larg-
est Italian .NET Framework community. He currently lives in southern Italy with his
family. You can reach him via his personal website at www.bochicchio.com/. Daniele
shares his thoughts in 140 characters or less at http://twitter.com/dbochicchio/.

STEFANO MOSTARDA is a Microsoft MVP in the Data Platform category. He’s a software
architect focused on web applications and the cofounder of 5DLabs.it, a consulting
agency specialized in ASP.NET, Silverlight, Windows Phone 7, and .NET Framework.
Stefano is a professional speaker at many important Italian conferences and a well-
known author. He has written many books for the Italian market and is the lead
author of Manning’s Entity Framework 4 in Action. He’s also one of the leaders of the
ASPItalia.com Network and a content manager of the LINQItalia.com website dedi-
cated to LINQ and Entity Framework. In addition to visiting his blog, you can read his
technical deliriums at http://twitter.com/sm15455/.

MARCO DE SANCTIS is a Microsoft MVP who has been designing and developing enter-
prise applications in distributed scenarios for the last seven years. He started develop-
ing with ASP.NET when it was first released; since then, he’s improved his skills to
xxiii

http://twitter.com/dbochicchio/
www.bochicchio.com/
http://twitter.com/sm15455/

ABOUT THE AUTHORSxxiv

become an application architect. Over the years, he has specialized in building distrib-
uted services and has widened his knowledge to encompass technologies like Work-
flow Foundation, Windows Communication Foundation, LINQ, and ADO.NET Entity
Framework. Today Marco is one of the members of 5DLabs.it and works as a senior
software engineer for one of the biggest Italian companies in the IT market. In his
spare time, he’s a content manager at ASPItalia.com. He shares his tweets at http://
twitter.com/crad77.

http://twitter.com/crad77
http://twitter.com/crad77

about the cover illustration
The figure on the cover of ASP.NET 4.0 in Practice is captioned “Young woman from
Montenegro.” The illustration is taken from a collection of hand-colored drawings of
Dalmatian regional dress costumes from the nineteenth century titled Dalmacja. The
historical region of Dalmatia was much larger than it is today, stretching from the
Istrian Peninsula to Albania along the Adriatic coast. Today, the region is divided
between Croatia and Montenergo, the latter administering a small southernmost sec-
tion. The long, rugged Dalmatian coast, backed by high mountains with hundreds of
offshore islands, is fast becoming one of Europe’s most popular vacation spots.

 The young woman on the cover is wearing a costume typical for the villages and
small towns found in this region. Rich embroidery, handmade linens, and colorful
woolen scarves and skirts are the traditional elements of a Dalmatian costume, with
small, not easily discernible decorative details indicating the locality of origin.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xxv

Part 1

ASP.NET Fundamentals

Welcome to ASP.NET 4.0 In Practice, dear reader!
ASP.NET was first introduced in the early 2000s as an effort from Microsoft to

bring the easy development typical of Windows applications to the web. From
this first attempt, the web has changed a lot and so has ASP.NET. Now ASP.NET is
a mature framework that lets you create powerful applications.

 This book is divided into four parts. Part 1 is going to give you a jump start
into the fundamentals of ASP.NET. If you’re an average developer who wants to
put things in context, consider this part a quick refresher course. If you’re new
to ASP.NET, you’ll get all the basics you need.

 Chapter 1 is a general introduction to ASP.NET, specifically to the Web Form’s
model.

 Chapters 2 and 3 cover data access strategies in web applications. You’ll learn
best practices for data access and how to leverage them in your applications.

Getting acquainted
 with ASP.NET 4.0
ASP.NET is used to build web applications, and it’s the preferred choice when using
Microsoft technologies. It was built by Microsoft in the early 2000s as part of the
.NET Framework initiative, which offered a unified environment in which to build
and run applications for Windows developers. If you think of .NET Framework as a
house, then ASP.NET is the rooms.

 As ASP.NET approaches its fifth version (counting minor and major releases),
the community of developers around ASP.NET is much more mature than it was ten
years ago. In the beginning, ASP.NET developers came from backgrounds in Active
Server Pages (ASP) or Visual Basic (VB) 6, so topics like design, architecture, and
patterns were often ignored. But this isn’t the case today. We’ve found ways to build
better web applications and how to overcome challenges we face daily when we’re
working in ASP.NET. This book will explore how to solve common problems in

This chapter covers
■ An introduction to ASP.NET
■ Understanding ASP.NET Web Forms
■ What’s new in ASP.NET 4.0
3

ASP.NET, but before we get to the prize, everyone needs to be on the same footing.

4 CHAPTER 1 Getting acquainted with ASP.NET 4.0

 You picked up this book because you want to get to know ASP.NET, specifically
ASP.NET 4.0. Well, ASP.NET 4.0 isn’t a revolutionary release, but an evolutionary one.
In this book, we’ll focus on the new features you’ll find in version 4.0, but we’ll also
cover material from the previous releases that’s still used in the 4.0 version. In the
beginning of this book, you’ll see content that’s valuable in ASP.NET 3.5 or 2.0, but as
we move further along, version 4.0 will be the main focus.

 In this chapter, we’ll introduce you to what ASP.NET is, how it works, and how to
get started. We’ll look at the typical architecture of an ASP.NET application and then
move into the new features you’ll find in the 4.0 release. When that’s all said and
done, we’ll introduce a problem-solution-discussion scenario that should make the
technology your friend rather than just an acquaintance.

1.1 Meet ASP.NET
You use ASP.NET to build web applications. Because it’s part of .NET Framework, you’ll
use the same tools and similar code as when you write Windows desktop applications
or service-oriented ones. Isn’t that great? So what’s new about ASP.NET 4.0 that you
can’t get in previous versions? Before we get into the specifics, let’s install ASP.NET and
then take a quick look at ASP.NET fundamentals.

1.1.1 Installing ASP.NET

ASP.NET 4.0 can run on top of Internet Information Services (IIS) 6.0 (Windows
Server 2003), IIS 7.0 (Windows Server 2008 and Windows Vista), or IIS 7.5 (Windows
Server 2008 R2 and Windows 7). ASP.NET uses Visual Studio as the integrated develop-
ment environment (IDE) that it uses to create applications. To start building applica-
tions based on ASP.NET, you first need to install its runtime and a developer tool:

1 If you have Visual Studio 2010, install it on your machine. If you need the free
version of Visual Studio, you can download Visual Web Developer Express at
http://www.asp.net/.

2 If you want to test your applications on a server, download and install the soft-
ware development kit (SDK) from http://www.asp.net/.

3 Optionally, download and install SQL Server 2008 Express (or a Developer Edi-
tion, if you prefer). SQL Server is useful if you want to use a database engine for
development purposes.

More information on these downloads is available at http://www.asp.net/.

Visual Web Developer Express and Visual Studio Express
Visual Web Developer Express is a subset of Visual Studio, the IDE used to build
ASP.NET applications. It’s free, even for commercial use, but it’s limited in function-
ality. If you’re a professional developer, you’ll want to buy a license for Visual Studio.
Discussing Visual Studio isn’t within the scope of this book, so we encourage you to
take a look at http://msdn.microsoft.com/vstudio/.

http://msdn.microsoft.com/en-us/library/aa310913(VERSUS71).aspx
http://msdn.microsoft.com/en-us/library/aa310913(VERSUS71).aspx
http://msdn.microsoft.com/en-us/library/aa310913(VERSUS71).aspx
http://www.asp.net/
http://www.asp.net/
http://www.asp.net/
http://msdn.microsoft.com/vstudio/

5Meet ASP.NET

In reality, you need only the .NET Framework SDK and a text editor to build ASP.NET
applications. But if you want professional results, Visual Studio is the preferred choice
for professional software development because it offers a lot of built-in features.

 This book doesn’t cover much about Visual Studio, but rather focuses on the nuts
and bolts of using it to build applications in ASP.NET. We assume that you already have
an understanding of Visual Studio and ASP.NET. If you don’t, take some time to get
familiar with them.

1.1.2 How ASP.NET works

ASP.NET is part of .NET Framework, so it takes full advantage of the object-oriented pro-
gramming (OOP) capabilities offered by the framework itself. OOP lets you think in
terms of objects and program their interactions. Because we as humans think in terms
of objects in real life, OOP is one of the easiest programming paradigms to understand.
When you create a web page using ASP.NET, you’re creating an object with behaviors
(the page’s events), commands (methods), and state (objects instantiated).

 The original and most common approach used to develop with ASP.NET uses
Web Forms, which is similar to what VB gave Windows developers years ago. Every
single object on a page is programmable and has events. Figure 1.1 shows the Web
Form model.

 Let’s imagine a common item that occurs on a page: a button that can handle the
user’s click and provide feedback. Using the ASP.NET Web Form model, all you need
to do is add a Button object and intercept the Click event. This approach is about as
clear as it gets. You place objects on a design surface and program them, using a
method that’s similar to classic desktop application development.

 Unfortunately, things tend to be a little bit complicated in real-world applications,
so some specific scenarios might force you to take more control of the output. In such
cases, using this approach to define the page might result in low flexibility. That’s why,
starting with version 4.0, you can choose a new alternative to define your pages, using
ASP.NET MVC.

 We’ll go into Web Forms in more detail in chapters 6 through 9, and we’ll explain
ASP.NET MVC in chapters 10 and 11. Although most of the concepts we’ll talk about
from this point on are necessary to leverage the ASP.NET Web Form model, you might
also find them useful when you’re using ASP.NET MVC. Okay, now you’ve seen how
ASP.NET works, let’s try it out.

Submit
IIS ASP.NET

Initial request

Initial response

Figure 1.1 The Web Form model. Every interaction on the form causes a new

request to go from the web browser to the server.

6 CHAPTER 1 Getting acquainted with ASP.NET 4.0

1.1.3 Getting started

To start experiencing ASP.NET, all you have to do is open Visual Studio and create a
new web project. In this first part, we’re going to use Web Forms as our model.

 Web Form really means “web page”; the term itself is a marketing name. The rea-
son behind this name is that ASP.NET can have only one Web Form at a time on a sin-
gle page. ASP.NET pages contain server controls, namely objects. A server control is a
server-side programmable piece of a page. You typically add server controls in the
markup part of the page, but you can add them via code too. A server control is a spe-
cific tag in the markup.

 A Web Form is usually composed of two files, one with markup and one with code.
The code file is commonly referred to as code behind or code beside, depending on your
project type.

 To run an ASP.NET application, you need a web browser for rendering (all you’re
doing is generating HTML) and a web server to run it. Figure 1.2 shows the typical flow
associated with getting a request and producing a response.

ASP.NET MVC versus Web Forms
There’s a lot of debate in the ASP.NET community regarding MVC versus Web Forms.
Each has different ambitions and serves different kinds of applications, so there’s
not a good choice and a bad choice. ASP.NET MVC implements the Model-View-
Controller (MVC) pattern and was built to support testability. It gives you markup con-
trol, whereas Web Forms can increase your productivity. Keep both of them in mind
and you’ll be set.

MVC gives you flexibility, but you need to implement a lot of things that Web Forms
give you out of the box. The rule here is not new: choose with your mind, not your heart!

.aspx page

.cs/.vb file

Instance

Parsing

User
browser

Compilation

Rendering

First request

Other requests

Figure 1.2 ASP.NET page compilation is performed on demand. The files are
monitored for changes, and if modifications are made, the current compiled

version is discarded.

http://www.ieaddons.com/
http://www.ieaddons.com/

7Typical architecture in ASP.NET applications

NOTE Code behind is used when your project type is Web Project, and code
beside (often referred to code file) is used for Web Site. The difference is in
how ASP.NET and versus handle compilation and how you deploy the applica-
tion. Web Site is commonly used for simple projects, whereas Web Project is
more useful in complex ones.

It’s possible to have both markup and code in the same page. A third option,
called code inline, mixes markup and code in the same file. Even then, it’s dif-
ficult to end up with spaghetti code because the blocks are separated.

ASP.NET provides a transparent mechanism to handle page compilation. The first time a
user requests a page, if it’s not yet compiled, both the page and its code are grouped
and compiled to disk. What happens next is similar to what happens for other
requests: the page is instantiated, rendered, and served in the browser as HTML. This
process is completely transparent to the developer. ASP.NET continuously watches the
file and, in case of modifications, automatically discards the old version. The new ver-
sion is compiled instead, using the previously exposed flow.

 Now you know what ASP.NET is in general, how to start it, and how it works. Now
it’s time to look at the typical architecture.

1.2 Typical architecture in ASP.NET applications
Inexperienced developers often think of a web site as a collage of code, so cut-and-
paste is used as a pattern wherever possible. Using this method generates a lot of
duplicate code, as well as inconsistency throughout the web site. Eventually, you might
reach the point where maintenance is a nightmare because if you need to modify a
functionality that’s replicated in several places, you’ll probably need to repeat the
same work in different areas. This problem is particularly severe when the modifica-
tion relates to a security bug. When that happens, the iteration necessary to accom-
plish a basic task will become extremely time consuming. Fortunately, you can avoid
such complications by making use of ASP.NET’s OOP support.

1.2.1 ASP.NET meets OOP

Having OOP support helps you build reusable components and avoid code redun-
dancy. Architecture is important in your application and you should ensure that you
provide a good one. To start using ASP.NET, you need to shape the big picture and
understand how ASP.NET uses OOP concepts and architectural patterns in practice.

ASP.NET is organized into small components called pages. A page is typically the
visual entry point for a given functionality, which is often an action.

THREE-LAYER ARCHITECTURE

Let’s imagine that we want to build an application to manage a book library. One
action associated with this application is “list the books”, another is “give me details
about a particular book”, and so on. To display the results for these actions, we need a
specific web page that extracts data from our storage system. The storage system is

probably a database synchronized with our backend.

8 CHAPTER 1 Getting acquainted with ASP.NET 4.0

 In this typical scenario, we need to design our application in layers so that we can
better separate one from the others.

 Let’s try to write a simple list of components involved in creating the solution:

■ A class to handle data retrieval
■ A class to contain data in an object-oriented fashion
■ A web page to display the objects loaded with data from the database

This list results in an architecture model called three-layer, where each layer is sepa-
rated from the other, as show in figure 1.3.

The first layer is called the Data Access Layer, and the second layer is the Business
Logic Layer. From our point of view, it’s the last layer, the Presentation layer, that’s the
most interesting of the three. The other two layers remain the same, even if we decide

Architectural considerations
Although it seems to be ubiquitous, three-layer architecture isn’t the only available
option, but it’s certainly the most diffuse and well known. You can find more patterns
at http://martinfowler.com/eaaCatalog/.

For example, to simplify data access, the Repository pattern is currently in vogue. It
adds more abstraction and helps in using Object-Relational Mapping (ORM) (we’ll talk
about ORM in the next chapter). You can find more information about this pattern at
http://martinfowler.com/eaaCatalog/repository.html.

Users

UI process components

Service interfaces

Biz.workflows componentsBiz. entities

Service agents

Security

Communication

SvcDB

Data Access Logic
components

UI components

Figure 1.3 Typical schema for a three-layered application. Each component is separated from those
above it, and each has no understanding of the inner capabilities of the others. Isolation provides the

ability to change a layer implementation without affecting the other layers.

http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/repository.html

9Typical architecture in ASP.NET applications

to build our application with a different user interface (UI), like a Windows Forms
application. Before we get to the Presentation Layer though, we need to talk a bit
about the first two layers.

DATA ACCESS AND BUSINESS LOGIC LAYERS

The Data Access Layer is responsible for data strategies. The Business Logic Layer, as its
name suggests, contains the rules to be enforced with respect to the application busi-
ness needs. This architecture isn’t mandatory, but it’s the most common one. Simpli-
fications of this architecture exist in which a two-layer version is preferred, and more
complex ones use an n-layer version. Keep in mind that you need different
solutions to different problems, so the three-layer approach might not always work
for you.

 In a typical multilayer application, you need to exchange objects between different
layers, so using objects that can contain data and be layer neutral is the best way to go.
If you decide to go with a pure .NET Framework 4.0 solution, the best choice is the
Entity Framework, which we’ll discuss in detail in the following chapters.

 At this point, we need to emphasize that you need to use different classes to handle
different scenarios, and an object model to contain and present data in your application.

1.2.2 ASP.NET components

Let’s go back to our library web page and assume that the rest of the code is already in
place. When someone requests this page using a web browser, some magic happens
under the hood; let’s talk about that magic in detail.

ASP.NET is based on a class named HttpRuntime, which handles all the actions
required to make the ASP.NET runtime communicate with the web server. HttpRun-
time works with another important class, HttpApplication, which is responsible for
processing the current request. This class is instantiated the first time you request a
page and handles many future requests. You can have multiple instances of Http-
Application, but it can process only one request at a time. You can use this instance
to store per-request data.

HttpApplication maximum number of instances
As of version 2.0, HttpApplication is automatically configured. You can change its
default values by modifying machine.config in the .NET Framework Config directory.

Pool size indicates the maximum number of instances of HttpApplication for a giv-
en web application. The default value is 100 maximum instances per central process-
ing unit (CPU). This doesn’t mean that you’ll have 100 instances available, but that
ASP.NET regulates those instances using current demand from IIS. In many scenari-
os, you won’t even get near this limit. HttpApplication instances are recycled and
reused across different requests because it’s difficult to have a lot of concurrent re-
quests in common web applications.

10 CHAPTER 1 Getting acquainted with ASP.NET 4.0

This model gives you maximum flexibility; you could, in fact, intercept one of the
events provided by this class and modify ASP.NET behavior at a particular point in the
whole pipeline.

 In addition to HttpRuntime and HttpApplication, there are a few other contribu-
tors to the magic. Let’s look at those now.

HTTPHANDLERS

When a request hits HttpApplication, a couple of events are generated and con-
sumed by the pipeline. One of these events is BeginRequest, which is used to handle
the beginning of the request. This event is fired for every kind of resource that
ASP.NET owns.

 These events are useful when you need to extend ASP.NET features, for example,
when you want to provide a different mechanism for authentication or to display
errors. We’re going to explain these scenarios in the next few chapters; for now,
remember that ASP.NET is built for extensibility and that you can control most of its
inner aspects.

 When you request a resource, you typically want a web page with a fixed extension,
commonly .aspx. Extensions in ASP.NET are handled by HttpHandlers, a set of classes
that handle different kinds of request in different ways. If you’re scratching your
head, trying to understand this concept, imagine that HttpHandlers are the equiva-
lent of what happens in Windows when you double click a file and the corresponding
application opens.

HttpHandlers are in fact responsible for generating the output. You can map a
complex pattern like /content/*.aspx, as well as a simple one like .aspx.

THE WEB FORM

The default HttpHandler associated with a Web Form is System.Web.UI.Page-
HandlerFactory. This HttpHandler is a simple bridge between the page content and
the ASP.NET Page Parser, an interesting piece of ASP.NET architecture in itself.

 Page Parser is responsible for validating markup validation and converting code
into classes. ASP.NET is part of .NET Framework, which runs on top of the Common
Language Runtime (CLR). The CLR understands only objects, so some conversion has
to occur to transform a Web Form into an object.

“PAGE” IN ASP.NET ASP.NET MVC uses a different concept of page from what
you might be used to. You have a more restricted link to the actions per-
formed under the hood, and a page (meaning what you see when you’re
browsing a site) is in fact called a view. We’re going to discuss this topic in
more detail in chapter 7.

The conversion from markup to code is transparent to the developer. In fact, it’s
much easier to write markup code for the Presentation Layer than for C# or VB code,
so don’t worry about having to learn a lot of new techniques. Page Parser will do the
magic and convert the markup to code for you, as shown in figure 1.4.

11Typical architecture in ASP.NET applications

We’ve simplified the picture in figure 1.4 for brevity’s sake; in reality, between Http-
Application and the designated HttpHandler are special objects, called HttpModules.

HttpModules are responsible for the majority of the features in ASP.NET and pro-
vide great flexibility when you have to add functionalities to an application. They work
as filters for both the request and the response, and they register themselves for Http-
Application events. Using HttpModules, ASP.NET offers mechanisms like authentica-
tion, authorization, session state, cache, and many others. You can write your own
modules to modify the default behaviors and give yourself the flexibility you need.

1.2.3 Global.asax and web.config

If you’re familiar with Classic ASP, you might remember a file named global.asa.
ASP.NET has a similar file, named global.asax. This file functions similarly to an Http-
Module, the difference being that it doesn’t require registration. HttpModules are sep-
arate from the application, so you can reuse them in different projects; global.asax is
pure code that you add to a specific web application.

NOTE Global.asax and HttpModules are similar. The difference is that when
you use HttpModules with IIS 7.x and Integrated Pipeline mode, they’re called
for every kind of request, but global.asax events fire only for pure ASP.NET
requests.

Both HttpHandlers and HttpModules need to be registered to be used by your applica-
tions. ASP.NET provides a centralized mechanism for you to store configuration, based
on delegation. The central configuration, for all applications, is in a special file called
machine.config, in the .NET Framework Config directory (typically C:\Windows\
Microsoft.NET\Framework\v4.0.30319\Config). This file includes configuration shared
by every .NET Framework application, including ASP.NET applications.

 An ASP.NET application might contain a file called web.config in every directory of
the web site. When it’s placed in the root, web.config has the ability to overwrite some
special configuration options, such as HttpHandler and HttpModules, authentication,
SessionState, and so on. If you place web.config in subdirectories, you can overwrite
only selected features, like HttpHandlers and authorization.

 If you specify a value for a given property in web.config, this value will be used by
all the pages in that particular path. This feature helps delegation and enhances
customization.

Client

PageHandler
Factory

Page.aspx

Figure 1.4
The simplified route for
a page request. After the
client request, a special
HttpHandler called
PageHandlerFactory
gets the request and
dynamically executes
the given page.

12 CHAPTER 1 Getting acquainted with ASP.NET 4.0

 web.config is an XML file, composed of a special set of nodes. Don’t worry—you
don’t have to learn them. You can use Visual Studio’s Intellisense to explore different
options, or just explore Microsoft Developer Network (MSDN) documentation.

 The following snippet is an example of simple web.config content:

<configuration>
 <system.web>

 <pages enableViewState="false" />

 <customErrors mode="Off" />

 </system.web>
</configuration>

You access web.config nodes by using classes under the System.Configuration
namespace, located in an assembly with the same name.

 Now you know all the components of the ASP.NET pipeline architecture. Let’s put
it all together and see what it looks like.

1.2.4 The ASP.NET pipeline

Figure 1.5 shows the basic architecture of the ASP.NET pipeline, with the different
steps involved in sending a request and generating a response.

 The architecture shown in figure 1.5 is interesting because both HttpHandlers and
HttpModules can be developed to increase application flexibility. Given this architec-
ture, you can adapt ASP.NET to different scenarios.

 Now that you have a clear understanding of what happens under the hood, let’s
move on to cover the basics behind the single most used object in ASP.NET develop-
ment: the ASP.NET page, also known as a Web Form.

ASP.NET pipeline

ASP. NET HttpModules HttpHandler Page

BeginRequest()

GetHandler()

AuthenticateRequest()

AuthorizeRequest()

ProcessRequest()
Web Form

EndRequest()

HandlerFactory

execution

Figure 1.5 The ASP.NET pipeline for request and response (principal events
only). HttpModules and HttpHandlers are used by the developer to make

the pipeline extensible.

13Your first ASP.NET Web Form

1.3 Your first ASP.NET Web Form
In this section, you’ll discover the basics of how to build ASP.NET pages using a Web
Form. The Web Form is the preferred paradigm for implementing an ASP.NET web
page and is specially tailored for beginners. A Web Form is based on a simple concept:
It’s your design surface; all you need to do is insert your objects and program them.

 Sticking to this vision leads to productivity and ease of use, but some developers
who use other technologies look down on it. So, is it a good way to develop your view,
or a not-so-good way? The truth, as always, is somewhere in the middle. It’s a great
boost for productivity, but you have to use it with caution.

 At this point in the chapter, you’re ready to implement your first Web Form and
see how you can use ASP.NET to build rich pages. To that end, let’s start looking at
some common scenarios in building web applications, such as handling PostBack, val-
idating form input, and styling. These tasks are the most typical that you, as a devel-
oper, will perform in your day-to-day work. Mastering them will let you spend less time
on repetitive tasks, as you leverage the ASP.NET infrastructure.

 We’ve analyzed the pipeline; the next step is to understand how a single Web Form
works. Because Web Forms contain your UI logic, and you’ll spend most of your devel-
opment time working with them, understanding them is of utmost importance. The
first step toward that understanding is knowing about server controls.

1.3.1 Server controls

A single page is composed of different objects that are all called controls. They’re also
called server controls because these objects run server side.

 You’ve already met the ASP.NET Page Parser. The Page Parser transforms server
controls in C# or VB code for you.

 Let’s take a look at some simple ASP.NET Web Form markup:

<html>
...
 <form runat="server">
 <asp:button runat="server" Text="Click Me" ID="ClickButton" />
 </form>

</html>

You’ll notice a couple of XML/HTML tags with a strange attribute named runat. The
value for this attribute is always set to server. This setting is what makes the server
control usable in the server code.

FROM SERVER CONTROLS TO MARKUP Every server control is transformed to an
instance of an object, but normal markup is rendered using a special control,
the Literal. In some cases, such as in Ajax scenarios, an HTML tag is prefera-
ble. You’ll get true flexibility and have greater control over what you can do.

To programmatically access server controls, you can specify the optional ID attribute.

For example, you could use an ID value to access a button’s Text property for a Button.

14 CHAPTER 1 Getting acquainted with ASP.NET 4.0

If you’re absolutely sure that your ASP.NET page won’t perform any PostBacks and your
controls don’t need to be hosted by the Web Form, simply remove the <form /> tag.
This tag generates the infrastructure markup to enable PostBacks, but if your controls
don’t need it, then you don’t need to include it. Removing this tag also removes
ViewState rendering, so remember this tip to avoid generating markup code that no
one’s going to use.

 Two different kinds of server controls provide different functionalities: HTML con-
trols and web controls. Let’s look at each one.

HTML CONTROLS

If you add the runat attribute to an arbitrary HTML tag, then you’ve created an HTML
control. HTML controls are inside the namespace System.Web.UI.HtmlControls and
are used for compatibility reasons.

 The object model for an HTML control is similar to the corresponding HTML tag
object model. These controls aren’t special; you use them to avoid complexity and to
better adapt existing HTML markup to ASP.NET.

WEB CONTROLS

XML tags that use a prefix followed by semicolon and a suffix (for example, <asp:But-
ton . . . />) are called web controls and are grouped in the System.Web.UI.WebCon-
trols namespace. These controls produce HTML by generating the markup using a
set of conditions, such as browser type and version. Generating markup this way is
called adaptive rendering. We’ll talk about adaptive rendering in chapter 10.

 Now that you know how to interact with the page, let’s return to the Web Form.

1.3.2 Page events

The page itself has events. When you need to program an object, you’ll typically use
one of the Web Form events. To program an event, you’ll most likely use OnLoad. To
simplify this task, ASP.NET defines special event handlers, where the Page_ prefix is
used. These methods are effectively called automatically.

 To programmatically set the Text property of the Button we showed you in the
previous snippet, you would use one of the following code examples:

C#:
void Page_Load()
{
 ClickButton.Text = "Please click me!";
}

VB:
Sub Page_Load()
{
 ClickButton.Text = "Please click me!"
}

This snippet is quite simple and lets you appreciate the Web Form approach: You have

objects, you have events, and all you have to do is program them.

15Your first ASP.NET Web Form

 A Web Form has a lot of events, but you’ll probably stick to the ones listed in
table 1.1, presented in order of invocation.

Your last chance to modify page controls is the Page_PreRender event. After this
event, the Web Form content is rendered.

PAGE RENDERING

The ASP.NET Web Form is a special kind of control—the root one. Just like any other
control, its output is generated using the Render method. This method is shared by
every control and is called recursively, so every piece of content on the page is ren-
dered. You have time to program controls prior to using Render; after you use that
call, you can’t modify their state any more.

 The Web Form is based on this rendering mechanism. You need to keep this in
mind as you develop your web pages. If you’re new to this model, you’ll need a differ-
ent mindset to effectively organize your page using server controls. But don’t worry.
Most of the examples in this book will show you how to leverage this approach.

NOTE A Web Form is the right model to use for common web page tasks.
That said, keep in mind that it wasn’t designed with testability and complete
control over markup in mind, but for productivity. If you prefer to adopt a
different approach, ASP.NET MVC implements the Model-View-Controller pat-
tern in ASP.NET. We’re going to talk more about that in chapter 8.

1.3.3 Using server controls

We introduced server controls in section 1.3.1. Now we’re going to try to complicate
the previous scenario. When you need to include user interaction in a page, things
tend to be more complicated than in the example we presented in that section.

 The following snippet contains a more common use of server controls.

<html>
...
 <form runat="server">

Table 1.1 Main events exposed by the Page class through special event handlers

Event Description

Page_Init Called when the class associated with the page is loaded.
This event is used to initialize values, not to modify controls’
state (because the state isn’t loaded).

Page_Load Raised when the Page and its controls are ready to be used.
This event is often used to modify control properties.

Page_LoadComplete As the name suggests, this event occurs every time a
Page_Load event is completed.

Page_PreRender This event is the last event that you can use to modify the
Page state before ASP.NET renders the content.
 <asp:literal id="ResponseText" runat="server" />

16 CHAPTER 1 Getting acquainted with ASP.NET 4.0

 Enter your name:
 <asp:textbox runat="server" ID="Name" />

 <asp:button runat="server" Text="Click Me" ID="ClickButton"

OnClick="HandleSubmit" />
 </form>
...
</html>

In this snippet, we’ve added two new controls, a Literal and a TextBox. The Literal
doesn’t correspond to an HTML tag (it’s literal content), but the TextBox corresponds
to the tag <input type="text" />. Remember that this is true with the most common
scenarios, but adaptive rendering might produce different output.

 One other difference is the presence of a new Click event handler for our button.
This event handler will be invoked when the user submits the form; it’s also used to
add a code to handle the response.

POSTBACK AND VIEWSTATE

Our task for this example is to get the name in the form and display it on the page. Using
ASP.NET, this task is pretty easy, as you can see if you analyze the following snippet:

C#:
void HandleSubmit(object sender, EventArgs e)
{
 ResponseText.Text = "Your name is: " + Name.Text;
}

VB:
Sub HandleSubmit(sender as Object, e as EventArgs)
 ResponseText.Text = "Your name is: " & Name.Text
End Sub

This code will intercept the Click event for the Button and modify the Text property
on our Literal to show the corresponding value. The results are shown in figure 1.6.

ASP.NET handles the state for you, using a mechanism called ViewState. Both the page
and the controls are able to persist their
state during the iteration between client
and server (called PostBack). A PostBack
is a post of the form back to the server.

NOTE Complex pages might have a
very large ViewState associated with it.
A large ViewState can severely affect
performance and give the user the
impression that your application
is slow.

Starting with version 4.0, you can
tweak ViewState behavior. We’ll dis-

Figure 1.6 The code snippet results in a Web Form
that shows the TextBox and Literal control after
the button is clicked. The code used to render this
page takes advantages of OOP techniques to
cuss these new features in chapter 12. program objects during their lifecycle.

17What’s new in ASP.NET 4.0

To give you these functionalities at no cost, ASP.NET uses ViewState to preserve the
state of the controls and PostBack to leverage event-based development.

 ViewState, by default, is saved in a hidden field in the Web Form. This field is sent
back and forth between the client and server, so that ASP.NET can load the control
states prior to the last PostBack, apply the necessary modifications to the controls asso-
ciated with the code, and display the modification to the user.

 Now that you’ve got a taste for what ASP.NET is, let’s go back and look at the new
features that make ASP.NET 4.0 the wonderful thing that it is.

1.4 What’s new in ASP.NET 4.0
Let’s assume this is your first time with .NET Framework version 4.0. As in the previous
releases, .NET Framework 4.0 includes not only a new version of ASP.NET, but new
technologies inside the framework itself. Even though the framework includes these
technologies, you don’t always have to use them in your ASP.NET applications.

 Upgrading an existing application to this new version is painless. Version 4.0
includes all the features of the earlier versions. If you’re planning to migrate an appli-
cation from version 2.0 or 3.5, rest easy; you won’t need to modify your code.

 You can take full advantage of the new CLR, compilers, fixed bugs, and increased
performance with no effort at all beyond a simple conversion. Visual Studio 2010 can
handle projects for .NET Framework 2.0, 3.0, 3.5, and 4.0, but you can’t convert the
project file to a previous version. Upgrading your project is a one-way-only step.

 When you build your ASP.NET applications, an intermediate language (IL), is pro-
duced at compilation time. This code will run inside a virtual machine that’s created
by the CLR and benefits from .NET Framework services, such as memory management,
security, and garbage collection.

 As we’ve previously noted, the runtime contains all the technologies inside the
framework. You’ll get out-of-the-box support not only for ASP.NET, but also for Win-
dows Communication Foundation (WCF), which is the technology used to implement
service-oriented scenarios, the Entity Framework (an Object-Relational Mapping
[ORM] specifically built for .NET Framework), and so on.

1.4.1 .NET Framework 4.0

Using ASP.NET might help you leverage the other technologies inside the framework
because they share a common background. Sharing a similar environment is a key
aspect for you to consider when you’re choosing a framework. .NET Framework offers
consistency across the kinds of applications you might need to build, from web appli-
cations to services, from Windows applications to mobile ones.

 Different technologies use different classes for the UI, but both the framework and
the IDE remain the same, as shown in figure 1.7.

 .NET Framework and its Base Class Library (BCL) are wide in scope, so it’s virtually
impossible to master every single aspect of them. You’ll find that you learn what you
need to know as you work.

18 CHAPTER 1 Getting acquainted with ASP.NET 4.0

ASP.NET is a subset of the framework. As you’ll notice in figure 1.7, a lot of compo-
nents are shared by different kinds of applications. You can leverage Language Inte-
grated Query (LINQ) from both ASP.NET applications and Windows Presentation
Foundation (WPF) desktop applications. The underlying compilers, runtime, and
class library also share the components.

PROGRAMING LANGUAGES

An interesting aspect of .NET Framework 4.0 is that it includes new versions of pro-
gramming languages; you can choose between C# 4.0 and VB 10. In this book, you’ll
find examples in both languages.

 Both C# 4.0 and VB 10 are evolutions of preceding versions. VB 10 is more similar
to C# in terms of functionalities, whereas C# has support for something similar to VB
late binding, called dynamic types.

 .NET Framework 4.0 includes a Dynamic Language Runtime (DLR) that calls
dynamic languages (such as Ruby or IronPython) from managed code. C# 4.0 fully
supports executing code at runtime, just like dynamic code does. On the other hand,
VB has introduced support for multiline statements, as do languages like C# or Java,
without using a special character (like the underscore).

 No matter which language you program in, you’ll have access to all the features of
.NET Framework. You’ve decided on a specific style of programming; you haven’t jeop-
ardized performance.

 Now you know about .NET Framework. Let’s talk about all the new features that
ASP.NET 4.0 has in store for you.

1.4.2 A panoramic overview of ASP.NET 4.0 features

ASP.NET 4.0 has significantly changed the controls rendering behavior. All the
controls generate markup that’s compliant with XHTML 1.1. If you have some specific
client-side code that isn’t compliant with XHTML 1.1, you should check that every-
thing runs fine. Producing such markup isn’t the default behavior, which makes
migrations easier. (We’re going to discuss this topic in more depth in chapter 6.)

.NET FRAMEWORK 4.0

ASP.NET

Common Language Runtime (CLR)

Entity FX ADO.NET

WCF WPF LINQ

Workflow Parallel FX

Base Class Library (BCL)

Languages (C# 4.0 VB 10)

Class Libs
Figure 1.7
The main components
of .NET Framework 4.0.
Every piece is a sepa-
rate technology avail-
able in the framework.
You can combine any
of them or use them
separately.

19What’s new in ASP.NET 4.0

Controls impacted by this change are ListView, FormView, Login, CheckboxList, and
pretty much all the controls that previously generated HTML tables.

 Both Visual Studio 2010 and ASP.NET 4.0 Web Controls are now compliant with
Cascading Style Sheets (CSS) 2.1 specifications to ensure web standards compatibility.
Additional libraries used as CSS control adapters are no longer required.

WEB.CONFIG MINIFICATION

ASP.NET 4.0 has a new web.config setting that minifies its content. You can include just
the minimum required settings to load the application, using a specified .NET Frame-
work version.

 Speaking of new functionalities, ASP.NET 4.0 introduces a new set of features for
both ViewState and ClientID generation.

THE FLEXIBLE VIEWSTATE

You can now activate ViewState on a per-control basis. This feature gives you both flex-
ibility and some control over the ViewState size. In previous versions of ASP.NET, you
could specify this behavior only for parent controls. If you had a child control inside a
parent whose ViewState was off, the child controls inherited this behavior. In version 4.0,
you can tweak this property and disable ViewState for the parent and enable it for a par-
ticular child control. You can do the same thing to Page, too, because it’s a special con-
trol (the root one). You’ll learn more about this topic in chapter 11.

CONTROL CLIENTID GENERATION

When you set the ID property of a server control, ASP.NET generates a corresponding
ID attribute for the HTML tag at rendering time. This value is called ClientID and is
generated automatically by ASP.NET. Automatic generation ensures that the ID is
unique for each page. The problem is that automatic generation also results in a com-
plex ID when a control is inside other controls. It’s difficult to handle this kind of ID
with JavaScript because you need to access the control ClientID property every time.

 To mitigate this problem, ASP.NET 4.0 gives you the option to control ClientID
generation. We’re going to talk about this in detail in chapter 5, when we’ll discuss all
Web Forms 4.0 features.

DATA BINDING AND DYNAMIC DATA CONTROLS

In version 4.0, you also get better data binding support. Data binding is the action that
displays data from the data source on the page. It’s important to master because
ASP.NET pages are dynamically generated and they quite often display data from
a database.

 You’ll also find a new version of Dynamic Data controls, a technology introduced
with ASP.NET 3.5 Service Pack 1. Dynamic Data controls help you build a rich data
entry interface with less work. The new version has better template handling, more
features, and supports .NET RIA Services. It uses the Entity Framework and LINQ to
SQL to generate data models. A new search architecture that simplifies filtering and
searching is also available.

20 CHAPTER 1 Getting acquainted with ASP.NET 4.0

IIS 7.5 INTEGRATION

Improvements have been made to URL routing and session state, and there’s a new
warm-up feature. You can specify that an ASP.NET application needs a specific warm-
up through IIS 7.5, a feature introduced with Windows Server 2008 R2 and Windows 7
and detailed later in appendix A.

 Using a special class, you can add tasks to the warm-up event, such as informing a
load balancer that the current node is ready or performing data-intensive loads to be
used in the whole application. ASP.NET accepts HTTP requests for the application
after this method has completed.

ASP.NET AJAX 4.0

ASP.NET Ajax 4.0 has a new set of features and improves performance. Client-side tem-
plates enhance support for rich data-binding scenarios in Ajax applications, and the
new DataView control adds support for binding JavaScript objects.

 Last but not least, ASP.NET Ajax 4.0 gives you the ability to use only certain features
by selecting which JavaScript file you want to include. This feature can help to
increase performance because you can select which functionality you want to use and
let ASP.NET generate only the file you need.

 We’re going to discuss every one of these features, and more, in its own chapter. In
this section, we’ve just introduced you to the main features introduced in version 4.0.
But now we’re going to talk about Web Forms.

1.5 ASP.NET Web Forms in practice
This section uses the in-practice approach that we’ll use in the rest of the book. We’ll
analyze every aspect of a topic using a problem-solution-discussion style. The first topic
we’ll discuss in this way is how to handle PostBack in a Web Form. Because the founda-
tion of ASP.NET is the same for all versions, we’ve designed this scenario to help you
understand a common challenge that you can solve using any version of ASP.NET.

 Handling PostBack

HTML forms consist of a series of input tags used to capture values when they’re sub-
mitted. ASP.NET uses PostBack to implement a mechanism that lets the developer han-
dle this behavior easily. Mastering PostBack is important because the ASP.NET model is
based on this concept.

PROBLEM

As a user, you want to interact with the page in the easiest way possible. If you need to
correct a value, it’s easier to find it than to do some rewriting.

SOLUTION

The first time you request a page, ASP.NET renders its content and generates the cor-
rect markup. Let’s suppose we have a page with a Button; this Button will be the con-
trol that causes a PostBack when it’s clicked. A second request for the page is caused
by the PostBack and is executed differently by ASP.NET. Every control on the page has
its state restored; as the developer, you don’t need to explicitly set the properties for

TECHNIQUE 1
every control.

21TECHNIQUE 1 Handling PostBack

 Let’s imagine you have a basic form with two TextBox controls that capture first
name and last name and a DropDownList in which the user selects his country from a
limited set of values. The code for this form is shown in the following listing.

<html>
...
 <form runat="server">

 Your first name:
 <asp:textbox runat="server" ID="FirstName" />

 Your last name:
 <asp:textbox runat="server" ID="LastName" />

 Your country:
 <asp:DropDownList runat="server" id="Country">
 <asp:ListItem value="IT">Italy</asp:ListItem>
 <asp:ListItem value="UK">UK</asp:ListItem>
 <asp:ListItem value="USA">USA</asp:ListItem>
 </asp:DropDownList>

 <asp:button runat="server" Text="Next" ID="ClickButton"
OnClick="HandleSubmit" />

 </form>

</html>

Try to run this example and submit the
form. Even though you have no code
in place to handle the state logic, the
page will be posted back to server and
a response will be generated. You can
see the results in figure 1.8.

 What’s interesting about this exam-
ple is that we didn’t specifically handle
state maintenance across different
requests. Automatically handling state
is one of the services that a framework
such as ASP.NET offers to you at no cost.

 Now that you know the basics, let’s
improve the code.

Using container controls
You can use container controls to group controls together. Building on listing 1.1, let’s
add a simple container control and include the previous controls inside it, as shown in
the following listing.

Listing 1.1 Handling PostBack with the Web Form model

Figure 1.8 Web Form behavior resulting from the
code shown in listing 1.1. After PostBack, the input
boxes retain their values and new text that reflects
the input is added at the top of the form.

22 CHAPTER 1 Getting acquainted with ASP.NET 4.0

Markup:
<html>
...
 <form runat="server">
 <asp:Placeholder id="FormContainer" runat="server">
 Your first name:
 <asp:textbox runat="server" ID="FirstName" />

 </asp:Placeholder>
 <asp:Placeholder id="FormResponse" runat="server"
 Visible="false">
 <asp:Literal id="ResponseText" runat="server" />
 </asp:Placeholder>
 </form>
...
</html>

C#:
void HandleSubmit(Object sender, EventArgs e)
{
 FormContainer.Visible = false;
 FormResponse.Visible = true;
 ResponseText.Text = string.Format("Hello {0} {1} from {2}",
 FirstName.Text,
 LastName.Text,
 Country.SelectedItem.Text);
}

VB:
Sub HandleSubmit(sender as Object, e as EventArgs)
 FormContainer.Visible = False
 FormResponse.Visible = True
 ResponseText.Text = string.Format("Hello {0} {1} from {2}",
 FirstName.Text,
 LastName.Text,
 Country.SelectedItem.Text)
End Sub

We used two Placeholder controls to isolate data input and to show results. This sim-
ple control can include other controls, so it’s useful when you need to group controls.
For example, you could use the Visible property to tweak the visibility of some con-
trols. This property is fundamental; it instructs the Page Parser to not produce the
control content when it renders the Web Form.

NOTE If you need to determine at runtime whether a page is in PostBack
state or not, you can check the IsPostBack property of the Page class.
IsPostBack is a boolean property whose value is True if the page is in Post-
Back state. It’s often used to avoid loading data from a database after a Post-
Back, using the ViewState as storage.

Listing 1.2 A complete Web Form with markup and code

Form container
becomes invisible

Response
text

container
is shown

23TECHNIQUE 2 Form validation

The technique shown in listing 1.2 is the preferred way to make a Web Form. You can
have both data entry and response feedback in the same page, and show or hide blocks
based on the state. In this example, we applied one of the most common patterns in
ASP.NET applications. Both the first and the second requests are shown in figure 1.9.

DISCUSSION

PostBack is fundamental in ASP.NET applications based on Web Forms. Working with
PostBack helps you to understand the magic behind this model. Like it or not, Web
Forms boost productivity. If you’re an experienced web developer, PostBack might
seem restrictive. In reality, this model is flexible enough to let you add your own touch
and implement your needs.

 Now that you’re ready to use the Web Form paradigm, it’s time to move on and
gain more control over ASP.NET infrastructure by using form validation. Form valida-
tion is one of the best examples of how to increase productivity with little effort. In
common forms, you need some control over the user to ensure that she’s inserting the
right values into your form. That’s when the ASP.NET validation infrastructure comes
to the rescue.

 Form validation

By validating data on a form, you can guide your user to enter the correct values and,
at the same time, enforce your application needs. Validation is a useful tool, especially
when you use it at both client and server side.

 To fully appreciate the content of this section, you should be familiar with the con-
cepts presented in technique 1.

PROBLEM

Form validation is just another pain that web developers need to address. The average
user isn’t happy when he has to re-enter data into a form from scratch because he for-
got to include a seemingly trivial piece of data, like a ZIP code. When the user makes a
mistake and has to re-enter something, he expects to see the data he already entered
on the form. This expectation probably derives from the classic Windows application,
where, obviously, you have true state support.

Figure 1.9 The Web
Form we created in
listing 1.2, before
and after PostBack.
The first request
contains the controls
to add your input. The
second request hides
them and shows only
the resulting text.

TECHNIQUE 2

24 CHAPTER 1 Getting acquainted with ASP.NET 4.0

SOLUTION

A Web Form has state support across PostBack. Form validation is built on top of this
feature to simplify both client-side and server-side validation.

 Let’s imagine that we want to add a check to listing 1.2 that prevents one of the
fields from being blank. In ASP.NET, you use a special class of web controls, called vali-
dator controls to make this check.

 The validator controls are shown in table 1.2

Table 1.3 lists the properties that are shared by the ASP.NET validator controls that are
shown in table 1.2.

On the simplest forms, you’ll want to use RequiredFieldValidator because that’s the

Table 1.2 Validator controls offered by ASP.NET

Control Description

CompareValidator Compares the values of two controls (for example, a pass-
word to be repeated) or compares the value of a control to
a fixed value.

CustomValidator Lets you write your own server-side code, client-side code,
or both, to validate the corresponding control.

RangeValidator Checks that a value is within a given range.

RegularExpressionValidator Checks for a complex value against a regular expression
pattern.

RequiredFieldValidator Ensures that a field is not left blank.

ValidationSummary Provides a summary of validation results.

Table 1.3 Properties shared by ASP.NET validator controls

Property Description

ControlToValidate Contains the control ID that validation is performed against.

Display Used to control the behavior of the alert message that’s displayed when an
error occurs. The value of Display can be Dynamic or Static.

ErrorMessage This message is available if a ValidationSummary control is present
on the page.

SetFocusOnError A boolean value that gives focus to the corresponding validated control in
case of error.

Text The text to be displayed where the validator control is inserted.

ValidationGroup A string that groups together different validator controls and separates them
from another group (used in complex pages, with different logical forms).
kind of validation you need in a form. If you choose to use another control, keep in

25TECHNIQUE 2 Form validation

mind that they’re activated only if a value is present in the field that the validator is
associated with. Remember, you always need to include a RequiredFieldValidator if
you want to make sure an empty value won’t bypass your controls.

 Validator controls use adaptive rendering, so they’ll send client-side JavaScript code
to recognized browsers. You need to access the IsValid property of the Page class to
ensure that validation is also done server side, as shown in the following listing.

Markup:
...
Your first name:
<asp:textbox runat="server" ID="FirstName" />
<asp:RequiredFieldValidator runat="server" ID="FirstNameValidator"
 ControlToValidate="FirstName"
 ErrorMessage="First name is required"
 Text="*" />

...

<asp:ValidationSummary ID="MyValidationSummary" runat="server"
 HeaderText="You need to check:" />
...

C#:
void HandleSubmit(Object sender, EventArgs e)
{
 if (Page.IsValid)
 {

 }
}

VB:
Sub HandleSubmit(sender as Object, e as EventArgs)
 If Page.IsValid then#3

 End If
End Sub

ValidationSummary has a boolean property called ShowMessageBox that pops up an
alert message when the validation isn’t passed. If you set this property to true and
ShowSummary to false, you can display only this alert. Default values are respectively
false and true.

 Figure 1.10 shows you the results of the code in listing 1.3 if the user has omitted
the value for the field “Your first name” and PostBack has been invoked.

 Other controls in this group do about the same thing; the difference is only in the
property you will use. If you need more examples of validator controls, check out the
ones included in the MSDN documentation at http://msdn.microsoft.com/en-us/
library/aa310913(VS.71).aspx.

Listing 1.3 Validation controls at work

Control to
act against

Summary of
validation
errors

Collection
to bind to

Your code
logic here

http://msdn.microsoft.com/en-us/library/aa310913(VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa310913(VS.71).aspx

26 CHAPTER 1 Getting acquainted with ASP.NET 4.0

DISCUSSION

Input validation is a key factor in today applications. Both the client-side and server-
side validation offered by validator controls in Web Forms is a killer feature for web
applications, and you get it by default. It’s just one of the free services the ASP.NET
infrastructure lets you use to enhance your UI.

 Now that you’ve validated the form, the next step is to manipulate the page charac-
teristics, such as the header (title, meta, or keywords), style, and CSS.

 Page header, styling, and CSS

Programmatic access to the page header can help when you need to set some proper-
ties via code. A common problem when dealing with a dynamic page is that often the
page is composed of data coming from a database. In situations like this, you need to
set the page headers programmatically. By manipulating page headers you can
dynamically set the title, style sheets, or syndication feeds.

PROBLEM

You need to access the page headers from your code and programmatically set the val-
ues that correspond to the kind of header you’re manipulating.

SOLUTION

Starting with ASP.NET 2.0, you can manipulate page headers if you add a
runat="server" attribute to the <head /> tag. If you need to set the page title, the
Title property on the Page class lets you access Page.Header.Title and programmat-
ically set this information.

 Version 4.0 lets you set meta tags for search engines. You have to use the
Page.Keywords and Page.Description properties to set the meta keywords and
description respectively, as in the following listing.

C#:
Page.Title = "My Page title";
Page.Keywords = "list separated by commas";

Listing 1.4 Dynamically setting page headers

Figure 1.10 A Web Form
with validator controls. As
you can see, the validator
generates a warning (dis-
played in red, by default)
and blocks the form from
being submitted.

TECHNIQUE 3
Page.Description = "Page description, shown by search engines.";

27TECHNIQUE 3 Page header, styling, and CSS

VB:
Page.Title = "My Page title"
Page.Keywords = "list separated by commas"
Page.Description = "Page description, shown by search engines."

The strongly typed model provided by the Page class is powerful. You can manipulate
the corresponding headers using a simple approach, from anywhere in your page,
before the whole page is rendered. This code is especially helpful when you’re dealing
with dynamic content coming from a database.

Styling and CSS
All web controls use a common approach to styling because they all derive from the
WebControl class. You can modify some properties directly, using properties like Back-
Color, ForeColor, BorderColor, or Font. When you need to apply styles to controls,
it’s always better to rely on a CSS for formatting from a centralized point.

WebControl (and derived controls, like Label and TextBox) offers a CssClass prop-
erty, which is a string containing the CSS class that you’re going to use. If you’re using
CSS IDs as a way to add style to your markup, you need to take a look at the new features
for ClientID that are included in ASP.NET 4.0 (which we’ll discuss in chapter 5). In any
case, it’s better to use CSS classes than CSS IDs; if multiple pieces of markup are being
generated by iteration (such as data coming from a database into a page list), you’ll
probably end up with autogenerated IDs anyway.

 Unfortunately, ASP.NET doesn’t provide a mechanism to register an external CSS
directly. You can always create an instance of the HtmlLink class and add the new
control to the Controls collection of the Page.Header property, as shown in the fol-
lowing listing.

C#:
HtmlLink cssLink = new HtmlLink();
cssLink.Href = "/styles/styles.css";
cssLink.Attributes.Add("rel", "stylesheet");
cssLink.Attributes.Add("type", "text/css");
Page.Header.Controls.Add(cssLink);

VB:
Dim cssLink As New HtmlLink()
cssLink.Href = "/styles/styles.css"
cssLink.Attributes.Add("rel", "stylesheet")
cssLink.Attributes.Add("type", "text/css")
Page.Header.Controls.Add(cssLink)

As previously noted, this technique is useful when you don’t know the path to the CSS
file, and you have to determine it at runtime. An example is when you need to person-
alize a link based on user preference.

Registering RSS feeds
Remember that you can use the code shown in listing 1.5 to add other kinds of
HtmlLink controls, such as a reference to Internet Explorer (IE) Web Slice or an RSS

Listing 1.5 Registering a CSS
(Really Simple Syndication) feed.

28 CHAPTER 1 Getting acquainted with ASP.NET 4.0

RSS or Atom feeds are quite popular these days in web applications because they
let users subscribe to updates and receive them in their news aggregator. This process
is similar to what mail readers do. RSS differs from Atom in terms of format, but both
are XML based. You can dynamically register the path to RSS or Atom feeds by using
code similar to that shown in the following listing.

C#:
HtmlLink rssLink = new HtmlLink();
rssLink.Href = "/rss.aspx";
rssLink.Attributes.Add("rel", "alternate");
rssLink.Attributes.Add("type", "application/rss+xml");
Page.Header.Controls.Add(rssLink);

VB:
Dim cssLink As New HtmlLink()
rssLink.Href = "/rss.aspx"
rssLink.Attributes.Add("rel", "alternate")
rssLink.Attributes.Add("type", "application/rss+xml")
Page.Header.Controls.Add(rssLink)

If you’re using Web Slice, you need to set the rel attribute to default-slice and
type to application/x-hatom. Web Slice is a special feature of IE 8.0+; for more infor-
mation, go to http://www.ieaddons.com/.

DISCUSSION

You’ll usually need to generate and add controls at runtime in the page header when
you want to provide additional interactions to users visiting your pages. Syndication
feeds, page title or page description, and dynamic CSS are used to leverage the
dynamic nature of ASP.NET and let your user get what he needs to fully use your web
application, but with his own personalization.

1.6 Summary
Almost everything we’ve talked about in this chapter applies to all versions of ASP.NET.
That said, ASP.NET 4.0 does introduce some interesting features, but the pillars of this
technology are the same as those that were used in the first version. If you’re relatively
new to ASP.NET, this chapter should have helped you visualize the big picture sur-
rounding this technology.

ASP.NET is built on top of .NET Framework and gains a lot of its features from this
base. .NET Framework is full of interesting technologies, such as the Entity Frame-
work, WCF, and ADO.NET, and you can leverage them in your web application to
enhance functionalities. If you don’t know about these yet, you’ll find specific exam-
ples of each of them in the upcoming chapters.

 Keep in mind that ASP.NET is built with extensibility as a pillar, so the succeeding
chapters will contain advanced implementations of what you’ve learned in this one.

Listing 1.6 Programmatically adding an RSS feed to the current page

application/atom+
xml for Atom

http://www.ieaddons.com/

29Summary

You’ll find concepts like Web Forms, PostBack, ViewState, HttpRuntime, and IIS inte-
gration in every new step you’ll take.

 This chapter didn’t contain a lot of examples, but don’t worry. In the following
chapters, you’ll find plenty of tips and code to implement the most common scenarios
in web applications.

 Now you’re ready for chapter 2. We’re going to delve into an analysis of the data
access options available in .NET Framework 4.0 and specifically for ASP.NET 4.0.

Data access reloaded:
 Entity Framework
When databases are in place, accessing data becomes a key concern. The way you
communicate with the database and, more importantly, the way you represent data
inside your application becomes one thing that can shift your application from one
that works to a real success.

 You have a lot of options. The first option is to use ADO.NET objects, like con-
nections, adapters, readers, and datasets. This approach is easy to understand and
enables you to immediately start writing code.

 Another option is to use ADO.NET classes to interact with the database and then
create your own classes (object model) to represent data inside the application.
The initial learning curve with such a pattern is higher compared with the previous

This chapter covers
■ Designing an application
■ Understanding an ORM
■ Learning Entity Framework
■ Reading and updating data with Entity Framework
30

one, but in the long run, this pattern ensures higher maintainability.

31Designing an application

 The last option is to use an ORM tool, which hides the complexity of using ADO.NET
classes and lets you work only with objects in your application. An ORM tool includes the
best of the previous approaches because it offers immediate and sustained productivity.
Microsoft has developed an ORM whose name is Entity Framework.

 Microsoft touts Entity Framework as its best practice for data access. That’s why we
focus on Entity Framework only in this chapter. If you want to take a look at how to
perform data access using the classic ADO.NET approach, take a look at appendix A.

 Understanding data access using Entity Framework is vital because it lays the foun-
dation for the next chapter and for the rest of the book. We’ll be using Entity Framework
in the chapters about data binding, authentication, authorization, and performance.

 If you’re an experienced Entity Framework developer, you can skip this chapter
and go straight to chapter 3. If you’re new to this topic, you’ll find this chapter to be a
good starting point to build on.

 Before delving into the details of using Entity Framework, let’s take a step back and
analyze the pattern you should follow when you develop an application. By looking at
the pattern up close, you’ll clearly understand where Entity Framework stands in your
application design.

2.1 Designing an application
In this chapter, you’ll create an application that handles orders for the Northwind
database (more information about it is in the sidebar). This database contains data
about customers and products stored in several tables: Orders, Customers, Order
Details, and Products. The tables that contain this data are Orders, Customers,
Order Details, and Products.

 You need to create an internal network of classes (the object model) that holds data
that can be filled from a query in the database. These classes also need to handle data
that updates the database. The classes are
Order, Customer, Order_Detail, and Product.
They contain properties that represent data on
the database and that are useful for business.

 These classes hide the complexity of the
database structure from the business code (also
known as the Business Logic Layer or BLL), let-
ting the code communicate only with them and
with a specific layer that will be responsible for
interacting with the database (the Data Access
Layer or DAL). The Business Logic Layer knows
nothing about the database and interacts only
with the four classes. The DAL is responsible for
communicating with the database. With this
nifty organization, the classes we create
become the business Logic Layer database. Fig-

Database

Business
layer

Data access
layer

Order

Customer

Model

OrderDetail

Product

Figure 2.1 The Business Logic Layer uses
classes in the model and then persists
modifications through the Data Access
Layer. The business code doesn’t
ure 2.1 shows an example of this design. communicate with the database.

32 CHAPTER 2 Data access reloaded: Entity Framework

Separating the code inside isolated layers is a technique that guarantees faster devel-
opment and, maybe more important, easier maintenance.

 So far, we’ve said that the model contains classes that in turn contain data that is
persisted into the database. But how do you make a model? What techniques do you
need to use to build it? The answer is: it depends.

2.1.1 What’s an object model?

In many, possibly most, applications, a model can be a simple set of classes that con-
tain data coming from a database and that have only a little behavior. This kind of
model is known as an object model. Let’s look at a few of the characteristics of the
object model classes.

DATA VALIDATION

One of the behaviors that an object model class contains is data validation. For
instance, the Customer class has the CustomerID property. Because it’s the key of the
class (and the primary key in the Customers table), this property can’t be null or
empty. Placing validation code in the property setter makes sense because it prevents
the property from being set with an invalid value.

PROPERTY JOINING

Another behavior that is commonly added to an object model class is property join-
ing. You often need the full customer address in a single string. Writing a piece of
code that joins all address-related properties into a string every time you need the cus-
tomer’s full address is feasible, but it’s repetitive and error prone. The Customer class
contains an additional property, FullAddress, which internally joins the address prop-
erties and returns them as a string so you don’t have to write the code to retrieve the
full address every time you need it.

Why the Northwind database?
In this chapter and throughout the rest of the book, we’ll use the Northwind database.
Although it’s a simple database, it has lots of useful characteristics. First of all, it
represents a real-world scenario but exposes it in a manner that’s pretty easy to un-
derstand. Secondly, it’s been around for a long time, and it’s probably the most used
demo database in the world. We’ve attended countless conferences and courses and
this database is always used.

With the advent of SQL Server 2005, Microsoft introduced the AdventureWorks data-
base. This database represents a complex scenario and uses lots of SQL server fea-
tures. It also has an online transaction processing (OLTP) database and a data
warehouse so that every aspect of the business problem is covered.

Explaining SQL Server using AdventureWorks is wonderful, but we’re talking about
ASP.NET. We need a simpler model that allows us to focus on what matters so the
complexity of the database doesn’t bog us down.

33Designing an application

CONNECTING CLASSES TO EACH OTHER

Classes in an object model are not standalone; they’re connected to each other. For
instance, the Order class is connected to Customer and Order_Detail classes and
Order_Detail is connected to Product.

 In a database, tables are connected by foreign key columns. In an object model,
referencing another class simply by using a property that acts as a foreign key isn’t the
optimal solution because you can directly reference another class using a property of
the referenced class type. For example, the Order class keeps a reference to the Cus-
tomer class by using the Customer property (we used the Customer name but you can
use any name you like) whose type is Customer.

 If an object must reference multiple objects, you can create an enumeration prop-
erty whose type is List<T>, where T is the type of the objects in the collection. For
instance, an order must reference a list of details. To do that, The Order class contains
the Order_Details property, which is of type List<Order_Detail>.

NOTE You don’t have to use List<T>. You can use any other collection
classes, like Collection<T>, HashSet<T>, or even the non generic ArrayList.

When you’ve completed the design process for the object model relationships, you
end up with the model shown in figure 2.2.

 As I said before, an object model works perfectly well in lots of applications, but its
data-only nature is a limitation in complex scenarios. For some applications, you want
a higher level of interaction between the object model and the environment. In other
words, the object model must contain behavior.

2.1.2 The evolution of the object model: the domain model

A domain model is an object model where classes have a lot more behavior. The behav-
ior that’s added to domain model classes creates a broad and rich integration between

Customer
Class

Order_Detail
Class

Product
Class

Order
Class

Order Details

Customer Product

Figure 2.2 The Order class is connected to the Customer class by the Customer property. The
Order class also contains details through the Order_Details property. Eventually, each detail is
connected to the product via the Product property.
the classes and the environment.

34 CHAPTER 2 Data access reloaded: Entity Framework

More exactly, a domain model doesn’t involve just classes and their data. It introduces
a new design for your application. The classes are integrated in the BLL and commu-
nicate with repository modules that are the new gateways to the database. All these
classes and modules becomes a single layer: the domain model.

 The domain model itself doesn’t communicate directly with the database. An infra-
structure layer that’s underneath the model does the actual work. This layer hides
database communication. The repositories deal with the infrastructure layer, which
they use to send commands that retrieve data from a database or update data in it. Fig-
ure 2.3 shows the result of such a design.

 You probably know that because classes are aware of the repositories, they can
retrieve data from the database. Because the classes can do this, they offer a brand
new range of services to the developers who use them. Not only that, the domain
model pattern contains lots of other features that are outside the scope of this book. If
you’re interested in knowing more about the domain model, check out the book
Domain Driven Design by Eric Evans.

 Now you know how to effectively layer an application to create a better design and
more maintainable code. Layering is the foundation of every successful application
and the thing to keep in mind as you progress through the rest of the book.

 All this discussion about object model and domain model includes a concept that
has always remained the same: you have to deal with a database and with objects
whose data must be persisted into it. Let’s discover how you can do that using
an ORM.

Database

Domain Model

Order

Customer

OrderDetail

Product

Infrastructure

OrderRepository

OrderRepository

CustomerRepository

Figure 2.3 The domain model comprises the model classes and the repositories.
The model uses the infrastructure layer to abstract the physical interaction with
the database.

35Using an ORM to build a data layer

2.2 Using an ORM to build a data layer
An ORM is a framework that lets you build applications based on a paradigm that’s
completely different from the one you use when you work directly with ADO.NET. You
can just work with objects and ignore the database.

 An ORM lets you map your classes and properties against tables and columns in the
database. You can design your classes and tables independently and then let the ORM
do the dirty work of using the mapping information to generate SQL code to read data
from a database, create objects with it, and persist data inside objects in the database.
The SQL code is then executed through ADO.NET, which remains at the lowest layer.

 Given this definition, you might think that an ORM is a mere code generator, but
it’s not. An ORM stores modifications made to objects, ensures that only one object
with a given identity is in place, supports many optimization tweaks, and a lot more.

 An ORM does another vital thing: it handles the differences between a relational
database and the OOP paradigm (a.k.a the object/relational mismatch). The rela-
tional database and OOP paradigms are different in terms of data granularity, the way
relationships are defined, inheritance, and available datatypes. Before we tell you how
to use an ORM, let’s examine the problems it solves so that you better understand how
an ORM makes your life easier. In this section, we’re going to analyze each problem
separately, starting with the easiest one: data granularity.

2.2.1 The granularity mismatch

In the Northwind database, the customer’s full address consists of the street address,
city, region, Zip Code, and country. The shipping address for orders has the same
information. In a database, you put the columns in each table, but when you’re
designing the classes in your model, you’ll probably create an AddressInfo class that
contains all the address-related properties. You’ll reuse this class in the Customer and
Order classes. This design gives you three classes and two tables, as shown in figure 2.4.

Customer
Class

AdressInfo
Class

Order
Class

AddressAddress

Customers Orders

Figure 2.4 The Customer and Order classes have an Address property of the type
AddressInfo that contains address information. Address-related columns are repeated
in the Customers and Orders tables.

36 CHAPTER 2 Data access reloaded: Entity Framework

Because the number of classes is different from the number of tables in the database,
you have a mismatch. This mismatch is known as the granularity problem.

2.2.2 The relationship mismatch

Another difference between the relational and OOP models is in the way they main-
tain relationships. Think about the order/customer relationship. In a database, you
create a CustomerId foreign key column in the Orders table (child table) that points
to the CustomerId primary key column of the Customers table (parent table). In the
object model, you can reference the customer from the order using a property with
the type Customer, so there’s no need for a foreign key property.

 In a database the associations are unidirectional from the child table to the parent
table. In the object model, associations can be both unidirectional and bidirectional.
You can have the Customer property in Order, but you can also have an Orders prop-
erty in the Customer class. Figure 2.5 shows an example of this design.

In the case of a many-to-many relationship, the differences between a relational
database and OOP paradigms grow. Think about the relationship between the
Employees and Territories tables in the Northwind database. They’re not related
to each other through foreign keys but via a third table: EmployeeTerritories. In
the object model, you let the classes refer directly to each other without resorting to
a middle class.

 The differences we discussed in this section are known as the relationship mismatch.
What’s more, in the many-to-many scenario you face a granularity mismatch because
you have three tables and two classes.

2.2.3 The inheritance mismatch

Suppose that customers in Germany require different data than customers from other
countries. You could create a base class for all customers and then create a separate
class for German customers and another class for all other customers. Both these cus-

CustomerID

Customer
Class

Order
Class

Orders
Customer

Customers

Orders
OrderID

CustomerID

Figure 2.5 Orders are related
to their customers using a
foreign key in the database.
The OOP model uses a
reference to the object.
tomer classes inherit from the base class.

37Introducing Entity Framework

 In the database, the concept of inheritance doesn’t exist at all. What you can do is
create an artifact to simulate inheritance. You can create inheritance in the database
using one of three methods:

■ Table-per-hierarchy (TPH)—One table contains the data for all the classes in the
inheritance hierarchy and usually uses a discriminator column to determine
the kind of object that’s stored.

■ Table-per-type (TPT)—Each class in the inheritance hierarchy has one table. Each
table adds only the columns that are necessary for the type.

■ Table-per-concrete (TPC)—Again, each class has a table, but each table contains all
the columns mapped to all the properties of the mapped class.

Whatever approach you choose, you’re bending the relational model to represent
something it’s not designed for. This mismatch is known as the inheritance problem.

THE DATATYPE MISMATCH

Last, but not least, there’s the data type problem. In a database, you have varchar,
int, datetime, and other datatypes that might or might not have a counterpart
in .NET.

 Let’s use as an example the int datatype in SQL server. You can map it to an Int32
property, and it works perfectly. Now, think about the varchar datatype, which can be
easily mapped to a string. But if the column has a maximum length, you can’t repre-
sent that in the .NET string type unless you write code to check the length. The situa-
tion worsens for datatypes like RowVersion or Timestamp that are represented as an
array of bytes. This mismatch is known as the datatype problem.

 When you write code using ADO.NET, you have to handle all these differences on
your own. An ORM handles these differences for you so that you can focus on objects
that demand database interaction.

NOTE Never commit the suicide of ignoring the database. It might be masked
by the ORM, but it’s still there. Always measure the performance of SQL code
generated by the ORM. Plenty of profiler tools can help you trace commands
and measure performance.

You’ve learned what problems an ORM addresses and why it can ease your mind when
you’re developing data access. Now let’s see how to use it. In the coming sections, we’ll
use Entity Framework, which is the ORM introduced by Microsoft in the .NET Frame-
work 3.5 SP1. Entity Framework is now in its second version (named 4.0 only because
its versioning has been aligned with that of the .NET Framework).

2.3 Introducing Entity Framework
The first step you take to introduce Entity Framework in an application is to generate
the Entity Data Model (EDM). The EDM is the heart of the Entity Framework. It’s where
the mapping information between the classes and database is stored. The EDM is

made up of three XML files. The first one describes the object model classes, the

38 CHAPTER 2 Data access reloaded: Entity Framework

second one describes the tables in the database, and the last one stores their mapping.
Let’s see now how to handle these files.

 Creating a model using Entity Framework

Manually creating and maintaining EDM files is a time consuming operation. That’s
why the Entity Framework team has created a wizard and a designer inside Visual Studio
that you can use to handle these files visually without worrying about their structure.

PROBLEM

Suppose you have to write an application that manages orders in the Northwind data-
base. You have to work with the Orders, Order Details, Customers, and Products
tables, and with the Order, Order_Detail, Customer, and Product classes. You also
have to generate the EDM to map these classes and tables, and generate code for
classes so that you’re productive immediately.

SOLUTION

To create the EDM, add a new item of the type ADO.NET Entity Data Model to the proj-
ect. In a three-layer application, the best place to put this item is in the model assem-
bly. If you adopt the domain model way of designing, you’ll probably create a separate
assembly that references the repository.

 After you’ve added the item, Visual Studio starts a wizard. The first step lets you
choose whether you want to create a model starting from a database or from scratch
and then create a database from it. Because we already have a database, we’re opting
for the first choice. Figure 2.6 shows the form where you make this choice.

TECHNIQUE 4

Figure 2.6
The first form of the
Visual Studio wizard
lets you choose to
create a model from
a database (first op-
tion) or from scratch

(second option).

39TECHNIQUE 4 Creating a model using Entity Framework

Choosing this design option means that at the end of the wizard, you’ll have the tables
described in the EDM and an automatically generated class for each of them. The
properties and the columns will also be mapped one-to-one. What’s more, the wizard
inspects foreign keys on the database and reflects them in the classes. For example, it
places the property Customer in the Order class and the property Orders in Customer.

 On the second form, you first choose the database you want to connect to. Use
the drop-down list that shows the database already configured inside Visual Studio
(you can create a new connection on the fly by clicking the New Connection button).
After you’ve chosen the database, you’ll see the connection string that Entity Frame-
work uses to connect to that database in the Entity connection string box. Use the
check box at the bottom of the form to choose whether to store the connection
string in the configuration file; if you select the check box, type the name of the key
that the connection string has in the configuration file in the text box. All this is
shown in figure 2.7.

 The third, and last, form connects to the selected database; scans its tables, views,
stored procedures, and functions; and shows them in a check box tree. Here you
select the tables that you want to use (in this case, Orders, Order Details, Customers
and Products).

Figure 2.7 In the second form of the wizard, you choose the database to connect
to or create a new connection on the fly (by clicking the New Connection button).

Finally, you choose the name of the connection string in the configuration file.

40 CHAPTER 2 Data access reloaded: Entity Framework

Below the tree are two options that deserve your attention. The first one lets you
choose whether to pluralize or singularize the class names. If you select this check
box, the Orders table generates a class named Order and vice versa. If you don’t select
this check box, the Orders table only generates a class named Orders. The second
option lets you choose whether to create a foreign key property along with the prop-
erty that references another object. For instance, in addition to the Customer prop-
erty, you can decide to include the CustomerId property in the Order class. This last
choice is enabled by default, and you should keep it. Using foreign key properties
makes relationship management a whole lot easier. Figure 2.8 shows this last form.

 When you’ve made your selections, click Finish. The wizard creates the classes and
shows them in a designer.

TIP The designer shows the classes, not the tables.

You can edit the classes to modify their names or the names of their properties to add
relationships with other classes, to add inheritance, and so on. You have full control
over your model.

 If you look at the Solution Explorer window in Visual studio, the wizard has gener-
ated a file with the extension .edmx that’s associated with the designer. It contains the
three EDM files merged into one so that each time you modify an entity visually, its
modifications are recorded inside that file.
Figure 2.8 The last form lets you choose the tables to import into the EDM.

41TECHNIQUE 5 Generating POCO code

EDMX VERSUS EDM The EDMX file is not the EDM. The EDMX is an artifact
for enabling the designer. It is not understood by Entity Framework. At com-
pile time, the compiler splits the EDMX into the three EDM files and then
embeds those files into the assembly or saves them in the output directory so
that the runtime of Entity Framework can read them. What the compiler does
depends on the value of the Metadata Artifact Processing property of the
designer. Its possible values are Embed in Output Assembly and Copy to Out-
put Directory.

In the Solution Explorer window, nested into the EDMX file, you see either a .cs file or
a .vb file, depending on your programming language. This file contains the code for
the classes described in the EDM and one important class: the context (we’ll get back to
this later).

 The last step you have to take is to enable Entity Framework in your application is
to copy the connection string generated by the wizard into the configuration file of
the application. (The connection string is in the app.config file of the assembly in
which you generated the EDMX file). Now Entity Framework is correctly set up, and
you can start writing data access code.

DISCUSSION

When all’s said and done, enabling Entity Framework is as easy as completing a wiz-
ard. Naturally, if you don’t have a database and you need to start from the object
model, the path is harder because you have to design classes from scratch. Fortu-
nately, the designer is powerful enough to help you do that rather painlessly. It lets
you create properties, associations, inheritance hierarchies, and so on.

 Speaking of classes, if you take a look at their code, you’ll see that it’s cluttered by
lots of uninteresting stuff. Attributes decorate the class definition, the property, and
even the assembly. The getters and setters of the properties are full of infrastructure
code. In other words, the classes are aware of Entity Framework, which is wrong. In a
domain model design, classes can be aware of the data layer, but they must not be
aware of the technology that it uses. Classes must be ignorant of persistence. Each
must be a Plain Old CLR Object (POCO) and worry only about business code.

 Generating POCO code

The reason the generated code is not POCO is that the first version of Entity Frame-
work didn’t support POCO classes. One of the new features in the current version of
Entity Framework is support for POCO classes. Developing with POCO classes is far bet-
ter than developing with classes that are generated by default. POCO classes contain
only business code and not persistence-related code. What’s more, if you change the
persistence tool (say, from pure ADO.NET to Entity Framework or vice versa), you
don’t have to change your model classes but only the layer that talks to the database.

 To let you generate legacy classes, POCO classes and, more broadly speaking, any
code you want, the Entity Framework team has leveraged a feature of Visual Studio
called T4 templates. By using templates, you can fully customize the way classes are

TECHNIQUE 5
generated so that you can add your logic.

42 CHAPTER 2 Data access reloaded: Entity Framework

PROBLEM

For this example, our scenario is that before you start your development work, you
want to change from default code generation and customize the process. You need
POCO classes, and you want to both customize their generation and extend them.

SOLUTION

Templates are the key to custom code generation. A template is a markup file where
you can dynamically add content. You can think of it as a Classic ASP page that creates
C# or VB code instead of generating HTML. The syntax is only slightly different: classic
ASP uses <% markers and templates use <#.

 Fortunately, the Entity Framework team has already created a template that gener-
ates POCO code. Unfortunately, this template is not integrated in the .NET Framework
and Visual Studio. You’ve got to download and install it using the Extension Manager
tool inside Visual Studio.

 This template is available for both C# and VB in two flavors: one for web site appli-
cations and one for others. Figure 2.9 shows how to search for the templates in the
Extension Manager window.

 After installing the templates, you can right-click on the designer and choose the
Add Code Generation Item. Visual Studio opens the Add File wizard. Here’s where
you select the POCO template.

Figure 2.9 The Extension Manager window lets you search for and install the templates in your

Visual Studio.

43TECHNIQUE 6 Reading data using Entity Framework

Now the project contains two new template files. One generates POCO classes and the
other one creates the context class (we’ll talk more about this in the next section). In
the Solution Explorer window, The POCO template contains a nested file for each
class in the model; the other template contains only one nested file.

 Because we generated the EDMX file inside the model assembly, the POCO tem-
plate must remain there because it generates classes. The other template generates
the context that’s required only by the real data access code, so you must move it into
the assembly that’s responsible for accessing data. Because it points to the EDMX file,
you have to open it after you move it and change its reference to the file by modifying
the inputFile variable.

DISCUSSION

With a few clicks, you’ve created a well-structured application. In fact, now you’ve got
.NET classes, the database, the class mappings, and a data access gateway (the con-
text). At last! You’re ready to write real code. In the next section, you’re going to see
how to query with Entity Framework.

 Reading data using Entity Framework

Querying a database using the classic ADO.NET approach requires you to write SQL
code and leverage several classes to execute it and read returned data. Querying
with Entity Framework is different. Because you don’t work directly with the data-
base, the only structure you need to know about is the model. That’s how the model
becomes your database and why your queries are written against it. The burden of
translating everything into SQL and executing it against the database is shifted to
Entity Framework.

 Entity Framework is a huge step towards development simplicity. Remember that
in section 2.2.1, we discussed that the classes in the model can be different from the
database tables that classes are mapped to. Classes have inheritance. The number of
classes and tables does not have to match, and so on. You don’t have to worry about
any of these problems. You write queries against the model, and then Entity Frame-
work generates SQL for you. What’s more, classes express business better than data-
base tables do, so writing queries against them is a more business oriented approach.

PROBLEM

Suppose you have to create a web page that shows orders in a grid. The user must be
able to filter orders by customer name, shipping city, total amount, and the product
sold. The user must also be able to sort the orders by any column, and data must be
paged because we’re in a web environment. Finally, the data shown in the list is the
full shipping address, the customer name, and the amount of the order.

SOLUTION

For a single web page, that’s a lot of requirements. For now, let’s ignore the page and
focus on the data access code you need to satisfy them. As we hinted before, the sec-
ond template generates the context class. The context class is your gateway to the

TECHNIQUE 6
database. This class inherits from ObjectContext and has an entity set for each class

44 CHAPTER 2 Data access reloaded: Entity Framework

that doesn’t inherit from any other in the model. In our case, we have four classes and
four entity sets, but if there were a SpecialProduct class that inherited from Product,
we would have five classes and four entity sets.

 If the context is your gateway to the database, the entity sets are your gateway to
the data. Think of them as an in-memory representation of a table (data doesn’t
reside solely in memory). The context class exposes each entity set as a property
whose name is the name of the table (identical, pluralized, or singularized, depending
on your choice) and whose type is ObjectSet<T>, where T is the model class it
exposes (you can modify the name of the entity set by using the designer). The follow-
ing listing shows what the context class looks like.

C#:
public partial class NorthwindEntities : ObjectContext
{
 ...
 public ObjectSet<Customer> Customers { ... }
 public ObjectSet<Order_Detail> Order_Details { ... }
 public ObjectSet<Order> Orders { ... }
 public ObjectSet<Product> Products { ... }
}

VB:
Public Partial Class NorthwindEntities
 Inherits ObjectContext
 ...
 Public Property Customers() As ObjectSet(Of Customer)
 Public Property Order_Details() As ObjectSet(Of Order_Detail)
 Public Property Orders() As ObjectSet(Of Order)
 Public Property Products() As ObjectSet(Of Product)
End Class

To query the model, you have to perform a LINQ to Entities query against an entity
set. LINQ to Entities is just a dialect of LINQ that triggers the process that transforms
the LINQ query in SQL (instead of performing an in-memory search).

 Now that you have the fundamentals, let’s start writing the query that returns
orders. The first search parameter is the shipping city. Applying this type of filter is
extremely simple.

C#:
using (var ctx = new NorthwindEntities())
{
 return ctx.Orders.Where(o => o.ShipCity == shippingAddress);
}

VB:
Using ctx = New NorthwindEntities()
 Return ctx.Orders.Where(Function(o) o.ShipCity = shippingAddress)
End Using

Listing 2.1 The generated context class

45TECHNIQUE 6 Reading data using Entity Framework

Isn’t that expressive? We love LINQ expressiveness when querying, and these snippets
are proof of that power.

NOTE From now on, we’ll remove context instantiation and will always use
the ctx name to identify it.

The second filtering parameter is the customer name. Here, the filtering is applied
not on the order but on an entity that’s associated with it. Because the order has a ref-
erence to the customer entity, we can navigate the model from the order to the cus-
tomer and filter by its name.

C#:
ctx.Orders.Where(o => o.Customer.CompanyName == customerName);

VB:
ctx.Orders.Where(Function(o) o.Customer.CompanyName = customerName)

As you see, we don’t need to specify joins as we would do in SQL code. Entity Frame-
work reads relationships from the EDM and automatically generates correct joins for
us. Thumbs up for Entity Framework.

 The third search parameter is a bit harder. We have to calculate the total amount
of an order and compare that with the user value. Performing such a query in SQL is
challenging and requires a GROUP BY clause. In LINQ to Entities, we can do it with a
couple of methods that are unbelievably simple.

C#:
ctx.Orders.Where(o =>
 o.Order_Details.Sum(d => (d.UnitPrice * d.Quantity)) > amount);

VB:
ctx.Orders.Where(Function(o) _
 o.Order_Details.Sum(Function(d) (d.UnitPrice * d.Quantity)) > amount)

These snippets navigate from the orders to their details and sum the total of each of
them. Then they check that the sum is greater than the given input. Isn’t that awe-
some?

 The last search parameter is the product. The user searches for orders that include
that product in the list of those sold. Here we have another type of search because we
have to determine whether a product is included in the associated list of details. Once
again, LINQ makes it simple.

C#:
ctx.Orders.Where(o =>
 o.Order_Details.Any(d => d.ProductID == productId));

VB:
ctx.Orders.Where(Function(o) _
 o.Order_Details.Any(Function(d) d.ProductID = productId))

The Any method checks whether a product with the same ID is in the details associ-

ated with the order and returns a boolean.

46 CHAPTER 2 Data access reloaded: Entity Framework

 So far we’ve applied filters statically, but because the user can enter some and
ignore others, we have to find a way to apply them dynamically. The solution is the
IQueryable<T> interface. Take a look at the following listing.

C#:
IQueryable<Order> result = ctx.Orders;
if (!String.IsNullOrEmpty(shippingAddress))
 result = result.Where(o =>
 o.Order_Details.Any(d => d.ProductID == productId));
if (!String.IsNullOrEmpty(customerName))
 result = result.Where(o => o.Customer.CompanyName == customerName);

VB:
Dim result As IQueryable(Of Order) = ctx.Orders
If Not String.IsNullOrEmpty(shippingAddress) Then
 result = result.Where(Function(o) _
 o.Order_Details.Any(Function(d) d.ProductID = productId))
End If
If Not String.IsNullOrEmpty(customerName) Then
 result = result.Where(Function(o) _
 o.Customer.CompanyName = customerName)
End If

Each LINQ method returns an IQueryable<T> object, so you can add filters to it
dynamically. Easy as pie, isn’t it?

 Another requirement is data paging. Doing it in SQL requires you to write a long
statement. In LINQ to Entities, you can leverage the power of the Skip and Take meth-
ods. Skip ignores the first n rows, and Take takes only the following n rows.

C#:
 result = result.Skip(10).Take(10);

VB:
 result = result.Skip(10).Take(10)

This query skips the first 10 rows and returns the next 10 rows. If the grid you show
data in shows 10 rows per page, this query retrieves rows from the second page. All the
methods we’ve been discussing are reason enough for you to move to Entity Frame-
work and LINQ.

 Another important requirement is the ability to sort orders. Thanks to the OrderBy
method, once again this is a simple task. Because the user decides what column to sort
by, we have to check at runtime which column the user has selected and sort the data
by that column. The following listing shows how to achieve this goal.

C#:
if (sortField == "shipcity")
 result = result.OrderBy(o => o.ShipCity);

Listing 2.2 Applying filters dynamically

Listing 2.3 Sorting data dynamically
else if (sortField == "shipaddress")

47TECHNIQUE 6 Reading data using Entity Framework

 result = result.OrderBy(o => o.ShipAddress);
else
 result = result.OrderBy(o => o.ShipCountry);

VB:
If sortField = "shipcity" Then
 result = result.OrderBy(Function(o) o.ShipCity)
ElseIf sortField = "shipaddress" Then
 result = result.OrderBy(Function(o) o.ShipAddress)
Else
 result = result.OrderBy(Function(o) o.ShipCountry)
End If

The final requirement has to do with data to be shown on the mask. We need only the
full shipping address, the customer name, and the total amount, and we can optimize
the query to retrieve only this data. This data contains properties about the order, plus
its customer and its total amount. This kind of data is referred to as a projection.

 In LINQ to Entities, you can perform a projection using the Select method. The
result of a projection is an anonymous type. Now, you know that an anonymous type
can be exposed outside a method only as an instance of type Object. Having the result
of the query exposed as an Object instance isn’t good from a design point of view.

 You can optimize design by creating a Data Transfer Object (DTO) with the prop-
erties that match the result of the projection. In the query, you pour the result into
the DTO. Finally, you let the method in the DAL expose and return the DTO class. The
following listing shows the code for the query.

C#:
IQueryable<OrderDTO> finalResult = result.Select(o =>
 new OrderDTO
 {
 CustomerName = o.Customer.CompanyName,
 ShipAddress = o.ShipAddress,
 ShipCity = o.ShipCity,
 ShipCountry = o.ShipCountry,
 ShipPostalCode = o.ShipPostalCode,
 Total = o.Order_Details.Sum(d => (d.UnitPrice * d.Quantity)));
 }

VB:
Dim finalResult As IQueryable(Of OrderDTO) = result.Select(Function(o) _
 New OrderDTO() With { _
 .CustomerName = o.Customer.CompanyName, _
 .ShipAddress = o.ShipAddress, _
 .ShipCity = o.ShipCity, _
 .ShipCountry = o.ShipCountry, _
 .ShipPostalCode = o.ShipPostalCode, _
 .Total = o.Order_Details.Sum(Function(d) (d.UnitPrice * d.Quantity))

The OrderDTO class is the class in the model assembly that acts as a DTO. Its only pur-

Listing 2.4 Returning a DTO with only necessary data
pose is letting data flow to the GUI in a typed way.

48 CHAPTER 2 Data access reloaded: Entity Framework

DISCUSSION

Well, putting it all together uses about 21 lines of code (we’re counting blank lines).
Now think about how much SQL and .NET code you would have written to do this in
classic ADO.NET style and ask yourself, isn’t this a better way? In an ASP.NET environ-
ment, everything needs to be optimized and using Entity Framework is a great way to
do that.

 Before we get to the end of the chapter, let’s look at the other side of the coin: data
writing.

 Writing data using Entity Framework

Writing data on the database is as simple as reading it. In most cases, you just need to
call the three basic methods of the entity set to add, modify, or delete data from the
database.

PROBLEM

Suppose that you have to create a form to edit customers’ data. You need to be able to
create, modify, and delete customers.

SOLUTION

As before, we’re not going to talk about the user interface here. We’re going to focus
on the data access code. The process of saving objects passes through two phases:

■ Tracking—During this phase, the context tracks modifications made to objects
that it references. The context references all objects that you read through it
and objects that you add or attach to it. More generally, the tracking phase starts
when you instantiate the context and ends when you trigger the next phase.

■ Persistence—During this phase, the context gathers modifications made to
objects during the tracking phase and persists them into the database.

Creating a customer is pretty simple. We need to create a Customer instance and pass
it to the AddObject method of the customer’s entity set (tracking phase). After that,
we call the context SaveChanges method to trigger persistence to the database. The
following listing puts this technique into practice.

C#:
var c = new Customer()
{
 Address = "address",
 City = "City",
 CompanyName = "CompanyName",
 ContactName = "ContactName",
 ContactTitle = "ContactTitle",
 Country = "Country",
 CustomerID = "15455",
 Fax = "222222",
 Phone = "2333333",

Listing 2.5 Creating a new customer

TECHNIQUE 7
 PostalCode = "123445",

49TECHNIQUE 7 Writing data using Entity Framework

 Region = "Region"
};
ctx.Customers.AddObject(customer);
ctx.SaveChanges();

VB:
Dim c = New Customer() With _
{ _
 .Address = "address", _
 .City = "City", _
 .CompanyName = "CompanyName", _
 .ContactName = "ContactName", _
 .ContactTitle = "ContactTitle", _
 .Country = "Country", _
 .CustomerID = "15455", _
 .Fax = "222222", _
 .Phone = "2333333", _
 .PostalCode = "123445", _
 .Region = "Region" _
}
ctx.Customers.AddObject(customer)
ctx.SaveChanges()

The AddObject method adds the customer instance to the context and marks the
instance as Added. SaveChanges transforms the added object into a new row in the
database.

 Updating the customer is equally simple. You can do it in one of two ways. You can
retrieve the customer, update it, and then call SaveChanges to report modifications to
the database. This scenario is defined as connected because you use the same context to
read and update customer data.

C#:
var c = ctx.Customers.First(c => c.CustomerId == "15455");
c.Address = "newaddress";
ctx.SaveChanges();

VB:
Dim c = ctx.Customers.First(Function(c) c.CustomerId = "15455")
c.Address = "newaddress"
ctx.SaveChanges()

Another way to update an entity is to create a Customer instance, attach it to the con-
text using the Attach method of the customer’s entity set, and then mark it as Modi-
fied. This scenario is known as disconnected because the context you use to update
customer data is not the same one you use to read customer data. The code required
for the disconnected scenario is shown in the following listing.

C#:
ctx.Customers.Attach(customer);

Listing 2.6 Updating a customer
ctx.ObjectStateManager.GetObjectStateEntry(customer).

50 CHAPTER 2 Data access reloaded: Entity Framework

 ChangeState(EntityState.Modified);
ctx.SaveChanges();

VB:
ctx.Customers.Attach(customer)
ctx.ObjectStateManager.GetObjectStateEntry(customer).
 ChangeState(EntityState.Modified)
ctx.SaveChanges()

Whichever pattern you follow (connected or disconnected), the code is pretty easy.
 The last requirement in this example is deleting a customer. This action also gives

you a choice of a connected or disconnected pattern. In the first case, you retrieve
the customer and then call the DeleteObject method of the customer’s entity set. In
the second case, instead of querying the database, you already have the object so you
can attach it to the context and then invoke the DeleteObject method. For both pat-
terns, the last step is to invoke the SaveChanges method. The following listing shows
both scenarios.

C#:
Connected scenario:
var c = ctx.Customers.First(c => c.CustomerId == "15455");
ctx.DeleteObject(c);
ctx.SaveChanges();

Disconnected scenario:
ctx.Customers.Attach(customer);
ctx.Customers.DeleteObject(customer);
ctx.SaveChanges();

VB:
Connected scenario:
Dim c = ctx.Customers.First(Function(c) c.CustomerId = "15455")
ctx.DeleteObject(c)
ctx.SaveChanges()

Disconnected scenario:
ctx.Customers.Attach(customer)
ctx.Customers.DeleteObject(customer)
ctx.SaveChanges()

Deleting an object is pretty straightforward. Like object updates, it requires only a few
lines of code.

DISCUSSION

As you’ve seen, not only does the ORM approach save many lines of code, but it also
lets you write more readable code. AddObject and DeleteObject are self-explana-
tory, and SaveChanges does exactly what it says: it persists, in the database, modifica-
tions you make to objects. When you use an ORM, your productivity is going to

Listing 2.7 Deleting a customer
increase dramatically.

51Summary

2.4 Summary
Entity Framework is definitely worth a look if you want to ease your data access devel-
opment. Working with ADO.NET is feasible, but the amount of code you have to write
and maintain quickly becomes too large, especially in big projects.

 Entity Framework is software that’s built on top of ADO.NET, so it requires a bit
more attention to be integrated in an application. Fortunately, it was designed to be as
easy as possible, and it will work in any kind of design you choose for your application.
If you opt for a three-layer design, you can easily isolate Entity Framework in the DAL;
if you go for the domain model, it can be leveraged by the repository code.

 Now that you know how to perform the basic stuff with Entity Framework, it’s time
to dig deeper into it and see how you can use it in ASP.NET applications.

Integrating Entity
 Framework and ASP.NET
In the previous chapter, we talked about the different ways you can design your
application. We focused mainly on data access code, and you discovered how using
Entity Framework might save your life.

 In this chapter, we’ll look at integrating Entity Framework and ASP.NET. You’ll
see some of the techniques you learned in the previous chapter and how to use
them in this environment. You’ll learn how to handle context instantiation and
destruction to achieve the best performance and design. You’ll also learn how to
persist modifications made in an ASP.NET page in the database, and we’ll give you
a few tips about performance. To be in sync with the previous chapter, all exam-
ples use the Northwind database to show how to integrate Entity Framework

This chapter covers
■ Handling the context in ASP.NET applications
■ Optimizing persistence in ASP.NET applications
■ Managing concurrency
■ Optimizing performance
52

and ASP.NET.

53TECHNIQUE 8 First approach: one context per method

 Do you remember the ObjectContext class (a.k.a context) from the previous
chapter? It’s the class where the Entity Framework magic begins. We’ll start by talking
about the most important concept of this class in ASP.NET applications: lifetime. We’re
starting with the basics because if you ignore the foundation, your applications might
be slow or even crash.

3.1 Understanding context lifetime
By context lifetime we mean the way the context is generated, reused, and then destroyed
by the application. Depending on what type of application you’re developing, this
behavior changes; windows applications require a lifecycle that’s different from the one
required by web applications which, in turn, are much like web service applications.

 Because this book is about ASP.NET, we’re going to focus on web applications in
this section. In the previous chapter, we created a context for each method, but that’s
not the only way you can handle context lifetime. You’ll discover that ASP.NET has fea-
tures that can manage the context much better than that. Now it’s time to get your
hands dirty by modifying the sample we used in chapter 2 to learn better approaches.

 First approach: one context per method

In chapter 2, each time you had to execute a command, you created a context, exe-
cuted the command, and then destroyed the context. All these operations were per-
formed inside a method. This approach is surely the simplest, but also the least
flexible and, in some fringe cases, dangerous. Let’s discover why that’s so and how you
can improve things.

PROBLEM

Suppose you have a web page where the user is shown a list of orders that were placed
on the current day. He selects some of them, clicks a button, and then sees the cus-
tomer’s name and billing address beside each selected order. You need to retrieve this
additional data in the fastest and most reliable way possible.

SOLUTION

The code for retrieving orders is straightforward. We create the context, perform the
query, return the result, and destroy the context:

C#
using (var ctx = new NorthwindEntities())
{
 return ctx.Orders.Where(o => o.OrderDate == DateTime.Now.Date);
}

VB
Using ctx = New NorthwindEntities()
 Return ctx.Orders.Where(Function(o) o.OrderDate = DateTime.Now.Date)
End Using

Querying for the customer who made the selected orders requires some more code.
What you can do is iterate over the orders and, if the current one is selected, invoke a

TECHNIQUE 8
method that retrieves the customer. An example is shown in the following listing.

54 CHAPTER 3 Integrating Entity Framework and ASP.NET

C#:
private void RetrieveCustomersForOrders()
{
 for(var i=0; i<selectedOrders.Count; i++)
 {
 selectedOrders[i].Customer =
 _repository.RetrieveCustomer(selectedOrders[i].OrderId);
 }
}

private Customer GetCustomerByOrder(int orderId)
{
 using (var ctx = new NorthwindEntities())
 {
 return ctx.Orders.First(o => o.OrderId == orderId).Customer;
 }
}

VB:
Private Sub RetrieveCustomersForOrders()
 For i As var = 0 To selectedOrders.Count - 1
 selectedOrders(i).Customer =
 _repository.RetrieveCustomer(selectedOrders(i).OrderId)
 Next
End Sub

Private Function GetCustomerByOrder(orderId As Integer) As Customer
 Using ctx = New NorthwindEntities()
 Return ctx.Orders.First(Function(o) o.OrderId = orderId).Customer
 End Using
End Function

See how easy that was? With just a few lines of code, we’ve solved our problem.

DISCUSSION

What’s great about the method approach is its simplicity. Even so, this approach suf-
fers from a dangerous drawback. If two orders have the same customer, you obtain two
Customer instances that refer to the same row in the database.

 Suppose that the user selects two orders from the same customer. When the code
iterates over the selected orders, it queries for the same customer twice. Suppose that
between the first and the second read, the customer uses the application to change
their address. The result is that the first read retrieves data before it was changed,
and the second read retrieves it after it was changed. Figure 3.1 shows an example of
such a flow.

 The user will, at the least, be confused by this situation; he’ll surely think it’s a bug.
If the name changes, instead of the address, he might even think that there are two
separate customers. We definitely have to improve our solution to avoid this trap. In
the next section, we’ll investigate how to handle the context in a better way.

Listing 3.1 Retrieving customers who made the selected orders

55TECHNIQUE 9 A better approach: one context per ASP.NET request

 A better approach: one context per ASP.NET request

To overcome the limitation we exposed in the previous discussion, you can instruct
the context to span for the entire lifetime of the web request. The context implements
the Identity Map pattern, meaning that it enables only one instance of an entity for the
same key properties. The result is that the second time the user reads the same cus-
tomer, the user receives the same object as that of the first read. It’s stale data, but
without discrepancies.

PROBLEM

The problem we have to solve in this section is the same problem we had in tech-
nique 1. We have to ensure that only one instance of an object for the same row of the
database is in place.

SOLUTION

The Identity Map logic is embedded in the ObjectStateManager component (state
manager from now on) of the ObjectContext class. The state manager holds a refer-
ence to all objects that have been read and attached to the context.

NOTE Technically speaking, when we say we attach an object to the context,
we’re actually attaching it to the state manager. Because the state manager is an
inner component of the context, it’s perfectly correct (and more widely under-
stood) to say that we attach an object to the context, not to the state manager.

When an object is read by the context, the context gets data from the database and
then queries the state manager to see whether an object of the same type with the
same key properties already exists. If this query returns true, the context returns the
object that’s already in the state manager, ignoring data coming from the query. If this
query returns false, the context creates an instance of the object, attaches it to the
state manager, and returns it to the caller. Figure 3.2 shows this process.

 This logic ensures that only one object of the same type and with the same key
properties is tracked by the state manager. The result is that the second time the user
reads the same customer, he doesn’t get data from the database, but rather he gets
data that was read the first time. This process ensures that the data contains no dis-
crepancies. Now, the next problem is, how can we switch from a method-based con-

Order 1

Order 2

Customer 1

Customer 1 V1

From V1 to V2

Customer 1 V2

Reads

Updates data

Reads

Figure 3.1 The code reads Customer 1 related to Order 1. Someone externally updates
Customer 1, changing its data. The code reads once again, but now Customer 1 is also
related to Order 2. The two reads return different data for the same customer.

TECHNIQUE 9
text lifetime to a request context lifetime?

56 CHAPTER 3 Integrating Entity Framework and ASP.NET

What you can do is create a couple of methods in your repository: one creates an
instance of the context and the other one destroys it. The context instance is stored in
the HttpContext.Items collection, which is a common place that’s reachable by other
repositories. The code is shown in the following listing.

C#:
public class ContextHandler
{
 public void CreateContext()
 {
 HttpContext.Current.Items["__EFCONTEXT"] = new NorthwindEntities();
 }

 public void DestroyContext()
 {
 ((NorthwindEntities)HttpContext.Current.Items["__EFCONTEXT"]).Dispose();
 }
}

VB:
Public Class ContextHandler
 Public Sub CreateContext()
 HttpContext.Current.Items("__EFCONTEXT") = New NorthwindEntities()
 End Sub

 Public Sub DestroyContext()
 DirectCast(HttpContext.Current.Items("__EFCONTEXT"),
 NorthwindEntities).Dispose()
 End Sub

Listing 3.2 Creating repository methods to handle context lifecycle

ReadCustomer

Context queries
the database

Object in
state manager

?

Attaches object to
state manager

Returns the state
manager object

Yes No

Figure 3.2 The context reads data from the database. If the object is already
tracked by the state manager, the state manager object is returned. If not, the
object created from the database query is attached to the state manager and
then returned.
End Class

57TECHNIQUE 9 A better approach: one context per ASP.NET request

Now that we have a gateway to handle the context lifecycle, all we have to do is invoke
the methods we just created in the repository. CreateContext can be invoked in the
page’s Init event and DestroyContext can be invoked in the page’s Unload event.
The following listing puts this concept into action.

C#:
public partial class _default : Page
{
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 new ContextHandler().CreateContext();
 }

 protected override void OnUnload(EventArgs e)
 {
 base.OnUnload(e);
 new ContextHandler().DestroyContext();
 }
}

VB:
Public Partial Class _default
 Inherits Page
 Protected Overrides Sub OnInit(e As EventArgs)
 MyBase.OnInit(e)
 New ContextHandler().CreateContext()
 End Sub

 Protected Overrides Sub OnUnload(e As EventArgs)
 MyBase.OnUnload(e)
 New ContextHandler().DestroyContext()
 End Sub
End Class

Placing this code in each page isn’t ideal. What you can do is create a class and let it
inherit from the Page class. You put the code in listing 3.3 in the class and let your
pages inherit from it. Now all your pages can handle context without you having to do
it each time. The following listing shows how this way makes things simpler.

C#:
public partial class Base : Page
{
 //context management code
}

public partial class _default : BasePage
{
}

Listing 3.3 Invoking a repository method to handle the context lifecycle

Listing 3.4 Invoking repository methods via a base class

58 CHAPTER 3 Integrating Entity Framework and ASP.NET

VB:
Public Partial Class Base
 Inherits Page
 'context management code
End Class

Public Partial Class _default
 Inherits BasePage
End Class

The code for each page is much shorter now. Don’t you like it?

DISCUSSION

Having a single context for each ASP.NET request makes things easier and, more
importantly, handles data correctly. But there’s something we don’t like here: the
page is responsible for creating and destroying the context. Wouldn’t it be better if
the data access code could manage the context instantiation and destruction without
us having to write anything in the page or in its base class? That’s the subject of the
next section.

 Instantiating the context using modules

Invoking context creation and disposal methods in the page creates dangerous circu-
lar dependencies. The page depends on the data access to retrieve data from the data-
base and the data access depends on the page to invoke specific methods to create
and destroy the context. No matter how you look at it, this situation is bad.

PROBLEM

The problem we have to solve is the same as what we had in the previous sections. This
time, we want to eliminate the problem of circular dependencies by using a more ele-
gant solution.

SOLUTION

The cleanest solution to the problem is the adoption of an HttpModule. An HttpMod-
ule is a class that lets you subscribe to the events of the ASP.NET execution pipeline so
that you can plug in your logic. In our case, we can subscribe to the BeginRequest
event to create the context and to the EndRequest event to destroy it.

 You can place the module in the data access assembly, eliminating every circular
dependency. The following listing shows the code for HttpModule.

C#:
public class ContextModule : IHttpModule
{
 public void Dispose() { }

 public void Init(HttpApplication context)
 {
 context.BeginRequest += new EventHandler(context_BeginRequest);
 context.EndRequest += new EventHandler(context_EndRequest);

Listing 3.5 Creating the module for handling context lifecycle

TECHNIQUE 10

Subscribe to begin
and end of requests

B

 }

59TECHNIQUE 10 Using the context the right way

 void context_BeginRequest(object sender, EventArgs e)
 {
 new CustomerRepository().CreateContext();
 }

 void context_EndRequest(object sender, EventArgs e)
 {
 new CustomerRepository().DestroyContext();
 }
}

VB:
Public Class ContextModule
 Implements IHttpModule
 Public Sub Dispose()
 End Sub

 Public Sub Init(context As HttpApplication)
 context.BeginRequest +=
 New EventHandler(AddressOf context_BeginRequest)
 context.EndRequest += New EventHandler(AddressOf context_EndRequest)
 End Sub

 Private Sub context_BeginRequest(sender As Object, e As EventArgs)
 New CustomerRepository().CreateContext()
 End Sub

 Private Sub context_EndRequest(sender As Object, e As EventArgs)
 New CustomerRepository().DestroyContext()
 End Sub
End Class

The code is pretty simple. First, you subscribe to the events that are fired at the begin-
ning and at the end of each request B. Later, in the handler for the begin request,
you create the context, and in the handler for the end request, you destroy it. That’s
all you need to do.

DISCUSSION

At this point, the context is set up, the pages are no longer responsible for handling
context lifecycle, and you no longer have multiple instances of the same entity. You
achieved what you wanted!

 Now we can leave context lifecycle management and move on to how to use the
context the right way so that the application is lightweight and doesn’t burden the
database.

3.2 Using the context the right way
Now that the context is instantiated and destroyed in the best way possible, let’s use it
in the best way possible. In chapter 2, we worked with Entity Framework, using both
the connected and the disconnected approach.

 If you take the connected approach, you read and update an entity in the scope of
the same context. The disconnected approach is the opposite: you read and update

Subscribe to begin
and end of requests

B

an entity using two different contexts.

60 CHAPTER 3 Integrating Entity Framework and ASP.NET

In this section, we want to emphasize the disconnected way of working because ASP.NET
imposes, by nature, a disconnected model. In fact, most ASP.NET applications read data,
show it in a page, let the user modify it, and finally save it into the database. In the pre-
vious section, you learned that when the page is sent to the client, the server destroys
any reference to the context. This means that the context that’s used to read data is dif-
ferent from the one that’s used to update it. Figure 3.3 clearly shows this concept.

 Working in the disconnected way is harder than the connected approach. But
there are enormous benefits in terms of performance because you spare a query to
the database. In some cases, you can spare even more.

 Let’s start analyzing the best practices to update an object.

 Persisting entity modifications

Persisting updates made to an entity in an ASP.NET environment is tricky. In this sec-
tion, we’re going to analyze the easiest approach. In subsequent sections, we’ll look at
more complex scenarios.

PROBLEM

A customer fills in a page with personal data. When they send it back, the personal
data needs to be updated in the database.

SOLUTION

The solution to this problem is pretty easy. You can create a Customer entity and fill its
properties with values that come from page text boxes. After you create the entity, you
can attach it to the database, mark it as modified, and persist it. The code in the fol-
lowing listing shows you how it’s done.

C#:
var customer = new Customer()
{
 CustomerID = "15455",
 Address = "Address",
 City = "City",

Listing 3.6 Persisting customer modifications using ChangeObjectState

Context instance 1 Page instance 1

Page instance 2Context instance 2

Client

Figure 3.3 Each time a page is processed, a new instance of the page is created.
Each instance uses a new context instance without reusing existing ones.

TECHNIQUE 11
 CompanyName = "CompanyName",

61TECHNIQUE 12 Persisting only selected properties

 ContactName = "ContactName",
 ContactTitle = "ContactTitle",
 Country = "Country",
 Fax = "11111",
 Phone = "222222",
 PostalCode = "00000",
 Region = "Region"
};
ctx.Customers.Attach(customer);
ctx.ObjectStateManager.ChangeObjectState(customer,
 EntityState.Modified);
ctx.SaveChanges();

VB:
Dim customer = New Customer() With {
 .CustomerID = "15455",
 .Address = "Address",
 .City = "City",
 .CompanyName = "CompanyName",
 .ContactName = "ContactName",
 .ContactTitle = "ContactTitle",
 .Country = "Country",
 .Fax = "11111",
 .Phone = "222222",
 .PostalCode = "00000",
 .Region = "Region"
}
ctx.Customers.Attach(customer)
ctx.ObjectStateManager.ChangeObjectState(customer,
 EntityState.Modified)
ctx.SaveChanges()

You’re not going to learn anything new from this code. You’re simply reusing your
knowledge because attaching the entity, marking it as modified, and persisting it is
something you’ve done before.

DISCUSSION

As usual, simplicity comes at a cost. When you use the ChangeObjectState method to
mark an entity as modified, it marks all the properties as modified. The result is that
all the properties are persisted in the database. You have to recreate the entity and
then populate all its properties; otherwise, the empty ones will override the value in
the database, and you’ll lose data. In our example, this isn’t a big problem because all
customer properties are available in the form. But how do you handle cases where you
can’t correctly set all the properties of the entity before it’s persisted?

 Persisting only selected properties

In situations where you don’t have data to populate all an entity’s properties, you have
to find a mechanism that lets you update only the populated properties. With Entity
Framework, you can do this in two ways:

■ By selectively marking which properties must be persisted
■ By creating a stub entity, attaching it to the context, and then setting the prop-

TECHNIQUE 12
erties to persist

62 CHAPTER 3 Integrating Entity Framework and ASP.NET

Let’s explore both ways now.

PROBLEM

In the page, you want customers to be able to modify only the address information.

SOLUTION

As we said, you can use two approaches to accomplish this task. You can create the
entity, fill the properties that must be persisted on the database, and then mark only
those properties as modified. After you take these steps, the entity goes to modified
state. When the SaveChanges method is invoked, only the properties that are marked
as modified are persisted in the database. The following listing shows an example of
this technique.

C#:
var customer = new Customer()
{
 CustomerID = "15455",
 Address = "Address",
 Country = "Country",
 Fax = "11111",
 Phone = "222222",
 PostalCode = "00000",
 Region = "Region"
};
ctx.Customers.Attach(customer);
var entry = ctx.ObjectStateManager.GetObjectStateEntry(customer);
entry.SetModifiedProperty("Address");
entry.SetModifiedProperty("Country");
entry.SetModifiedProperty("Fax");
entry.SetModifiedProperty("Phone");
entry.SetModifiedProperty("PostalCode");
entry.SetModifiedProperty("Region");
ctx.SaveChanges();

VB:
Dim customer = New Customer() With {
 .CustomerID = "15455",
 .Address = "Address",
 .Country = "Country",
 .Fax = "11111",
 .Phone = "222222",
 .PostalCode = "00000",
 .Region = "Region"
}
ctx.Customers.Attach(customer)
Dim entry = ctx.ObjectStateManager.GetObjectStateEntry(customer)
entry.SetModifiedProperty("Address")
entry.SetModifiedProperty("Country")
entry.SetModifiedProperty("Fax")
entry.SetModifiedProperty("Phone")
entry.SetModifiedProperty("PostalCode")
entry.SetModifiedProperty("Region")

Listing 3.7 Explicitly marking modified properties for persistence

Mark entity
as modified

B

ctx.SaveChanges()

63TECHNIQUE 12 Persisting only selected properties

The code is a bit longer than the code in listing 3.6, but it’s extremely expressive. First,
the Attach method attaches the entity to the context. Next, the entity is retrieved
from the state manager, and then the SetModifiedProperty method marks the prop-
erties that must be persisted as modified B. When SaveChanges is reached, only
marked properties are persisted.

 What’s good about this approach is that you can also create an extension method
to cut some lines of code, like in the following listing.

C#:
public static void SetModifiedProperties(this ObjectStateEntry entry,
 params string[] properties)
{
 foreach (var p in properties)
 entry.SetModifiedProperty(p);
}

entry.SetModifiedProperties("Address", "Country", "Fax", "Phone",
 "PostalCode", "Region");

VB:
<System.Runtime.CompilerServices.Extension> _
Public Shared Sub SetModifiedProperties(entry As ObjectStateEntry,
 ParamArray properties As String())
 For Each p As var In properties
 entry.SetModifiedProperty(p)
 Next
End Sub

entry.SetModifiedProperties("Address", "Country", "Fax", "Phone",
 "PostalCode", "Region")

The extension method is quite simple. It accepts an array containing the name of
the properties. Internally, the extension method calls the SetModifiedProperty
method for each of the input properties. The last line of the snippet shows how to
invoke the extension method. As you can see, you just need to pass the properties to
be modified.

 If you’re a fan of strong typing, you can create a smarter extension method that
accepts a lambda expression instead of a string to represent the property name. It’s a
bit more complicated to do, but it’s effective. For brevity’s sake, we won’t show this
method here, but you can find it in the source code at www.manning.com/
ASP.NET4.0inPractice.

 The drawback of updating data this way is that it requires several lines of code. Our
next solution drastically reduces them. First, you recreate the Customer instance and
set only the key properties (such an entity is usually referred to as stub). After that, you
attach the entity to the context and then fill the properties that need to be persisted in
the database. The context automatically marks the entity and those properties as mod-

Listing 3.8 An extension method to specify modified properties easily
ified and persists only them. Figure 3.4 shows this flow.

www.manning.com/ASP.NET4.0inPractice
www.manning.com/ASP.NET4.0inPractice

64 CHAPTER 3 Integrating Entity Framework and ASP.NET

When you understand the flow, understanding the code in the following listing
becomes even easier.

C#:
var customer = new Customer()
{
 CustomerID = "15455",
};
ctx.Customers.Attach(customer);
customer.Address = "Address";
customer.Country = "Country";
customer.Fax = "11111";
customer.Phone = "222222";
customer.PostalCode = "00000";
customer.Region = "Region";
ctx.SaveChanges();

VB:
Dim customer = New Customer() With {
 .CustomerID = "15455"
}
ctx.Customers.Attach(customer)
customer.Address = "Address"
customer.Country = "Country"
customer.Fax = "11111"
customer.Phone = "222222"
customer.PostalCode = "00000"
customer.Region = "Region"
ctx.SaveChanges()

Don’t you think this path is easy to follow and, at the same time, effective? Try it next
time you’re in a similar situation.

DISCUSSION

Using the patterns shown in this section ensures that the application will perform
quickly and well. The second option lets you write few lines of code and ensures read-
ability. But in some situations, you need the full entity to perform a correct update.

Listing 3.9 Persisting modifications of a customer through a stub

New Customer

CustomerId ALFKI

Set other properties

SaveChanges

Context

Attach

Detect modified properties

Persist only modified properties

Figure 3.4 Create
a customer instance
and set its key prop-
erty, and then attach
the instance to the
context, which tracks
modifications to prop-
erties. When persis-
tence is invoked, only
the modified proper-
ties are persisted.
What do you do then?

65TECHNIQUE 13 Persisting an entity using ViewState

 Persisting an entity using ViewState

Several times during project development, we’ve had to hash the user password based
on a salt stored in the entity. (A salt is a randomly generated string that is used to hash
or encrypt another string.) When we created the form to change the password, we
obviously couldn’t show the salt in a form field. So how did we hash the password with-
out the salt? In this section, we propose a solution to the problem.

PROBLEM

Suppose that the customer has a username and a password he uses to log into the sys-
tem. You need to create a page where the customer can modify all their personal data,
including their password. All these changes must be made in a secure way.

SOLUTION

What you can do is serialize the whole entity in the page’s ViewState. You’ll have a
copy of the entity when it was originally read. When data comes back from the client,
you retrieve the entity from the ViewState and attach it to the context.

 After that’s done, you use the salt in the entity to hash the password and populate
the Password property. Then you use data from text boxes to modify only the proper-
ties editable by the customer, leaving the others unchanged. Entity Framework will try
to persist only the modified properties and ignore the ones that haven’t been
touched. The following listing shows the code.

C#:
var c = (Customer)ViewState["c"];
ctx.Customers.Attach(c);
c.Fax = fax.Text;
ctx.SaveChanges();

VB:
Dim c = DirectCast(ViewState("c"), Customer)
ctx.Customers.Attach(c)
c.Fax = fax.Text
ctx.SaveChanges()

This approach has one problem. By default, when you read an entity, Entity Frame-
work doesn’t return a plain instance, but returns a proxy that inherits from that entity.
This proxy overrides property setters to add features like change tracking and lazy
loading (which is why when you modify a property, the entity in the state manager
becomes modified, even if there’s no such code in the property setters).

 The drawback is that proxy instances cannot be serialized into ViewState so you
receive an error during the rendering phase. Fortunately, you can disable proxy cre-
ation and have the plain instance returned. You lose lazy loading and change tracking,
but that’s not a problem here. You can disable proxy creation by setting the Context-
Options.ProxyCreationEnabled property of the context class to false.

Listing 3.10 Persisting modifications using ASP.NET ViewState

TECHNIQUE 13

66 CHAPTER 3 Integrating Entity Framework and ASP.NET

C#:
ctx.ContextOptions.ProxyCreationEnabled = false;

VB:
ctx.ContextOptions.ProxyCreationEnabled = false

Now when you put the entity in the ViewState, you don’t get an error. But, as always,
there’s one last caveat. By default, ViewState isn’t encrypted; the salt reaches the cli-
ent in the clear. To avoid that, just encrypt the ViewState using the following snippet:

<%@ Page ... ViewStateEncryptionMode="Always" %>

With this last snippet, persisting modification in an ASP.NET environment holds no
more secrets for you.

DISCUSSION

Now you know how to store an entity retrieved using Entity Framework into
ViewState. This solution is pretty easy and works fine in most scenarios, but unfortu-
nately, it does have limitations. If the entity contains many properties, the ViewState
becomes too large and slows network performance. What’s worse, encrypting
ViewState requires server resources, which causes further performance degradation.
Even so, you’ll probably use this solution often in your code.

 So far we haven’t talked about an important issue: concurrency. In a multiuser
environment, concurrency must be carefully evaluated.

 Keep concurrency in mind

Imagine the following scenario: Two users retrieve the same customer information
simultaneously. The first user changes the address and saves the data. The second user
updates the customer’s name and also saves the data. The result is that the second
user overwrites the modifications made by the first one; the name is changed, but the
address is overwritten with the old value. Overwriting happens because the second
user initially read the data before it was updated by the first one. Figure 3.5 visually
explains this series of events.

 Handling this issue requires you to enable a mechanism to detect that something
has changed in the interval between database read and database write. More exactly,

TECHNIQUE 14

Customer V1

Customer V1 to V2

Customer V1

User1 User2

Reads customer Reads customer

Saves customer

Saves customer and overwrites
User1 modifications

Figure 3.5 Two users
read the customer data
at the same time. User1
modifies some data and
saves it. User2 modifies
data that’s now old. When
User2 saves the data, he
overwrites the modifica-
Customer V1 tions made by User1.

67TECHNIQUE 14 Keep concurrency in mind

when the user submits data, he must be notified that something changed while he was
editing it.

 This mechanism has a performance cost (negligible in most cases), and code
development and maintenance are more painful for you. Because of these disadvan-
tages, concurrency isn’t something you should account for in all your forms. It’s fairly
rare that two people in the same organization will modify the same data at the same
time (we’ll use the customer example here just for demo purposes). Worry about con-
currency only for critical situations that have a high probability of concurrency and in
which the loss of data will create serious problems.

PROBLEM

Two users are updating information about a customer at the same time. You have to
ensure that the second user doesn’t overwrite data modified by the first user. You also
want the second user to receive a notification if he’s worked on stale data.

SOLUTION

The solution is an optimistic concurrency check.

NOTE A pessimistic concurrency check also exists, but it often creates more
problems than it solves. Entity Framework doesn’t support it and won’t do so
even in future releases.

The concurrency check technique is pretty simple. You create a version column (gen-
erally with the type Timestamp/RowVersion) in the Customer table. This column is
updated each time the row is changed. When you perform the UPDATE, this column is
included in the WHERE clause. If the version is different from what you initially read,
the UPDATE statement doesn’t affect any records because the rows were changed since
you read the data (there’s been concurrency on the data). If the version is the same as
what you initially read, then there was no concurrency. You can see this technique
explained visually in figure 3.6.

 If you can’t modify the table structure to add the Version column, you can config-
ure Entity Framework to include all the columns in the WHERE clause. If at least one

Customer V1

Customer V1 to V2

Customer V1

Customer V1

User1 User2

Reads customer Reads customer

Saves customer

Saves customer

Figure 3.6 Two users read
the same customer at the
same time. User1 saves the
customer and version changes.
User2 saves the customer
changes, but because this user
initially read the old version, he
Get Exception because

version is changed gets an exception.

68 CHAPTER 3 Integrating Entity Framework and ASP.NET

column changed since you read the data, the UPDATE affects zero records and the
concurrency check has worked successfully.

 The great thing is that Entity Framework does most of the work for you. All you
have to do is specify which properties to include in the concurrency check and then
handle the exception that’s raised when a concurrency problem occurs.

 Because the Northwind database doesn’t have a Version column, we need to use all
the properties for the concurrency check. To do that, open the designer, select all the
properties of the entity, open the Properties window, and set the Concurrency Mode
property to Fixed. Now, each time you update the Customer entity, the original value
of all properties is included in the WHERE clause.

 We say the original value because the state manager keeps the current value of the
properties and what their values were at the moment the entity was attached to the
context. The values of the properties when the entity is attached to the context are the
original values. For our purposes, the best way to work is to implement the ViewState
pattern that we discussed in technique 13. That pattern ensures that the state man-
ager has the original values that it reads from the database and the new ones that
come from the page.

 If you have a Version column, you can set the mapped property as the only one to
perform concurrency check on. You don’t need to keep the entity in the ViewState
but you need the version property value so you can follow the patterns that we talked
about in techniques 11 and 12.

 To understand whether there was a concurrency exception, you simply have to
catch System.Data.OptimisticConcurrencyException, as in the following listing.

C#:
try
{
 ctx.SaveChanges();
}
catch (OptimisticConcurrencyException ex)
{
 //handle exception
}

VB:
Try
 ctx.SaveChanges()
Catch ex As OptimisticConcurrencyException
 'handle exception
End Try

Handling concurrency isn’t difficult at all, is it?

DISCUSSION

Concurrency management is an important feature in many applications. Entity Frame-

Listing 3.11 Handling concurrency exception
work was designed with this concept in mind and makes concurrency management easy.

69TECHNIQUE 15 Optimizing fetching

The fact that you just need to mark the concurrency properties and handle an exception
is a clear demonstration of its simplicity.

 We want to point out one more thing: the methods we’ve described in this section
are valid for deletions, too. Although deleting an entity requires you to set only key
properties, the same update rules with respect to concurrency are followed.

 You’ve now mastered another important piece of data access using Entity Frame-
work and ASP.NET. You can correctly persist modifications made to objects in a single
roundtrip to the database. You’ve taken a first step toward good performance, but just
the first. Now let’s take a few more steps down that road.

3.3 Optimizing performance in an ASP.NET environment
Data access performance is a key aspect of any application. This statement holds espe-
cially true for web applications where a single weakness can take down an entire site.
We’ve seen countless applications that run slowly only because some pages don’t
respect basic rules about data access. In this section, we’re going to show you some
tricks to ensure the best performance for your data access code.

 Optimizing fetching

By default, when you query for an order, you get the Order entity without the details
or the customer information. When you access the Order_Details property, a query
is issued to the database to automatically retrieve the details without you having to do
anything. This technique is known as lazy loading.

NOTE Lazy loading works only if the context is still alive. If the context has
been disposed of, accessing the Order_Detail property throws an exception.

If you don’t know in advance whether you’ll need to fetch details, lazy loading might
be a good choice. If you already know you’ll need them, you better load the details in
the same query in which the order is loaded. That technique is known as eager loading.

 Overanalyzing lazy loading is useless. It’s automatically done when you access a
navigation property without you needing to do anything else. For this reason, in this
section, we’ll talk about eager loading only.

PROBLEM

You have to create a form where orders are shown in a grid. Each order has a row in
the grid. An inner grid that contains the details is inside the row. For this example,
you already know that you’ll need orders and details, so you need to extract them
together.

SOLUTION

Retrieving a graph of entities from the database is simple, thanks to the Include
method of the ObjectSet<T> class. It accepts the name of the property that must be
loaded along with the main entity, and the game is done. The next snippet shows how
to do that.

TECHNIQUE 15

70 CHAPTER 3 Integrating Entity Framework and ASP.NET

C#:
var orders = ctx.Orders.Include("Order_Details");

VB:
Dim orders = ctx.Orders.Include("Order_Details")

The best part is that the Include method returns an ObjectQuery<T> instance (which
is the base class of ObjectSet<T>), so we can concatenate LINQ to Entities operators
and other Include calls.

 If you’ve loaded the details and the customer information for each order, you can
write the following query:

C#:
var orders = ctx.Orders.Include("Order_Details").Include("Customer");

VB:
Dim orders = ctx.Orders.Include("Order_Details").Include("Customer")

In this case, we’re retrieving only entities that are directly connected with the order. If
you also need to retrieve the product linked to the details, you need to traverse the
object model:

C#:
var orders = ctx.Orders.Include("Order_Details.Product");

VB:
Dim orders = ctx.Orders.Include("Order_Details.Product")

Using the Include method isn’t difficult at all.

DISCUSSION

Eager loading data is one of the best ways to optimize performance. Suppose you
have 100 orders. If you need their details and load them on demand, you end up
triggering 100 queries. If you need related customer information too, retrieving the
orders causes 100 more queries to execute. You end up with 201 queries to fetch
data that you could get in a single request.

 Eager loading isn’t bulletproof. It pulls a lot of data out of the database and per-
forms joins that might be heavy on the database. Always test your application carefully
on a case-by-case basis to choose the best way to load data: lazy loading or eager loading.

 Now let’s examine how to avoid a common pitfall in query execution.

 Avoiding multiple query execution

Many times you’ll create a LINQ to Entities query and then iterate over its result. The
iteration causes the query to execute. If you iterate over the query twice, the second iter-
ation triggers a new query to the database instead of reusing the previous query data.

PROBLEM

You have to iterate over the result of a query multiple times. Because you know such a
query always returns the same data, you don’t want the query to be executed each

TECHNIQUE 16
time.

71TECHNIQUE 17 Optimizing queries that retrieve a single element

SOLUTION

The solution to this problem is pretty easy. The first time you perform the query, you
download data into a List<T> class. All the iterations use the in-memory list instead of
the query result. The following listing shows how you can do this easily.

C#:
var customers = ctx.Customers.ToList();
foreach (var c in customers) { ... }
foreach (var c in customers) { ... }

VB:
Dim customers = ctx.Customers.ToList()
For Each c As var In customers
Next
For Each c As var In customers
Next

This simple tweak really makes a difference. Unexpected query execution is one of
the most common causes of slow performance that you’ll encounter in applications.

DISCUSSION

Solving the problem of multiple query executions isn’t difficult at all. Always remem-
ber that LINQ to Entities queries are executed only when data is actually used.

 Now let’s learn another trick and discover a way to optimize queries that look for a
single entity.

 Optimizing queries that retrieve a single element

The easiest way to retrieve a single element is to search its key and use the LINQ to
Entities First method. Even if the object has already been queried once and is in the
state manager, Entity Framework reissues the query each time the First method is
used. Data already exists in the state manager; because Entity Framework reuses the
state manager entity, it discards the data from the database. This process is a waste of
resources that you can avoid.

PROBLEM

A GetCustomerById method is called frequently in your code. This method uses the
LINQ to Entities First method to access the customer. You have to optimize the per-
formance of this method to avoid a query against the database.

SOLUTION

Even this problem has a relatively simple solution. The ObjectContext class has a
GetObjectByKey method that lets you retrieve a single object by its key. Its peculiarity
is that before going to the database, this method asks the state manager if an entity of
that type with the given key is already in memory. If this query is true, the method
returns the in-memory entity without going to the database; otherwise, it queries the
database and puts the entity in the state manager. Figure 3.7 shows this pattern.

Listing 3.12 Avoiding multiple queries

TECHNIQUE 17

72 CHAPTER 3 Integrating Entity Framework and ASP.NET

Invoking the GetObjectByKey method is a bit cumbersome. You have to create an
EntityKey instance (a class that the state manager uses to represent the key of an
entity) and pass in the entity set, the name of the primary key, and its value. After that,
you pass the EntityKey object to the GetObjectByKey method, which returns an
object instance that you have to manually cast to the real type. The following listing
transforms this scenario into code.

C#:
var c = (Customer)ctx.GetObjectByKey(
 new EntityKey("NorthwindEntities.Customers", "CustomerID", "ALFKI"));
var c2 = (Customer)ctx.GetObjectByKey(
 new EntityKey("NorthwindEntities.Customers", "CustomerID", "ALFKI"));

VB:
Dim c = DirectCast(
 ctx.GetObjectByKey(
 New EntityKey("NorthwindEntities.Customers", "CustomerID",
 "ALFKI")),
 Customer)
Dim c2 = DirectCast(
 ctx.GetObjectByKey(
 New EntityKey("NorthwindEntities.Customers", "CustomerID", "ALFKI")),
 Customer)

The first statement retrieves the entity from the database, whereas the second state-
ment retrieves the entity from the state manager, sparing a database roundtrip.

 If the object doesn’t exist on the database, the GetObjectByKey method throws an
exception. To keep that from happening, you can use the TryGetObjectByKey
method. We encourage the use of GetObjectByKey and TryGetObjectByKey as

Listing 3.13 Retrieving an entity using the GetObjectByKey method

Put entity in
memoryDatabase

Entity already
in memoryQuery

Yes

No

Returns in memory entity

Figure 3.7 A query looks for an entity by its key. If the entity is in memory, it’s returned
immediately. If it’s not in memory, the GetObjectByKey method retrieves it from the
database and puts it in memory.
another little precaution that, performance-wise, really makes the difference.

73TECHNIQUE 18 Disabling change tracking

DISCUSSION

You’ve seen several little tricks that you can adopt to make your applications faster.
Even though GetObjectByKey and TryGetObjectByKey are a bit cumbersome to use,
their benefits are enormous and must not be ignored.

 Next up, another big trick that boosts performance: disabling change tracking.

 Disabling change tracking

In chapter 2, we talked about the change tracking mechanism. In section 3.1, we dis-
cussed the Identity Map pattern. We also explained how an identity map can save your
life in certain circumstances. Both mechanisms slow down performance, especially
the identity map check. Let’s see how you can make things better.

PROBLEM

You need to improve the performance of the pages. Specifically, you need to increase
the performance of database reads.

SOLUTION

To improve query performance, you can disable the change tracking mechanism. Dis-
abling it means that the state manager doesn’t need to keep track of each object, and
it doesn’t perform the identity map check either. Although it’s an important feature,
sometimes it’s useless, so disabling it won’t cause a problem (for example, a page that
shows all customers doesn’t need change tracking or an identity map).

 Disabling such features is extremely easy and improves performance to an incredi-
ble extent. To disable change tracking, you have to set the MergeOption property of
the entity set being queried to the value System.Data.Objects.MergeOption.
NoTracking, like in the following snippet:

C#:
ctx.Customers.MergeOption = MergeOption.NoTracking;

VB:
ctx.Customers.MergeOption = MergeOption.NoTracking

We’ve carried out a test and performed the same query 50 times in both configurations.
The result is that by disabling change tracking and identity mapping, the code is 32%
faster. This result is a huge leap in performance, don’t you think?

DISCUSSION

Yet another brilliant way to improve performance. Aren’t you falling in love with
Entity Framework? You probably are. Even though it’s wonderful, always keep in mind
the three tricks you’ve learned in this section. When you’re experiencing perfor-
mance problems in your applications, these tricks are the most likely solution.

 Entity Framework is a vast subject. What you have now is a strong base to start using
it, but you’ve still got a lot to learn. If you want to deepen your knowledge of Entity
Framework, read Entity Framework 4.0 In Action, published by Manning. We wrote that
book too, and it’s available at http://www.manning.com/mostarda.

TECHNIQUE 18

http://www.manning.com/mostarda

74 CHAPTER 3 Integrating Entity Framework and ASP.NET

3.4 Summary
It’s been a long trip, but now you know how to get the best out of ASP.NET and Entity
Framework. You have a deep knowledge of Entity Framework, and you know how to
get the most out it in an ASP.NET environment. You learned how to handle the context
lifecycle to avoid nasty surprises. You can handle the context to update entities in a
disconnected environment without causing extra hits to the database. Finally, you dis-
covered how to optimize performance in several ways.

 Now that you have the knowledge to write better code to manipulate data, we can
completely change the subject and move on to ASP.NET Web Forms development.

Part 2

ASP.NET Web Forms

You’ve completed part 1, where you learned the fundamentals of ASP.NET. In
part 2, we’re going to take a deeper look at ASP.NET Web Forms, one of the pre-
ferred models among ASP.NET developers for building the UI. ASP.NET Web
Forms is the original model provided by ASP.NET. It combines the ease of use of
the traditional rapid application development (RAD) environment with the
power of .NET Framework and its object-oriented nature.

 Chapter 4 takes a tour of ASP.NET Web Forms, covering the most common
scenarios. You’ll also learn about the new features offered by version 4.0, how to
fully use master pages, and how to leverage URL routing.

 Chapter 5 deals with one of the most common activities for a developer:
using data binding and how to fully integrate this feature in your applications.

 Chapter 6 covers an important extensibility point in ASP.NET Web Forms and
shows how to build custom controls. You’ll start with the basics and end up ana-
lyzing complex scenarios.

 Finally, chapter 7 explains how to control the markup generated by ASP.NET.
You’ll find out how to produce better markup and how adaptive rendering
works.

Building the
 user interface with

 ASP.NET Web Forms
All the chapters before this one have been about fundamentals: how ASP.NET works
and how to access data. Now that we’ve addressed the basics, it’s time to focus on
other matters. This chapter begins the part of the book dedicated to topics related
to the user interface (UI).

 The approach that’s most used to build a user interface with ASP.NET is to use a
Web Form. The Web Form was the first abstraction introduced to create the UI for

This chapter covers
■ New features in Web Forms 4.0
■ ClientID and markup generation
■ Master pages
■ URL rewriting
■ URL routing
77

the ASP.NET application and has its roots in its integration with Visual Studio.

http://msdn.microsoft.com/en-us/library/system.web.routing.irouteconstraint.aspx

78 CHAPTER 4 Building the user interface with ASP.NET Web Forms

 As its name suggests, Web Forms are the result of some tentative steps made by
Microsoft in the early 2000s to apply the typical Windows development paradigm to
web applications. Windows developers are used to dragging objects on the UI surface
and programming them accordingly. This approach is useful for implementing event-
based development because each component on the design surface can be pro-
grammed that way. Event-based programming is common in a lot of development
technologies; from VB 6 to Delphi, generations of developers had been programming
this way to increase productivity.

 So, what’s a Web Form? It’s an abstraction layer built on top of the ASP.NET core
infrastructure that lets the developer build the UI without needing to understand
HTTP (the transfer protocol used in the Internet for web pages) or HTML (the
markup language).

 The ASP.NET team tried to achieve a full abstraction; in reality, a full abstraction
isn’t so easy to achieve. It’s important to understand both HTTP and HTML, and Web
Forms can help you increase productivity, but productivity comes at the cost of less
control on markup output. To give you back some of this control, ASP.NET 4.0 pro-
vides a better markup engine and the most advanced techniques to mitigate the issues
of previous Web Form incarnations.

 This chapter is dedicated mainly to the new features available in ASP.NET 4.0, with
some mention of existing ones. Some features that were present in previous versions
can be useful in your day-to-day work, so we want to touch on those as well. We should
mention here that to preserve compatibility with previous versions, you have to opt in
the new features.

 If you’re not familiar with Web Forms, go back and look at chapter 1 to get some back-
ground. This chapter is based on specific topics and doesn’t include basic information.

4.1 The UI and Web Forms
Web Forms are the most common paradigm used to create ASP.NET pages. They’ve
been available since version 1.0, and they’re based totally on an event-driven
approach. The name recalls the characteristic of an ASP.NET page: to be composed of
a maximum of one server form at a time. You can embed non-server forms at your discre-
tion, but only one of them is the server form. You can also have a page that doesn’t
have a server form. You need one only if you’re planning to include a server control
that needs PostBack (or that explicitly requires it). (If all this sounds strange to you,
take some time and review chapter 1).

 Most developers use Web Forms to build the GUI in a web application. Even if you
decide to opt for MVC (outlined in chapter 8), many of the ideas we’ll present here
will still be valid. Remember, though, that the reason behind the success of ASP.NET is,
without a doubt, Web Forms and their simplicity. ASP.NET MVC looks cool and promis-
ing (and it is), but it’s relatively new. Although the Web Form model is fully extensi-
ble, it’s not designed to be used in scenarios where you need 100% markup control or
testability. In those cases, ASP.NET MVC is the better choice.

http://support.microsoft.com/kb/980368
http://msdn.microsoft.com/en-us/library/system.web.routing.aspx
http://msdn.microsoft.com/en-us/library/system.web.routing.aspx
http://msdn.microsoft.com/en-us/library/system.web.routing.aspx
http://urlrewriting.net/
http://urlrewriting.net/
http://urlrewriting.net/
http://www.urlrewriter.net/

79The UI and Web Forms

ASP.NET 4.0 includes new features related to Web Forms, especially in the area of
markup. Beginning with this version, server controls can produce better markup—
leading to better adherence to web standards—and they play nicely in environments
where accessibility is a requirement (mostly in the public sector). This section focuses
specifically on new features offered by ASP.NET 4.0.

4.1.1 New features in Web Forms 4.0

ASP.NET 4.0 isn’t a revolutionary release, but it contains many innovations in the area
of markup generation. Before we talk about these innovations, let’s review how
markup generation works.

 When you place a server control in the page, the control markup is generated as
part of the Render method, which is called recursively from the page, until the last
nested server control has been reached. This action produces the final output, which
is sent to the browser. You can see this process at work in figure 4.1.

 You have little control over how a server control generates its output because gen-
erally you enter an XML fragment that isn’t closed to the final HTML markup. Lack of
control is the price you pay for the benefit of the abstraction provided by ASP.NET.

Page

Container control

Control A

Control B Render()

XHTML

Figure 4.1 Markup generation is done by server controls. Each control has its own
generation strategy; the page requests that each control generate its markup. If the

HTML vs XHTML and HTML 5.0.
Although they differ in some key ways, we tend to consider HTML and XHTML to be
similar in meaning. XHTML is considered a stricter implementation, where the final
markup composing the page must be a valid XML document. HTML is considered eas-
ier to deal with. Even though you have to produce a valid XML document in the latest
versions, producing one requires only that you obey some simple rules (tags can’t be
nested and must be closed, special characters must be escaped, and so on).

HTML 5 promises to be a synthesis, combining the pros of the two. In this book, we’ll
generally use HTML to refer to the markup because much of our discussion can be
applied to both HTML and XHTML. HTML 5 is not yet supported directly by ASP.NET.

You can find more information about HTML 5 at http://www.w3.org/TR/html5/.
page has inner controls, each one repeats this action with its own child controls.

http://msdn.microsoft.com/en-us/library/system.web.routing.pageroutehandler(VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.web.routing.pageroutehandler(VS.100).aspx
http://www.w3.org/TR/html5/

80 CHAPTER 4 Building the user interface with ASP.NET Web Forms

ASP.NET 4.0 produces markup that’s compatible with HTML 4.01 or XHTML 1.0 Strict,
and markup that’s mostly compatible with XHTML 1.1. ASP.NET 4.0 doesn’t target
HTML 5 directly, but it’s possible to produce specific markup in some situations by
writing custom controls or by writing the corresponding markup for a specific feature,
like for the new <audio /> or <video /> tags.

 Getting back to what’s happening in figure 4.1, the rendering is controlled by a
simple attribute that’s set on the page section, in the web.config file:

<system.web>
 <pages
 controlRenderingCompatibilityVersion="4.0"/>
</system.web>

By default, the value of this attribute is 3.5, but if you set it to 4.0, the rendering
engine behaves differently:

■ XHTML 1.0 Strict markup is produced, and the xhtmlConformance section in
web.config is ignored.

■ The enabled attribute is rendered only by tags that support it (for example,
<input />). When this attribute is applied to other controls, such as Label, it’s
not rendered in the markup (represented by a tag), but a CSS style
attribute is added so that you can customize this behavior.

■ The <div /> tags created inside hidden input fields that ASP.NET generates are
output with <div class="aspNetHidden">...</div> around them. This output
makes it easier to hide these types of controls by using a CSS.

■ All the controls that inherit from Table or Image don’t render the border
attribute.

■ Validation controls don’t render any inline style. In previous versions, the red
color was hard coded, and if you needed to specify another color, the CSS rules
did take effect because the local value overrode the style definition.

The Menu and TreeView controls produce more correct markup, to better comply with
accessibility and semantic markup. In general, a lot of other controls have taken
minor steps in the same direction, to improve adherence to web standards. You’ll find
new features for ViewState handling, but we’ll cover those in detail in chapter 13.

 Since ASP.NET 3.5 Service Pack 1 (SP1), the action attribute on a Web Form is hon-
ored and is reflected in the generated markup. If you’ve skipped version 3.5 SP1, take
a look at your pages to ensure that you don’t include this attribute, unless you want to
redirect the PostBack to another URL.

ASP.NET 4.0 introduces a new set of opt-in features, not available in version 3.5,
that provide better markup generation. Let’s look at those now.

http://www.urlrewriter.net/
http://www.urlrewriter.net/

81TECHNIQUE 19 Better markup generation in ASP.NET 4.0

 Better markup generation in ASP.NET 4.0

In the previous section, we talked about the new features for markup generation.
Other controls also benefit from this new effort, but to avoid conflicts with existing
applications, you have to opt them in.

PROBLEM

You want to adhere to web standards. Maybe you want better accessibility or to pro-
duce correct markup. Your objective is to take advantage of the new feature offered by
ASP.NET 4.0 and to opt-in for better markup generation.

SOLUTION

To improve site markup, part of the problem with certain controls in ASP.NET 3.5 is
that <table /> tags are rendered around them, which controls the visual style of the
control. The truth is that you don’t need tables to control appearance. You can use
<div /> tags to do that, and with good results.

 Previous versions of ASP.NET weren’t designed with control over markup in mind.
If you needed real control over markup, you had to use basic controls or reproduce
some of the advanced behavior of the controls by hand. This situation meant that use-
ful controls with flexible features, like Login or FormView, weren’t used often because
they didn’t generate good markup.

 It’s true that you can write a control adapter to modify the control output, but this
isn’t easy to do and has some drawbacks. Using a control adapter keeps you from
using adaptive rendering in the way it was designed.

ADAPTIVE RENDERING IN ASP.NET You can alter markup control, but it’s not
easy—you’ll need advanced knowledge of building custom controls. We’ll
cover adaptive rendering control adapters in chapter 7.

Version 4.0 introduces a new attribute named RenderOuterTable that modifies the
control output. The default value of RenderOuterTable is true. When it’s set to
false, a specific set of controls doesn’t output a <table /> tag, but a <div /> tag
instead (or it results in no container at all, depending on the control). The controls
that implement this attribute are listed in table 4.1.

Table 4.1 Server controls that implement the new markup generation

Name Description

ChangePassword Used with the Membership API to change the user password (see chapter 11).

CreateUserWizard Used with the Membership API to register a new user (see chapter 11).

FormView Used to display data coming from a database (see chapter 5).

Login Used with the Membership API to log in a user (see chapter 11).

PasswordRecovery Used with the Membership API to recover the user password (see chapter 11).

TECHNIQUE 19
Wizard Displays a generic wizard, composed of steps and a final summary.

82 CHAPTER 4 Building the user interface with ASP.NET Web Forms

You can modify the control output by using code like this:

 <asp:Wizard runat="server" RenderOuterTable="false">
 </asp:Wizard>

We’ve used the Wizard control in this example. The Wizard control in version 4.0
gives you full control over markup that’s generated for each step. You use a Layout-
Template, which has been available in the ListView control since ASP.NET 3.5 SP1.
The code is shown in the following listing. This approach is applicable to the Create-
UserWizard control too, which inherits from Wizard.

<asp:Wizard ID="MyWizard" runat="server"
 RenderOuterTable="false" DisplaySideBar="false">
 <LayoutTemplate>
 <asp:PlaceHolder ID="headerPlaceholder" runat="server" />
 <asp:PlaceHolder ID="sideBarPlaceholder" runat="server" />
 <asp:PlaceHolder ID="wizardStepPlaceholder" runat="server" />
 <asp:PlaceHolder ID="navigationPlaceholder" runat="server" />
 </LayoutTemplate>
 <StartNavigationTemplate>
 <p><asp:LinkButton ID="StartNextButton" runat="server"
 CommandName="MoveNext" Text="Next" /></p>
 </StartNavigationTemplate>
 <WizardSteps>
 <asp:WizardStep ID="WizardStep1" runat="server" Title="Step 1">
 Step 1
 </asp:WizardStep>
 <asp:WizardStep ID="WizardStep2" runat="server" Title="End">
 End!
 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

If you browse the resulting page with one of the previous versions of ASP.NET, you’ll
see markup similar to this:

<table cellspacing="0" cellpadding="0" id="MyWizard"
 style="border-collapse:collapse;">
 <tr>
...
 </tr>
</table>

In version 4.0, literally no markup is generated by the control because only the tem-
plates are rendered. The visual result, using CSS, is similar to what you would see in
previous versions, as shown in figure 4.2

 This new feature is provided by a new LayoutTemplate property. You can specify
the markup of the steps as in previous versions, but you can also indicate the template
that’s used by the common layout. The results are the exact reflection of the HTML
fragment we wrote, and you’ve got great control over the generated markup.

Listing 4.1 Using the new Wizard control features to enhance markup

83TECHNIQUE 20 Controlling ClientID generation

DISCUSSION

We picked Wizard to use in this scenario because in version 3.5 it provided probably
one of the worst examples of generated markup. Now, in version 4.0, it shines with
great flexibility and gives you tremendous control over the generated markup.

 Keep in mind that many of the controls that we’re not specifically discussing here
have made minor tweaks in the current version and that every control has its own
story in terms of flexibility. In the majority of cases, the new features presented here
can help you achieve better adherence to web standards and accessibility.

 The next scenario covers a different aspect of this problem, more related to com-
bining ASP.NET with client-side JavaScript code: how to control the IDs that server con-
trols generate. This issue is related to controlling markup, but is more specifically
about working |with JavaScript.

 Controlling ClientID generation

Prior to ASP.NET 4.0, playing well with JavaScript wasn’t easy. Server controls automati-
cally generated the ID that’s associated with tags. This autogenerated ID differed from
the original one that was applied to the tag. Version 4.0 has a new feature specifically
designed to take control over ID generation.

 This feature is especially useful when you’re dealing with container controls, which
influence the child IDs. The generated ID is composed such that conflicts are avoided,
much like what happens if you use ContentPlaceHolder in master pages.

PROBLEM

When you’re referencing a server control in JavaScript, you can’t use the designated
server-side ID. Frequently, the corresponding ClientID that’s generated at runtime is
different than the server-side ID, depending on its containers. For generic JavaScript
routines, you need a solution to simplify this behavior.

Figure 4.2 The appearance of
the Wizard control markup is
similar in ASP.NET versions 3.5
SP1 and 4.0. The 4.0 markup is
much cleaner, though.

TECHNIQUE 20

84 CHAPTER 4 Building the user interface with ASP.NET Web Forms

SOLUTION

This solution isn’t limited specifically to JavaScript; it’s applicable to CSS styles, too.
Even though it’s not always a good idea to apply a style directly to a control ID, it
might be helpful in specific cases. Maybe you can’t modify the CSS, or you want to
reuse the same style in different kinds of applications (where ASP.NET ones are only
part of the picture).

 Here’s a basic example of the problem:

<p><asp:Label ID="MyLabel" runat="server" /></p>

<p>ClientID of MyLabel is: <%=MyLabel.ClientID %></p>

In this situation (as in previous versions of ASP.NET) a control ID will be autogene-
rated by default and will be similar to this markup:

The ID is composed by concatenating the different container IDs: ctl000 is the page
ID, Body is the ContentPlaceHolder ID, and MyLabel is the real control ID.

TIP You can read more about how the ClientID is composed on naming
containers at http://mng.bz/397U.

It’s clear that the ID will vary, depending on the final hierarchy of controls in the page.
This behavior isn’t flexible for our client-side code. To take care of this problem,
ASP.NET 4.0 introduces a new property, called ClientIDMode. The different values it
can take are listed in table 4.2.

Let’s change our previous snippet to include the following one:

Table 4.2 ClientIDMode property values

Value Description

AutoID The default value for a page. Indicates that the same generation algorithm as in
ASP.NET 3.5 SP1 should be used.

Static This value forces the control to use the specified ID, ignoring the containers. This
value isn’t intended for data-bound controls with multiple children because it will gen-
erate duplicated IDs.

Predictable Useful in data-bound controls, the ID is generated by concatenating the ClientID
value of the parent naming container with the ID value of the control.

If the controls generate multiple children, you can specify a ClientIDRowSuffix
property. This property specifies text that’s appended at the end of the generated ID.
If the property value is left blank, a sequential number is used.

Inherit As the name suggests, this value causes the ID that is generated to inherit the
behavior of the container. This value is the default for server controls (which continue
to work as in ASP.NET 3.5 SP1).
<p><asp:Label ID="MyLabel" runat="server" ClientIDMode="Static" /></p>

http://mng.bz/397U

85TECHNIQUE 20 Defining a common UI: using master pages

Now the value will be rendered differently:

As you can imagine, the ClientIDMode property is helpful when you’re dealing with
JavaScript code or you need to enforce CSS in specific scenarios. Note that the name
attribute isn’t influenced by this property and remains the same, as in this example of
an <input /> tag:

<input name="ctl00$Body$MyName"type="text" id="MyName" />

You can use the ClientIDMode property whenever you need to take full control of the
real IDs that are generated at runtime, with no limitations. AutoID is the default value
for pages and Inherit is the default for controls. Your pages and controls will behave
as they did in ASP.NET 3.5 SP1 and you won’t break your code. We’re going to cover
the Predictable value in chapter 5. This value is used in data-bound scenarios.

DISCUSSION

Being able to control the generation of the ClientID is one of the most anticipated—
and useful—features in ASP.NET 4.0 Web Forms. It gives you, the developer, real con-
trol over markup. Another common pitfall of Web Forms has disappeared.

 Not limited to ASP.NET Web Forms, but built for the first time for this architecture,
master pages maintain a common look in a web application. We’re going to explore
their features in the next section.

4.2 Defining a common UI: using master pages
Master pages can be used by both Web Forms and ASP.NET MVC, and provide a com-
mon design surface for different pages. Their purpose is to simplify the sharing of a
given UI across the same application by letting the developer compose different pages
with a common base.

 The magic behind master pages is performed by a set of entities:

■ The master page file (.master)
■ The ContentPlaceHolder control, used to represent the content placeholder

in a master page
■ The Content control, which contains the local page content that will be substi-

tuted in the generated page by combining the master page ContentPlace-
Holder with the local Content controls

You can have multiple master pages in a given application. You can set them in the fol-
lowing ways:

■ Directly in the @Page directive, using the MasterPageFile attribute
■ Programmatically, in the PreInit event of Page
■ In web.config, under configuration\system.web\pages

Figure 4.3 shows a schema of how master page substitution works against a page.

86 CHAPTER 4 Building the user interface with ASP.NET Web Forms

Most of the difficulties involved in master page substitution are taken care of by Visual
Studio, so our focus will be on two more advanced and interesting techniques: using
nested master pages and setting them programmatically.

 Using nested master pages

When you’re dealing with a complex solution, you typically separate a site into differ-
ent sections, where every section has specific features. Nested master pages come to
the rescue in this kind of scenario. They let you componentize your solution, but at
the same time maintain the exact look-and-feel across the various parts of your site.

 Nested master pages have been supported in the runtime since ASP.NET 2.0 and by
Visual Studio since version 2008 (with ASP.NET 3.5). Visual Studio 2010 increases the
usability of nested master pages, and ASP.NET 4.0 provides the same features as previ-
ous versions did. Nesting master pages is a hot topic among developers, so we’ve
decided to include this scenario in the book even though it’s not entirely new to 4.0.
Nested master pages componentize your application, differentiate the UI based on the
section the user is in, and maintain the same behavior across sections.

PROBLEM

Our objective is to use a main master page that’s shared by other master pages. Each
master page will be specific to a different section. We also need to differentiate them
in some way, across sections.

SOLUTION

If you want to nest a master page inside another one, you have to take care of some
details. Let’s take a deeper look to understand the possibilities.

 First of all, a master page can itself have a master page. Practically speaking, you
can assign the MasterPageFile property of the @Master directive to another master
page, as you’ll do for the @Page one.

 To start, build a common master page. We’ll call this master page the root master
page. The root page is the lowest common denominator for all sections. Other pages
can use it directly, so we’ll keep it simple and usable.

 The rule to obey is simple: you must give your ContentPlaceHolder controls inside
the nested master page names that are identical to the names of the ContentPlace-

Site.Master Page.aspx

Figure 4.3 Master page behavior and architecture. The master page contains blocks
of information that are substituted from the page. The result is a page that contains
both the master page structure and the page content.

TECHNIQUE 21
Holder controls inside the root master page. You’ll be able to switch easily from one

87TECHNIQUE 21 Using nested master pages

master page to another and maintain the same features across them. The first master
page is shown in the following listing.

<%@ Master %>
...
<head runat="server">
 <title></title>
 <link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />
 <asp:ContentPlaceHolder ID="HeadContent" runat="server" />
</head>
<body>
...
 <div class="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server"/>
 </div>
...
 </body>
</html>

The idea behind this master page is to host as many entry points as possible B C to
increase flexibility over specific nested master pages. Listing 4.3 contains a nested
master page specifically designed for a hypothetical article section of a website, where
the area on the right side of the layout is fixed across the application and the central
part (the body) can be overwritten from the root master page.

<%@ Master MasterPageFile="Root.master" %>

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <h2>Articles</h2>

 <asp:ContentPlaceHolder ID="MainContent" runat="server" />

 <div class="rightCol">
 <h2>This is the right container</h2>
 <p>Some stuff here</p>
 </div>
</asp:Content>

In this master page, we’re providing some specific content for the local master page (a
menu and a header), but we’re leaving the ContentPlaceHolder controls exactly the
way they’re defined in the root master page. This trick lets you change the master page
more easily because the placeholders maintain the same name across different master
pages. Notice that the ID and the ContentPlaceholderID are identical, as they must be.

 Figure 4.4 shows what Visual Studio 2010 looks like at design time. As you can see,
using master pages in this way is fully supported.

 You can nest more than two master pages, using the same technique. Obviously, it’s
better to limit the total number of nested master pages so the Page Parser can avoid

Listing 4.2 Markup for Root.Master

Listing 4.3 Articles.Master enhances Root.Master layout

Header placeholder

Body placeholder

B

C

doing extra work.

88 CHAPTER 4 Building the user interface with ASP.NET Web Forms

This feature is useful and has no limits except your own needs and creativity.

DISCUSSION

This solution isn’t difficult to implement, but it shows you the power of master pages.
You can easily apply a basic user interface design to the whole site, but differentiate it
from section to section, with minimal effort. There’s nothing more to add to complete
this solution; the results are clear and the code is simple.

 On a similar note, the next scenario is dedicated to a side issue you’ll encounter
when you’re dealing with master pages: how to apply them programmatically, in
response to specific needs.

 Setting a master page programmatically

One of the common problems in modern applications is that users demand more
control over the application, typically using a control panel to manage the organiza-
tion of the UI. Programmatically setting the master page can help you implement
this feature.

PROBLEM

You want to implement a simple control panel to programmatically define the master
page used at runtime by choosing from a list of available master pages.

SOLUTION

You can specify master pages programmatically by setting the MasterPageFile prop-
erty of the Page class. Because the master page changes the page’s control tree, you

Figure 4.4 Visual Studio 2010 fully supports nested master pages at design time. The master page
content is grayed, so you can visually identify the page content.

TECHNIQUE 22

89TECHNIQUE 22 Setting a master page programmatically

need to apply it before the Init event, using the PreInit event. This special event was
added in ASP.NET 2.0 to perform this kind of action. Even though it’s not new to
ASP.NET 4.0, it is useful and we decided to include it here to complete the discussion.

 To begin implementing this feature, define a base class to represent the common
page behavior. The code is shown in the following listing.

C#:
public class BasePage: Page
{
 protected override void OnPreInit(EventArgs e)
 {
 string masterPage =
 File.ReadAllText(
 Server.MapPath("~/App_Data/MasterPage.config"));
 if (!string.IsNullOrEmpty(masterPage))
 {
 MasterPageFile = masterPage;
 }

 base.OnPreInit(e);
 }
}

VB:
Public Class BasePage
 Inherits Page
 Protected Overloads Overrides Sub OnPreInit(ByVal e As EventArgs)
 Dim masterPage As String =
 File.ReadAllText(
 Server.MapPath("~/App_Data/MasterPage.config"))
 If Not String.IsNullOrEmpty(masterPage) Then
 MasterPageFile = masterPage
 End If

 MyBase.OnPreInit(e)
 End Sub
End Class

The MasterPage is read from the special .config file B, then it’s assigned to the Mas-
terPage (.Code in Text) property of the current Page (.Code in Text) instance. You’ll
associate this simple code with every page in the application by replacing the default
inherited class System.Web.UI.Page with this one. In figure 4.5 you can see the run-
ning page.

 To specify the master page, you need to write a simple page that can extract the file
list. To simplify development, we’re going to save the master pages under a common
directory named Masters, which is under the root. To save the value, all you need is to
get the path and save the file to a place from which the code in listing 4.4 will read it.
In a production application, you can enhance this feature by saving the value in a

Listing 4.4 The base page reads from .config of the master pages and applies it

Read path
from file

B

Assign
master page

Read path
from file

B

Assign
master page
database and adding a caching system. You’ll learn how to do that in chapter 14.

90 CHAPTER 4 Building the user interface with ASP.NET Web Forms

The following listing shows you both the markup and the code used to programmati-
cally change the master page.

Markup:
<form runat="server">
 <div>
 <p>Select you Master Page from here:</p>
 <p><asp:DropDownList ID="MasterList" runat="server" /></p>
 <p><asp:Button ID="ConfirmButton" Text="Confirm" runat="server"
 OnClick="SaveMasterPage" /></p>
 </div>
</form>

C#:
protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 MasterList.DataSource =
 Directory.GetFiles(Server.MapPath("~/Masters/"))
 .Select(x => x.Substring(x.LastIndexOf("\\")+1));
 MasterList.DataBind();

 string currentMaster = File.ReadAllText(

 Server.MapPath("~/App_Data/MasterPage.config"));
 MasterList.SelectedValue =
 currentMaster.Substring(currentMaster.LastIndexOf("/") + 1);
 }
}

protected void SaveMasterPage(object sender, EventArgs e)
{
 File.WriteAllText(Server.MapPath("~/App_Data/MasterPage.config"),
 "~/Masters/" + MasterList.SelectedValue);
}

Listing 4.5 Markup and code that saves the master page from the list

Figure 4.5 When you
programmatically set the
master page, the page
automatically reads the
correct value from the
configuration and applies
the master page at runtime.

Get file list and
extract name

Select current
master page

Save selected
option

d
91TECHNIQUE 22 URL rewriting and routing with ASP.NET

VB:
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 If Not IsPostBack Then
 MasterList.DataSource =
 Directory.GetFiles(Server.MapPath("~/Masters/"))
 .Select(Function(x) x.Substring(x.LastIndexOf("\") + 1))
 MasterList.DataBind()

 Dim currentMaster As String =
 File.ReadAllText(Server.MapPath("~/App_Data/MasterPage.config"))
 MasterList.SelectedValue = currentMaster.Substring(
 currentMaster.LastIndexOf("/") + 1)
 End If
End Sub

Protected Sub SaveMasterPage(ByVal sender As Object, ByVal e As EventArgs)
 File.WriteAllText(Server.MapPath("~/App_Data/MasterPage.config"),
 "~/Masters/" & MasterList.SelectedValue)
End Sub

This solution is relatively simple, but it shows you how you can implement a common
scenario (especially in content management systems [CMS] or community systems)
with little effort. It also shows you how open ASP.NET is in terms of customization.

DISCUSSION

Master pages are fundamental in every application: they simplify the process of main-
taining the same user interface across the whole application. The basics are simple,
but the scenarios proposed in this chapter will cover your most advanced needs for
everyday applications.

 Moving right along, we’re going to cover a relatively new feature of ASP.NET that
was first introduced in ASP.NET 3.5 SP1 and further enhanced in the current release.
URL routing, along with URL rewriting, is much diffused among modern web applica-
tions. They let you give vanity URLs to pages easily.

4.3 URL rewriting and routing with ASP.NET
Search engine optimization (SEO) techniques are quite popular in web applications
these days because part of the traffic a public web site receives is based on search
engines. How well a site performs against a search engine crawler can influence the
success of a service or render it dead.

 As a leading technology to build web applications, ASP.NET has several features
related to SEO. One of the most important things to pay attention to is probably the
URL of a page. The URL helps drive traffic by increasing your link value in a search
engine index. It should also be easy for your users to remember. As you might have
noticed, modern web browsers include a special search feature in the address bar:
when you type something, the search history is searched, so a key word in the URL
might help your site usability, too.

 As an example of this issue, we’ll use a basic CMS where articles are saved in a data-

Get file list an
extract name

Select current
master page

Save selected
option
base for ease of use. In this kind of situation, typical URLs are something like this:

92 CHAPTER 4 Building the user interface with ASP.NET Web Forms

http://mysite/content.aspx?ID=15. For better results, our aim is to convert them to
something like this: http://mysite/books/ASP.NET-4.0-in-practice/. Good-looking
URLs like these can be supported in different ways, primarily using two techniques
known as URL routing and URL rewriting.

ASP.NET 4.0 introduces full support to URL routing for Web Forms, too. Originally
designed to be used by ASP.NET MVC, they officially became part of ASP.NET in ver-
sion 3.5 SP1, under the System.Web.Routing.dll assembly. In ASP.NET 4.0, the
classes have been moved from their previous location to System.Web.dll, the assem-
bly where the ASP.NET core is contained.

 To get the most from these two techniques, you need to understand their pros and
cons by analyzing different implementations.

4.3.1 URL rewriting versus URL routing

Both rewriting and routing are devoted to presenting clean URLs to the clients, so
what’s the difference between these techniques? Both are invisible to the client. As far
as the browser is concerned, the URL is the rewritten one, not the real executed URL.

URL rewriting
URL rewriting is simple. When a client makes a request to a given URL, the rewriting
component intercepts this request, based on a predetermined pattern, and changes
the flow to execute a different URL on the same server.

URL routing
URL routing is a dispatching mechanism. You can bind a different set of URLs with a
specific handler (an ASP.NET page) that will process the requests made to these URLs.
Routing is managed by registering the routes in the application, linking together the
path to be handled, and invoking the HttpHandler.

Differences between URL rewriting and routing
From a technical point of view, the main difference between URL rewriting and rout-
ing is that rewriting generates a new, transparent, and invisible request to a different
resource (with its own flow), whereas routing invokes the corresponding handler.
ASP.NET URL routing is implemented as an HttpModule that plugs into the pipeline
before the Map Handler stage. Generally, rewriting is performed by a module that
intercepts the request in the Begin Request stage, well before any other event has
taken place. In some applications, rewriting is also performed by implementing an
HttpHandler. Implementing HttpHandler avoids the extra overhead associated with
HttpModules, which are executed for every request.

 Figure 4.6 shows the different behavior of routing and rewriting.
 Rewriting can be used by every type of application and isn’t limited to just ASP.NET

ones. Thanks to the managed pipeline of IIS 7.x, you can easily use URL rewriting to
rewrite PHP, ASP, or static pages. When you’re using Classic mode, URL routing needs
to be associated with specific file extensions already mapped to ASP.NET, unless wild-
card mapping (*) exists.

93TECHNIQUE 23 URL routing with Web Forms

URL rewriting can be performed using advanced rules. You can base rewriting on the
request status, the user status, the HTTP header, and so on; routing is less flexible.

USING EXTENSIONLESS URLS Traditionally, extensionless URLs are used to rep-
resent rewritten or routed URLs. To maximize performance, ASP.NET 4.0
includes a new *. mapping, created for specific scenarios. You don’t need to
map *.*, as in previous versions, to use extensionless URLs. You also make
gains in performance because static files won’t be handled by these modules.
You can find more information about IIS prerequisites at http://support
.microsoft.com/kb/980368.

You’ll use routing in new projects because it’s fully supported by emerging technolo-
gies like ASP.NET MVC and Dynamic Data controls. You’ll probably limit rewriting to
existing ASP.NET applications. We decided to mention rewriting anyway because this
book is focused on good advice for ASP.NET 4.0. Even though rewriting isn’t new to
this version, this information might help you take your application to a higher level.

 URL routing with Web Forms

The first scenario we’re going to talk about deals with a new web application or an
existing one where clean URLs weren’t used previously. ASP.NET URL routing with
Web Forms represents a great addition to ASP.NET because it’s fully integrated in the
runtime and is available for both ASP.NET Web Forms and MVC. In this scenario, we’ll
focus on Web Forms specifically, but the basic considerations are the same.

PROBLEM

An ugly URL isn’t necessarily bad, but it’s not useful to your users and to your site rank-

BeginRequest

MapHandler

ExecuteHandler

Routing module

EndRequest

...

...

Managed handlers

ASHX

Rewriting module

Figure 4.6 URL routing vs. rewriting, head-to-head. Rewriting takes place at the
very beginning of a request. Routing is handled after the MapHandler event, at
the Handler stage.

TECHNIQUE 23
ing in the search engines. To be clear: bad URLs aren’t a technical issue, but an aesthetic

http://support.microsoft.com/kb/980368
http://support.microsoft.com/kb/980368

94 CHAPTER 4 Building the user interface with ASP.NET Web Forms

one. A clean URL means that you care about your users to the same degree that you care
about the site design: you want both to be simple and usable.

 Our objective is to gain control over this relatively new feature in ASP.NET by
implementing a simple routing mechanism for a fictitious content management web
site.

SOLUTION

To understand ASP.NET URL routing, we’ll take a deeper look at its implementation.
 During the PostMapRequestHandler phase of HttpApplication, the routing mod-

ule changes the Handler property of the current HttpContext. At execution time,
ASP.NET executes the handler that was selected by this module. Consequently, if this
information isn’t set, the module doesn’t interfere with the normal flow; a file from
disk, if it exists, is served for non-routed requests.

USING URL ROUTING IN EXISTING APPLICATIONS If you’re migrating from
ASP.NET 2.0 or 3.5, you can use URL routing with no modifications. This fea-
ture is available automatically when you run your application with the
ASP.NET 4.0 runtime. In ASP.NET 3.5 SP1, you had to manually register the
HttpModule in web.config.

To register a route, you have to add a new RouteValueDictionary to the Routes prop-
erty of the RouteTable class from the System.Web.Routing namespace. Typically, you
can do that in global.asax or, if you prefer, in an HttpModule. The code is shown in list-
ing 4.6.

ASP.NET 4.0 differs from ASP.NET 3.5 SP1 with respect to registering routes. Ver-
sion 4.0 includes a special route handler, PageRouteHandler, designed to work with
Web Forms. You can find more information about this new class on MSDN at http://
mng.bz/5ENS.

C#:
using (RouteTable.Routes.GetWriteLock())
 RouteTable.Routes.Add("ArticleRoute",
 new Route("articles/{id}/{description}",
 new PageRouteHandler("~/Articles.aspx")));

VB:
Using RouteTable.Routes.GetWriteLock()
 RouteTable.Routes.Add("ArticleRoute",
 New Route("articles/{id}/{description}",
 New PageRouteHandler("~/Articles.aspx")))
End Using

In this listing, a new route was registered for a path that contains articles/, text that
represents the ID, and free text that represents the clean URL. You can also use a simi-
lar URL without specifying the ID. This example serves as a general footprint that you

Listing 4.6 Registering a route in your application

Write-lock
the collection

Register
route
can modify to better suite your needs.

http://mng.bz/5ENS
http://mng.bz/5ENS

95TECHNIQUE 23 URL routing with Web Forms

 As you’ll see in technique 24, you can modify the RouteHandler to manage addi-
tional details about the request. The new PageRouteHandler class hides some of the
details to increase usability. In fact, you can simply retrieve the route parameter by
accessing the new RouteData property on Page. The following listing shows you how
to access the parameters in your pages.

C#:
protected int Id { get; set; }
protected string Description { get; set; }

protected void Page_Load(object sender, EventArgs e)
{
 Id = Convert.ToInt32(Page.RouteData.Values["id"]);
 Description = Page.RouteData.Values["description"] as string;
}

VB:
Protected Property Id() As Integer
Protected Property Description() As String

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Id = Convert.ToInt32(Page.RouteData.Values("id"))
 Description = TryCast(Page.RouteData.Values("description"), String)
End Sub

You can access parameters easily in typical scenarios where you need to pass simple
values. If you need to specify different parameters (like an ID and a page number),
but the last one is not mandatory, you can do one of the following things:

■ Define a default value for a parameter and register it with the route (using this
method involves overloading

■ Define multiple routes and check for null parameters in the page

If you opt for the last way, keep in mind that the more routes you have, the more time
ASP.NET will consume to identify the right one. Registration order is also important
because the first matching route will be used.

 Some situations require you to have more control over the parameters. The follow-
ing listing shows you a more advanced route registration.

C#:
Route articlesWithPageRoute =
 new Route("articles/{id}/{description}/page{page}",
 new PageRouteHandler("~/Articles.aspx"));

articlesWithPageRoute.Constraints = new RouteValueDictionary {
 { "id", @"\d{1,5}" },
 { "page", @"\d{1,5}" }
};

Listing 4.7 Easily accessing the parameters in local pages

Listing 4.8 Registering a route with advanced parameters
RouteTable.Routes.Add("ArticleRoutePaged", articlesWithPageRoute);

96 CHAPTER 4 Building the user interface with ASP.NET Web Forms

VB:
Dim articlesWithPageRoute As Route =
 New Route("articles/{id}/{description}/page{page}",
 New PageRouteHandler("~/Articles.aspx"))

articlesWithPageRoute.Constraints = New RouteValueDictionary
 From {{"id", "\d{1,5}"}, {"page", "\d{1,5}"}}

RouteTable.Routes.Add("ArticleRoutePaged", articlesWithPageRoute)

In this listing, a new route is created by adding a new pattern and registering two con-
straints on the id and page parameters to accept only integer values. We’ve chosen to
implement a new route because the patterns aren’t similar (there’s a string [page] in
the new one). After registering this new route, you can automatically pass the corre-
sponding values to the page and read them in the same way. The advantage is that
now non-numeric values won’t be passed to the page, which restricts the allowed
requests. You still can’t forget to validate the parameters; it’s always a best practice to
do that.

 If you run this example, you’ll achieve a result similar to the one shown in figure 4.7.
 Later on, we’re going to discuss how you can define routes with granularity and

precisely control their behavior.

DISCUSSION

URL routing in ASP.NET 4.0 introduces new features to the consolidated ones available
since ASP.NET 3.5 SP1. Now routing is a more mature feature, with a new native inte-
gration with Web Forms, and more brand-new scenarios are accounted for.

 Clean URLs are a hot topic these days among web developers, so it’s important to
understand how URL routing can help your application gain more accessibility and
achieve better search-engine indexing.

 So that you can fully appreciate URL routing, now we’re going to cover some
advanced situations that you might encounter during your work.

Figure 4.7 Notice the ad-
dress bar on the browser:
it’s a sign that routing has
been used. The real page
that was requested is dif-
ferent from the one dis-
played in the address bar.

97TECHNIQUE 24 Advanced URL routing scenarios

 Advanced URL routing scenarios

The URL routing mechanism in ASP.NET supports advanced scenarios, such as con-
straints, default values, and adding additional data to the route. URL routing isn’t lim-
ited to just Web Forms and can generally be applied to IHttpHandler, too.

PROBLEM

URL routing is flexible enough to be applied to most of the common routing strate-
gies. But how do you implement advanced routing scenarios like validating the route
parameters or providing default values? We’re going to address these problems in this
section.

SOLUTION

Let’s go back to listing 4.8 for a moment. In that example, we showed you how to add
custom data while registering a route. We defined two constraints to limit the number
of values that would be considered valid for the parameters. Listing 4.9 shows you
more advanced options. This listing specifies a default value for the description
parameter, defines a new constraint to limit requests to GET ones, and passes an arbi-
trary value with the route.

C#:
RouteValueDictionary defaultValues = new RouteValueDictionary();
defaultValues.Add("description", "");

RouteValueDictionary constraints = new RouteValueDictionary();
constraints.Add("httpMethod", "GET");
constraints.Add("id", @"\d+");

RouteValueDictionary dataTokens = new RouteValueDictionary();
dataTokens.Add("finalUrl", "~/articles.aspx");

using (RouteTable.Routes.GetWriteLock())
 RouteTable.Routes.Add("ArticleRoute",
 new Route("articles/{id}/{description}",
 defaultValues, constraints, dataTokens, new ArticleRouteHandler()));

VB:
Dim defaultValues As New RouteValueDictionary()
defaultValues.Add("description", "")

Dim constraints As New RouteValueDictionary()
constraints.Add("httpMethod", "GET")
constraints.Add("id", "\d+")

Dim dataTokens As New RouteValueDictionary()
dataTokens.Add("finalUrl", "~/articles.aspx")

Using RouteTable.Routes.GetWriteLock()
 RouteTable.Routes.Add("ArticleRoute",
 New Route("articles/{id}/{description}",
 defaultValues, constraints, dataTokens, New ArticleRouteHandler()))

Listing 4.9 Using more advanced options when registering a route

TECHNIQUE 24

Default
parameter
value

Constraints
on parameter

Custom value for
RouteHandlerst

Default
parameter value

Constraints
on parameter

Custom value for
RouteHandlerst
End Using

n

98 CHAPTER 4 Building the user interface with ASP.NET Web Forms

In listing 4.9, we didn’t use PageRouteHandler, but defined a new RouteHandler to
handle the request. This new route handler is defined in listing 4.10; it receives the
request and provides the effective response.

 If you need a / character in the route name to specify multiple categories, you can
define a route URL like Categories/{*Category}. The * character allows a / charac-
ter in the route parameter so that you can further define your pattern.

 During route registration, we provided additional information via a custom value,
which is passed to the route handler. Using a custom value is especially useful if you
want to use a single route handler to manage different behaviors. By defining a new
route handler, you can implement custom logic, such as providing a custom authoriza-
tion mechanism or validating user input, even before the page is requested. The fol-
lowing listing shows you how to do that.

C#:
public class ArticleRouteHandler : IRouteHandler
{
 IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext)
 {
 string realUrl =
 requestContext.RouteData.DataTokens["finalUrl"].ToString();
 string virtualPath = VirtualPathUtility.ToAbsolute(realUrl);

 IArticlePage pp = BuildManager.CreateInstanceFromVirtualPath(
 virtualPath,
 typeof(Page)) as IArticlePage;
 pp.Id = Convert.ToInt32(requestContext.RouteData.Values["id"]);
 pp.Description = requestContext.RouteData.Values["description"];
 return pp;
 }
}

VB:
Public Class ArticleRouteHandler
 Implements IRouteHandler
 Private Function GetHttpHandler(ByVal requestContext As RequestContext)
 As IHttpHandler Implements IRouteHandler.GetHttpHandler
 Dim realUrl As String =
 requestContext.RouteData.DataTokens("finalUrl").ToString()

 Dim virtualPath As String =
 VirtualPathUtility.ToAbsolute(realUrl)

 Dim pp As IArticlePage = DirectCast(
 BuildManager.CreateInstanceFromVirtualPath(virtualPath,
 GetType(Page)), IArticlePage)

 pp.Id = Convert.ToInt32(requestContext.RouteData.Values("id"))
 pp.Description = requestContext.RouteData.Values("description")

 Return pp
 End Function

Listing 4.10 A simple route handler to manage routing

Parameter from route
configuration

Create Web
Form instance

Converted to
absolute path

Converted to
absolute path

Parameter
from route
configuratio

Create Web

End Class Form instance

99TECHNIQUE 24 Advanced URL routing scenarios

To use this new route handler, we created a new interface, IArticlePage. This inter-
face will be used by the pages that execute the final request. You can also use this
interface in scenarios where you prefer to have control over parameters. You won’t
directly access the RouteData property of System.Web.Page, but instead you’ll rely on
a strongly typed property. The next listing contains the code used in the Web Form.

C#:
public partial class Articles : System.Web.UI.Page, IArticlePage
{
 public int Id { get; set; }
 public string Description { get; set; }

 protected void Page_Load(object sender, EventArgs e)
 {
 IDValue.Text = Id.ToString();
 DescriptionValue.Text = Description;
 }
}

VB:
Public Partial Class Articles
 Inherits System.Web.UI.Page
 Implements IArticlePage

 Protected Property Id() As Integer

➥ Implements IArticlePage.Id
 Protected Property Description() As String

➥ Implements IArticlePage.Description

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 IDValue.Text = Id.ToString()
 DescriptionValue.Text = Description
 End Sub
End Class

You can use this approach with IHttpHandler in general, so it’s applicable when
you’re dealing with non-HTML responses, such as images or documents.

 One problem related to routing is how to generate URLs in markup without hard-
coding them. ASP.NET 4.0 introduces a helper function that you can use to safely gen-
erate a routed URL, which internally calls the GetVirtualPath method from Routes
in RouteTable:

C#:
string url = Page.GetRouteUrl ("ArticleRoute",
 new RouteValueDictionary {
 { "Id", 5 },
 { "Description", "Test-URL" } });

VB:
Dim url As String = Page.GetRouteUrl("ArticleRoute",
 New RouteValueDictionary() From {
 {"Id", "5"},

Listing 4.11 A Web Form using the custom route handler
 {"Description", "Test-URL"}})

100 CHAPTER 4 Building the user interface with ASP.NET Web Forms

If you prefer to define the links in markup and not in code, a new Expression Builder is
supported. Expression Builders are specially defined expressions that can use custom
classes to generate code at runtime by using a markup expression. You can add a link
in your page by simply using this snippet:

<asp:HyperLink
 NavigateUrl="<%$ RouteUrl:RouteName=ArticleRoute,id=5,

➥ Description=Test-Url %>" Text="View #5 article" runat="server" />

Note the <%$...%> syntax that’s designated for the Expression Builder. This approach
has the same results as the previous example in listing 4.11, but is more useful to
include in markup. At runtime, both these snippets generate the correct routed URL.
If you change part of the path, the results remain the same: the routing engine gener-
ates the correct routed URL for you.

 You can also redirect by using Response.RedirectToRoute. Like the Page.GetRou-
teUrl method, this method accepts the same parameters and then redirects to the
appropriate generated URL:

C#:
Response.RedirectToRoute("ArticleRoute",
 new RouteValueDictionary {
 { "Id", 5 },
 { "Description", "Test-URL" } });

VB:
Response.RedirectToRoute("ArticleRoute",
 new RouteValueDictionary from {
 { "Id", 5 },
 { "Description", "Test-URL" }
 })

If you need to use a 301 HTTP Status Code, use the equivalent RedirectToRoutePer-
manent method.

IMPLEMENTING CUSTOM ROUTE CONSTRAINTS You can implement custom con-
straints by writing a class that implements the IRouteConstraint interface.
Using its Match method, you can validate complex parameters, such as date or
email. You can find more information in the MSDN documentation at http://
mng.bz/2BtB.

URL routing was built with customization in mind, so you can implement additional
features if the default ones don’t fit your needs. In this scenario, we took a look at the
more common advanced features. For additional details about how to customize
ASP.NET URL routing, consult the MSDN documentation at http://mng.bz/8DDI.

DISCUSSION

ASP.NET 4.0 URL routing offers interesting features, mixing some new and existing
stuff together to simplify building nice-looking URLs in your applications. URL routing
has a strong link with ASP.NET, and, because you can use it in both ASP.NET Web

Forms and MVC, it’s definitely a topic you want to follow.

http://mng.bz/2BtB
http://mng.bz/2BtB
http://mng.bz/8DDI

101TECHNIQUE 25 Rewriting in practice: UrlRewriting.NET

 To continue our examination of routing and rewriting, the next topic we’ll
address is probably the most diffused among ASP.NET developers coming from
ASP.NET 2.0 or 3.5. UrlRewriting.NET is in fact considered the de-facto solution when
dealing with URL rewriting in previous versions of ASP.NET.

 Rewriting in practice: UrlRewriting.NET

URL rewriting might be able to help you when you need to control access to resources,
not just ASP.NET pages (in general, when we refer to rewriting, we’re referring to both
Web Form pages and MVC actions).

 The de-facto class library used in ASP.NET applications is UrlRewriting.NET. You
can freely download it at http://urlrewriting.net/. Using it is free, even in commercial
projects. A similar alternative exists at http://www.urlrewriter.net/. They have similar
features, but UrlRewriter.NET probably has more features that are similar to the
Apache mod_rewrite module.

PROBLEM

URL routing is scoped to ASP.NET pages, so if you need to rewrite non-ASP.NET
resources or perform redirections, you can’t use routing. UrlRewriting.NET can help
you solve these specific problems.

SOLUTION

UrlRewriting.NET contains an assembly that you can reference in your application.
After you reference the assembly, you can start using its features.

 The rules are mapped in the configuration files, using a regular expression. The
following listing contains an image rewritten to the real path.

<configuration>
 <configSections>
 <section name="urlrewritingnet"
 restartOnExternalChanges="true"
 requirePermission ="false"
 type="UrlRewritingNet.Configuration.UrlRewriteSection,
 UrlRewritingNet.UrlRewriter" />
 </configSections>

 <system.web>
 <httpModules>
 <add name="UrlRewriteModule"
 type="UrlRewritingNet.Web.UrlRewriteModule,
 UrlRewritingNet.UrlRewriter" />
 </httpModules>
 </system.web>

 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true">
 <remove name="UrlRewriteModule"/>
 <add name="UrlRewriteModule"
 type="UrlRewritingNet.Web.UrlRewriteModule,

Listing 4.12 Rewriting an image to a real path

TECHNIQUE 25

IIS 6.0+
configuration

IIS 7.0+
configuration
UrlRewritingNet.UrlRewriter" />

http://urlrewriting.net/
http://www.urlrewriter.net/

102 CHAPTER 4 Building the user interface with ASP.NET Web Forms

 </modules>
 </system.webServer>

 <urlrewritingnet
 xmlns="http://www.urlrewriting.net/schemas/config/2006/07">
 <add name="Images"
 virtualUrl="^~/images/(.*)/(.*).jpg"
 rewriteUrlParameter="ExcludeFromClientQueryString"
 destinationUrl="~/myimages/site/image$1_$2.jpg"
 ignoreCase="true" />
 </urlrewritingnet>

</configuration>

In this listing, we’re rewriting requests to a path like this one:

/images/150/home.jpg

to a path like this one:

/myimages/site/image150_home.jpg

Rewriting paths in this way can be especially useful if you need to provide a better-
looking URL for automatically generated images.

 If you prefer, you can define the rules in an external file, using the web.config del-
egation feature:

<urlrewritingnet configSource="Rewrite.config" />

Note that to use this module, you have to map the extension you want to ASP.NET if
you’re using IIS 6.0+ or IIS 7.0+ in Classic mode, or move the module declaration
under system.WebServer section if you’re using IIS 7.0+ in Integrated mode.

 You can use UrlRewriting.NET with ASP.NET pages, and you’ll get the same URL
routing behavior; PostBacks are fully supported, too.

 You can also use UrlRewriting.NET to perform redirects. When you’re adding a
rule, you have to specify the redirectMode attributes, as in this snippet:

<add name="FromHTMLToASPX"
 virtualUrl="^~/(.+).htm(.*)"
 redirectMode="Permanent"
 rewriteUrlParameter="ExcludeFromClientQueryString"
 destinationUrl="~/$1.aspx"
 ignoreCase="true" />

This rule automatically redirects the request to HTML static pages to ASP.NET ones,
maintaining the same base URL. When you’re dealing with a massive site refresh,
you’ll want to use this technique because you can continue to maintain the old URLs.
And, thanks to the Permanent value in the redirectMode attribute, an HTTP 301
Moved Permanently status code will be sent, so search engine spiders update the ref-
erenced page URL automatically.

103Summary

PERMANENT REDIRECTION WITH ASP.NET 4.0 ASP.NET 4.0 introduces a new
method on the HttpResponse class from the System.Web namespace called
RedirectPermanent. You can use it to emit a 301 HTTP status code where you
need to do it in code.

UrlRewriting.NET fully supports providers, so you can extend the rule engine. You can
also add the rules programmatically (via code) if you need to take control of rules
using a control panel and assign them at runtime. You can find more information
about this topic in the corresponding documentation at http://www.urlrewriter.net/.

DISCUSSION

URL rewriting is similar to URL routing, but lets you take more control over the
results. You can even perform redirections using this technique.

URL routing and rewriting can help you increase both usability and search engine
optimization. You can produce a better application, so you should definitely use them.
If you only need to provide clean URLs in ASP.NET pages, consider URL routing; it’s fully
integrated in the runtime and provides you with advanced features, like an Expression
Builder and a specific class to help you build correct URLs programmatically.

4.4 Summary
ASP.NET 4.0 introduces new features in Web Forms that will bridge the gap between bet-
ter control over markup and ease of use. This chapter contained a brief overview of mas-
ter pages, whose support has been improved both in the runtime and the VS 2010 IDE.
Using master pages, you can manage the site layout easily. By nesting them, you’ll have
more control over different sections. By setting them programmatically, you’ll get even
more control over the results.

 Web Form fundamentals remain the same as in previous versions, but in ASP.NET 4.0,
standards compliance is a driving factor. New features in this area give you greater con-
trol over generated markup by removing automatically added HTML tags. The new Cli-
entID mode will simplify your JavaScript code because you can refer to server control
in an easier way.

 Last, but not least, URL routing is now fully integrated in ASP.NET. You don’t need
to register anything. You can start using these good-looking (and SEO-friendly) URLs
with little effort.

 In general, though it’s not revolutionary, Web Forms 4.0 introduces a lot of good-
ies for you as a developer. These improvements will continue to simplify your day-to-
day work and assist you in creating great ASP.NET applications.

 Moving on, but in the same general direction, the next chapter will cover a key
aspect of web applications (and Web Forms in particular): how to display data from
your sources (such as a database) in a page.

http://www.urlrewriter.net/

Data binding in
 ASP.NET Web Forms
Data binding plays a central role in ASP.NET Web Forms model. As you’ve seen in
previous chapters, ASP.NET Web Forms are based on the notion of server controls.
Server controls are objects placed on the page and programmed to offer a result.
You can write specific code to intercept events and develop your pages using an
event-driven methodology.

 Data binding is essential in the ASP.NET ecosystem because web pages are often
a gateway to display data coming from different sources, like a database, web ser-
vice, or object. Data binding offers a simple way to implement the action to bind
the data to the form and display the visual results easily.

 Data binding itself hasn’t changed in the last few versions of ASP.NET, but server

This chapter covers
■ How data binding in ASP.NET works
■ Using ASP.NET controls to display data
■ New data binding features in ASP.NET 4.0
■ Dynamic Data controls
104

controls and data access strategies have. As you learned in chapters 2 and 3, the

105Displaying data

past few years have seen the adoption of strongly typed collections versus the initial
DataSet approach. New trends, like service-oriented applications and cloud comput-
ing, have amplified the notion of data and changed the way we think about storage.
Plus, AJAX techniques are considered standard today. The initial concept of data bind-
ing has evolved because the environment has also evolved.

 This chapter contains all you need to know about data binding in ASP.NET, with a
focus on real-world techniques.

5.1 Displaying data
If you’re not familiar with data binding, this section is for you. To understand how
data binding influences ASP.NET, take a look at figure 5.1.

 Data binding is integrated in both pages and controls life cycles, and is specifically
tied to some magic performed under the hood by ASP.NET Page Parser.

 Data binding-capable controls, often referred to as data controls, are special con-
trols that provide a fast way to display data coming from different sources. From the
control perspective, the source must implement an interface from the IList, IEnu-
merable, or ICollection interface. This requirement is always true for custom collec-
tions, data coming from a database using ADO.NET, and generally for LINQ
expressions, too.

 By setting the DataSource property of these controls, you can programmatically
specify the source to be displayed. To avoid errors and simplify your work, these con-
trols generally perform many of the tasks related to displaying data for you. They
check for data, cycle through the items, and provide output. These controls are usu-
ally based on different templates that render different parts. These templates provide
a simple way to personalize the markup to be generated.

 Now that you’ve got some background, let’s see how data binding works by looking
at our first example.

Control

Data binding
Data source

Data iteration

Figure 5.1 Data binding is tied into ASP.NET controls. When it’s invoked, the data
source is enumerated and its content is associated with the corresponding control.

http://mng.bz/7d3n

106 CHAPTER 5 Data binding in ASP.NET Web Forms

 How to display data using Repeater

Repeater is the simplest data control you’ll find. As its name suggests, it can only
repeat the templates specified in the markup. In this scenario, we’ll display a set of
customers coming from the Northwind database, mapped using Entity Framework.

PROBLEM

Displaying data from a database is probably the most common action that you’ll per-
form while coding your applications. ASP.NET data binding can help you be more pro-
ductive. Let’s discover how this feature works.

SOLUTION

Before starting, let’s take a step back to talk about how templates work. Templates are
generally defined in markup, as shown in the following listing.

<asp:Repeater id="MyView" runat="server">
 <HeaderTemplate>
 [Header markup goes here]
 </HeaderTemplate>
 <FooterTemplate>
 [Footers markup goes here]
 </FooterTemplate>
 <ItemTemplate>
 [Items markup goes here]
 </ItemTemplate>
</asp:Repeater>

When the ASP.NET Page Parser finds one of these templates, it automatically converts
it at runtime to an instance of System.Web.UI.CompiledTemplateBuilder. (Note that
templates are implemented by a generic ITemplate interface.) Later, every time the
template is referenced to display the items inside the data source, the same template
will be used. This setup has the advantage of letting you define the template via
markup, instead of using code.

MORE ABOUT TEMPLATES IN ASP.NET We’re going to address templates again
in chapter 7, when we talk about custom controls. If you want to know even
more about templates, you can take a look at the MSDN documentation at
http://mng.bz/1g9v.

To simplify data binding, ASP.NET introduces a specific syntax, which is automatically
converted to include an event handler for the DataBinding event:

<%# "Some text"%>

This sequence of characters is interpreted by the Page Parser so that the contained
function is called only when the DataBinding event occurs. This event is called only
when the DataBind method is explicitly called on the container control. In a simple

Listing 5.1 A simple Repeater with templates at work

TECHNIQUE 26

http://mng.bz/1g9v

107TECHNIQUE 26 How to display data using Repeater

form, you’ll use the Eval method to extract the data. This method is exposed by the
page itself, via the TemplateControl class:

<%#Eval("MyProperty")%>

Eval is a shortcut method that was introduced in ASP.NET 2.0. It maps to Data-
Binder.Eval. In this case, the code will look similar to this:

<%#DataBinder.Eval(Container.DataItem, "MyProperty")%>

Both methods automatically retrieve the property MyProperty from the associated
data source, via the Container property type IDataItemContainer.

EVAL, DATABINDER.EVAL, AND FORMATTING You can specify a format string to
be applied to the property specified by Eval/DataBinder.Eval by simply
passing the format as the last parameter:

<%#Eval("Date", "{0:D}")%>

This code will format the Date property, of DateTime type, using the 0:D for-
mat (long date). You can find more information about string formatting on
MSDN at http://mng.bz/t8xK.

Per convention, the IDataItemContainer interface is implemented by all the tem-
plates. The properties of this interface are listed in table 5.1.

If you need to display a property from a specific class, you can also use this syntax:

C#:
<%#((MyClass)Container.DataItem).MyProperty%>

VB:
<%#DirectCast(Container.DataItem, MyClass).MyProperty%>

You should choose this syntax over the previous one (Eval/DataBinder.Eval) most
of the time. It doesn’t use reflection and it performs better. You don’t need to per-
form casting because you’re accessing the object directly. This syntax has a true com-
pile-time syntax check, whereas the other will be controlled only at runtime. And
runtime errors are a problem because you have less control over their testability.

Table 5.1 IDataItemContainer interface members

Member Description

DataItem An Object that contains the reference to the current element,
which is taken from the data source.

DataItemIndex The current element index in the data source.

DisplayIndex The current element index in the rendering. Some controls can
change the rendering and arrange items horizontally or vertically.

http://mng.bz/t8xK

108 CHAPTER 5 Data binding in ASP.NET Web Forms

 You can adapt the code in listing 5.1 to show the customers as an unordered list, as
shown in the following listing.

<asp:Repeater id="CustomerView" runat="server">
 <HeaderTemplate>

 </HeaderTemplate>
 <FooterTemplate>

 </FooterTemplate>
 <ItemTemplate>
 <%#((Customer)Container.DataItem).ContactName %>
 <%#DirectCast(Container.DataItem, Customer).ContactName%>
 </ItemTemplate>
</asp:Repeater>

The code to retrieve the data using Entity Framework is easy to understand. The code
in listing 5.3 is an example so it’s simplified, but you can do the same thing we did in
chapter 3: wrap the ObjectContext so it can be shared easily by different pieces of
your page. The code that performs the data binding is shown in the following listing.

C#:
CustomerView.DataSource = ApplicationObjectContext.Current.Customers;
CustomerView.DataBind();

VB:
CustomerView.DataSource = ApplicationObjectContext.Current.Customers
CustomerView.DataBind()

If you run this code inside a browser, it produces a result similar to what’s displayed in
figure 5.2.

Listing 5.2 Adapting the Repeater to display a different layout

Listing 5.3 ObjectContext inside the page gets data and performs data binding

In C#

In VB

Figure 5.2
The Repeater produces a
list after data binding. You
can control the visual layout

using the templates.

http://mng.bz/7v8g

109TECHNIQUE 27 ListView in ASP.NET 4.0

Because a Repeater has the ability to let you decide what your rendering strategy is
and doesn’t add any markup to what you specify, you can adapt the output to your
needs.

DISCUSSION

Data binding in ASP.NET is so easy to understand. The power behind this simple syn-
tax is that you can make it universally available without needing to provide different
behavior when the data source types change. Repeater is the simplest control you can
choose, but ASP.NET 4.0 also has new features for ListView. ListView is a control
introduced by ASP.NET 3.5 and represents a complete solution to data binding
in ASP.NET.

 ListView in ASP.NET 4.0

ListView was first introduced in ASP.NET 3.5 to simplify the problem of choosing a
data control. Previously, if you needed to have maximum flexibility, you’d have to
choose a Repeater. But this flexibility is limited. Repeaters don’t support editing,
inserting, paging, or sorting. If you needed any of those things, you’d need to choose
a GridView instead, but that doesn’t support a truly free template; you can use only its
columns representation. ListView provides you with maximum flexibility, combining
the advantages of the Repeater and GridView.

PROBLEM

Flexibility and control over markup is important. ListView in ASP.NET 4.0 has new
features that make it even more useful when you require both. Let’s take a look
at them.

SOLUTION

ListView provides more flexibility in defining templates, and, at the same time, adds
more support for advanced scenarios than Repeater gives you. This control supports
paging, sorting, editing, inserting, and selecting. Generally speaking, it has templates
for all the specific states. Support for template types is described in table 5.2.

Table 5.2 Templates supported by ListView

Template Description

ItemTemplate and
AlternatingItemTemplate

Represents the templates associated with the item and the alter-
nating item. Generally, the alternating item is omitted because the
difference between odd and even items is handled via CSS.

EditItemTemplate Contains the templates to handle the editing process.

EmptyDataTemplate Represents the template used when the data source has no data
to display.

EmptyItemTemplate Displays a specific template when the current item is empty.

GroupTemplate and
GroupSeparatorTemplate

Used to display a specific template when the control is used with
the ListView group feature.

TECHNIQUE 27

110 CHAPTER 5 Data binding in ASP.NET Web Forms

The simplest implementation that you could use in ASP.NET 3.5 is shown in the follow-
ing listing.

<asp:ListView ID="CustomerView" runat="server">
 <LayoutTemplate>

 <li ID="ItemPlaceHolder" runat="server" />

 </LayoutTemplate>
 <ItemTemplate>
 <li runat="server">
 <%#((Customer)Container.DataItem).ContactName%>
 </ItemTemplate>
</asp:ListView>

In ASP.NET 4.0, this implementation was simplified, and you don’t need to specify a
LayoutTemplate anymore. Omitting the LayoutTemplate can be useful when you’re
repeating different kinds of layout, as a series of divs or images. This solution is shown
in the following listing.

<asp:ListView ID="CustomerView" runat="server">
 <ItemTemplate>
 <div class="customer">
 <%#((Customer)Container.DataItem).CustomerName%>
 </div>
 </ItemTemplate>
</asp:ListView>

Figure 5.3 is the visual result of the markup in listing 5.5, enhanced using CSS.
 You can use ListView in advanced scenarios, such as editing or paging. We’ll dis-

cuss these features in section 5.2.

DISCUSSION

Even though ListView hasn’t changed much in ASP.NET 4.0, this recap was useful to
point out some of its features. If you’re coming from ASP.NET 2.0, you can probably
see why ListView is considered the premiere choice among ASP.NET developers when

InsertItemTemplate Includes a template to be used when inserting a new item.

LayoutTemplate Represents the global template. This control has no specific tem-
plates for a footer and header, but uses a global template instead.

SelectedItemTemplate Displays a specific template when an item is selected.

Listing 5.4 The simplest implementation of ListView in ASP.NET 3.5

Listing 5.5 Default implementation of ListView in ASP.NET 4.0

Table 5.2 Templates supported by ListView (continued)

Template Description
dealing with data binding.

111TECHNIQUE 28 Using data source controls

5.2 Modifying data
Displaying data is important, but editing also plays a central role in modern web appli-
cations. In the last versions of ASP.NET, editing became easier to implement in Web
Forms, thanks to a specific family of controls called data source controls. These con-
trols offer the basic features of data binding, but they implement these features auto-
matically. The idea behind these controls is to avoid writing code so you can
concentrate on other aspects of your applications.

 Let’s look at how data source controls work so that you can better understand
when this kind of control is valuable for your application.

 Using data source controls

Data source controls are web server controls, so you have to specify them in markup.
To leverage this kind of feature, you don’t have to write C# or VB code.

PROBLEM

We tend to write a lot of repetitive code. When the application is really data intensive,
automation that speeds up development might increase your productivity. More pro-
ductivity with less work? It is possible—read on!

SOLUTION

Data source controls were introduced to simplify two of the most common tasks in
web applications: displaying and editing data.

 Figure 5.4 shows a schematic overview of how data source controls work. ASP.NET 4.0
contains different data source controls, listed in table 5.3.

 Of the controls in table 5.3, completely avoid using SqlDataSource. It will embed the

Figure 5.3 The minimum
layout of ListView can
produce interesting results.
You can combine CSS styles to
visually enhance the result.

TECHNIQUE 28
queries directly in your markup. Although this will initially speed up your development,

http://msdn.microsoft.com/en-us/library/cc837200.aspx
http://msdn.microsoft.com/en-us/library/cc837197.aspx
http://msdn.microsoft.com/en-us/library/cc837197.aspx

112 CHAPTER 5 Data binding in ASP.NET Web Forms

you’ll pay the price when maintaining this solution. Because the queries are embedded
into the page, you don’t have the business logic. No business logic is a problem from a
design perspective because you’re linking together the page and the database.

ObjectDataSource is useful when you have your own business logic, with your
defined object model, and you want to use it. EntityDataSource and LinqData-
Source, on the other hand, let you automatically leverage Entity Framework’s Object-
Context or LINQ to SQL’s DataContext. You can add this control using the Visual
Studio designer by simply accessing the smart task list, and then selecting the Config-
ure Data Source option. Figure 5.5 shows the wizard associated with Entity Framework
data sources.

 All these controls are defined in markup, and you’ll need to use the DataSourceID
property of the data control to link them and get the data from the data source.
Example markup is shown in the following listing.

Table 5.3 ASP.NET 4.0 data source controls

Template Description

EntityDataSource Simplifies the use of Entity Framework’s object context.

LinqDataSource Automatically uses LINQ to SQL DataContext or any LINQ-enabled provider.

ObjectDataSource Used with custom entities and collections, against a specific business logic.

SiteMapDataSource Wraps the access to SiteMap, a feature introduced in ASP.NET 2.0 to repre-
sent a site structure.

SqlDataSource Can be used with any compatible database provider, such as SQL Server, Ora-
cle, or MySQL. Some providers must be downloaded from the vendor websites.

XmlDataSource Lets you associate an XML document to a data control.

Data control
Data binding

Data source

Data source
control

Edit/Insert/Delete

Figure 5.4 Data source controls automatically perform calls that instruct the data
control. You don’t need to write any code to implement the common scenarios.

http://msdn.microsoft.com/en-us/library/cc837197.aspx

113TECHNIQUE 28 Using data source controls

<asp:ListView ID="CustomerView" runat="server"
 DataSourceID="CustomerSource">
 <ItemTemplate>
 <div class="customer">
 <%#((Customer)Container.DataItem).ContactName%>
 </div>
 </ItemTemplate>
</asp:ListView>

<asp:EntityDataSource ID="CustomerSource" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities"
 EntitySetName="Customers" />

When you run this code, the results are similar to the example shown in figure 5.3. We
changed only the code to retrieve the data, not the template to display it.

DISCUSSION

We personally believe that writing code in most situations is the best option: you’ll
have more control over what happens under the hood and spend less time hacking
the data source controls to suit your needs. That said, the data source and GridView

Listing 5.6 Using the DataSourceID property to link EntityDataSource to ListView

Figure 5.5 When you select EntityDataSource, a wizard starts. You can choose which
entity and properties you want to display, and enable insert, update, or delete.

Data source
control ID

Entity Framework
object context

EntitySet
to be used
controls are useful when you’re editing or inserting data, which we’ll talk about next.

114 CHAPTER 5 Data binding in ASP.NET Web Forms

 EntityDataSource and Entity Framework

In situations where all you need is a simple CRUD (Create, Read, Update, and Delete)
GUI over your data, data source controls come to the rescue. Next, we’re going to look
at the Entity Framework support offered by the ASP.NET 4.0 data-binding controls.

PROBLEM

Data entry is one of the most used—and most boring to implement—features you
have to deal with in modern web applications. You can use EntityDataSource and
Entity Framework together to mitigate this problem.

SOLUTION

Entity Framework is our preferred technology to implement data access logic. As an
ORM, it has powerful features and the ability to treat the same kinds of operations
(create, update, read, and delete) in the same way, with different mapped entities.
This ability means that we can be sure that the same logical operational, say, inserting,
is performed the same way for all the different entities that we’ve mapped. The magic,
as we outlined in chapters 2 and 3, is performed by the Entity Framework engine
itself, so we don’t need to handle it manually.

 This feature is quite handy when you’re dealing with repetitive code. You’re just
repeating the same code again and again, changing only the entity that’s used each
time. You’re not really adding anything that’s different from the previous time.

EntityDataSource is specifically designed to work with the Entity Data Model
(EDM) and with the newly introduced support for POCO entities.

 You need to enable only the following properties to get the respective support
from the data source:

■ EnableDelete supports deleting
■ EnableInsert creates new entities
■ EnableUpdate updates existing entities

The following listing contains a simple example of using EntityDataSource (a Grid-
View is used for brevity only).

<asp:GridView ID="CustomerView" runat="server"
 AutoGenerateEditButton="true"
 AutoGenerateDeleteButton="true"
 AllowPaging="true"
 AllowSorting="true"
 DataKeyNames="CustomerID"
 DataSourceID="CustomerSource" />

<asp:EntityDataSource ID="CustomerSource" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities"
 EnableInsert="true" EnableDelete="true" EnableUpdate="true"

Listing 5.7 Automatically enabling edit, insert, and delete with EntityDataSource

TECHNIQUE 29
 EntitySetName="Customers" />

115TECHNIQUE 30 What’s new in GridView, FormView, and ListView

At runtime, the code in this listing produces a grid in which you can edit, sort, page, and
work with Entity Framework without writing any code. This grid is shown in figure 5.6.

 This solution is extremely powerful. You don’t need to write any code; all you have
to do is change the EntitySetName property on the EntityDataSource instance to dis-
play (and manipulate) data coming from another table and map it to an entity. This
solution also produces the best SQL code possible because it’s converted before being
executed. This behavior is contrary to that of SqlDataSource, which performs most of
these operations in memory.

DISCUSSION

EntityDataSource supports all the typical features you need: paging, sorting, filter-
ing, and CRUD. Even so, we understand that this solution isn’t optimal in every situa-
tion. You gain a lot in terms of productivity, but you lose control over what’s
performed behind the scenes. You can use EDM extensibility (especially with POCO
entities and n-layers architecture support) to further enforce your logic, but this solu-
tion will remain coupled with Entity Framework. If this outcome is acceptable to you,
your mileage will be very good.

 This feature is one of the most useful ones in ASP.NET when you have to deal with
a simple interface to perform data entry operations. These benefits are expanded in
Dynamic Data controls, which we’ll address in section 5.4. Before we get to that
though, we need to take a look at what’s new in ASP.NET 4.0 for data controls.

 What’s new in GridView, FormView, and ListView

Although not revolutionary, ASP.NET 4.0 contains some important tweaks and enhance-
ments over previous versions. Specifically, GridView, FormView, and ListView now con-

Figure 5.6 EntityDataSource automatically handles editing, deleting, sorting, and paging. You
have to enable the corresponding data control feature; in this scenario, we used GridView.

TECHNIQUE 30
tain new features that produce better markup for implementing new scenarios.

116 CHAPTER 5 Data binding in ASP.NET Web Forms

PROBLEM

Let’s suppose you’re coming from ASP.NET 2.0/3.5, and you just want to understand
what’s new for these controls. If that’s your situation, this scenario is for you.

SOLUTION

GridView, FormView, and ListView appear to be similar. They all display data coming
from a data source, but each uses a different layout mechanism:

■ GridView, as its name suggests, lets you arrange your data in a grid
■ FormView gives you a free template, but supports only one item at time
■ ListView is new to ASP.NET 3.5 and simplifies most of the annoyance of the

other data controls

Each one has his own strategy; you can find a comprehensive guide to them on MSDN
at http://mng.bz/7v8g.

 To better understand the new features, let’s look at them now.

FORMVIEW

FormView in ASP.NET 4.0 produces better markup than it used to by using the Render-
OuterTable property, which is available on other controls, too. (We talked about the
RenderOuterTable property in chapter 4.)

 With this property set to false, you can remove the outer markup (usually a table)
and render only your template code:

<asp:FormView ... RenderOuteTable="false">
...
</asp:FormView>

The default value for this property is true, which avoids compatibility issues.

GridView and ListView
When you select a row in the GridView and ListView controls, the item index is per-
sisted on page change. So, if you selected the first item on the first page, the item
remains selected when switching to another page.

 To avoid this behavior, ASP.NET 4.0 introduces a new property for these controls,
called EnablePersistedSelection. If you set it to true, it doesn’t select the same row
index on other pages, but maintains the correct selection across pages.

 This behavior is off by default to maintain compatibility, so you have to explicitly
set it.

GridView
GridView in ASP.NET 4.0 introduces new support for sorting styles. In previous ver-
sions, it was difficult to provide a specific style for the two statuses (ascending and
descending). You can now specify a CSS class (or inline style) using two TableItem-
Style properties, SortedAscendingHeaderStyle and SortedDescendingHeader-

Style, to respectively indicate a style for ascending and descending sorting:

<asp:GridView ID="CustomerList" runat="server"
 AllowSorting="true"

 ...

http://mng.bz/7v8g

117TECHNIQUE 30 What’s new in GridView, FormView, and ListView

 SortedAscendingHeaderStyle-CssClass="sortedAsc"
 SortedDescendingHeaderStyle-CssClass="sortedDesc">
 ...
</asp:GridView>

You can then provide an arrow, for example, by simply registering it in your CSS:

.sortedAsc a {
 background:url(asc.gif) right center no-repeat;
}

.sortedDesc a {
 background:url(desc.gif) right center no-repeat;
}

You can also specify the SortedAscendingCellStyle and SortedDescendingCell-
Style properties to associate a specific style with a given sorted column:

<asp:GridView ID="CustomerList" runat="server"
 AllowSorting="true"
 ...
 SortedAscendingCellStyle-CssClass="sortdeCellAsc"
 SortedDescendingCellStyle-CssClass="sortedCellDesc">
...
</asp:GridView>

Take a look at the results in figure 5.7.
 These enhancements to GridView are relatively minor over previous versions, but

you can write less code to accomplish the same tasks.

Figure 5.7 GridView in ASP.NET 4.0 supports a new visual style for sorting. You can use CSS to
highlight the column, as shown.

118 CHAPTER 5 Data binding in ASP.NET Web Forms

DISCUSSION

These features are merely improvements of existing ones. They’ll make your life eas-
ier though, because now you don’t need to manually implement them or leverage
some hacks to adapt them to your needs.

 Now that you’re ready to display and modify data, the next step is to filter data
using some more new ASP.NET 4.0 features.

5.3 Filtering and sorting data
You can filter and sort data by simply modifying the selection routine. With emerging
technologies like LINQ, the way we think about filtering and sorting has dramatically
changed. Now that we’re accustomed to manipulating data using query expressions in
LINQ, the EntityDataSource and LinqDataSource controls can come to the rescue in
many scenarios.

ASP.NET 4.0 introduces a new kind of control, called QueryExtender, which unifies
and simplifies both data filtering and sorting.

 The QueryExtender control

The simplest way to understand how the QueryExtender control works is to use it.
This control extends what you can do with filtering and sorting capabilities by using
EntityDataSource and LinqDataSource. It also makes these controls similar to use.

PROBLEM

Filtering and sorting are tasks that get repeated in a lot of applications. Our aim in
this example is to show you how to simplify them whenever possible.

SOLUTION

Data source controls aren’t terribly flexible when you’re dealing with runtime filter-
ing. These controls are designed to be productive in the design-time world. You have
to specify custom parameters using the specific filtering controls. If you want to
specify custom filtering strategies, you can’t use a declarative option because there
isn’t one.

 The QueryExtender control, on the other hand, simplifies this kind of scenario. To
use it, you declare it on your page with options, link it to a data source control, and
that’s it—you’re done. This kind of control is called a control extender, because it
extends another control’s features. You specify the control to be extended using the
TargetControlID property. Figure 5.8 contains a schema of this process.

 This control works with the IQueryableDataSource interface. This interface is
implemented by data source controls in the System.Web.UI.WebControls namespace,
such as EntityDataSource and LinqDataSource. If you’re writing custom controls
and want to support these features, you must implement this interface.

Basic filtering
The simplest form of the QueryExtender control sorts an existing EntityDataSource.
This kind of sorting is shown in the following listing.

TECHNIQUE 31

119TECHNIQUE 31 The QueryExtender control

<asp:GridView ID="CustomerList" runat="server" AutoGenerateColumns="False"
 DataKeyNames="CustomerID"
 DataSourceID="CustomerDataSource">
</asp:GridView>

<asp:EntityDataSource ID="CustomerDataSource"
 runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities"
 EntitySetName="Customers">
</asp:EntityDataSource>

<asp:QueryExtender ID="CustomerQueryExtender" runat="server"
 TargetControlID="CustomerDataSource">
 <asp:OrderByExpression DataField="Country" Direction="Ascending">
 <asp:ThenBy DataField="CompanyName" Direction="Ascending" />
 </asp:OrderByExpression>
</asp:QueryExtender>

The markup used here is similar to the corresponding LINQ expression. Note that
when you’re dealing with multiple order by clauses, you have to use the ThenBy con-
trol, nested inside a main OrderByExpression control.

DESIGN-TIME SUPPORT FOR QUERYEXTENDER At the time of this writing, Query-
Extender doesn’t have design-time support in VS 2010.

From a practical perspective, the controls used to represent the expressions are simi-
lar to the corresponding LINQ operators.

Listing 5.8 QueryExtender ties to a GridView to order the results

Data control
Data binding

Data source

Data source
control

QueryExtender

Parameters

Figure 5.8 QueryExtender is a control extender. It extends the features of the
specified control. In this case, the control to be extended is the data source control.

Data source
to be used

120 CHAPTER 5 Data binding in ASP.NET Web Forms

Filtering using properties
Filtering is a little more complicated than sorting. The simplest way to filter a data
source is to specify a fixed value for a given property.

 To filter the customer data source to retrieve only values where the Country prop-
erty is Italy, you have to write this markup:

<asp:QueryExtender ID="CustomerQueryExtender" runat="server"
 TargetControlID="CustomerDataSource">
 <asp:PropertyExpression>
 <asp:Parameter Name="Country" Type="String" DefaultValue="Italy" />
 </asp:PropertyExpression>
</asp:QueryExtender>

Filtering by a single value couldn’t be easier, could it?

Filtering using a range
With the RangeExpression control you can apply a range filter. You can use two Con-
trolParameter controls in this kind of scenario to tie the high and low values to two
controls. In the following listing, we’ll retrieve all the products that have a UnitsIn-
Stock property value that’s between the specified values.

<asp:GridView runat="server" ID="ProductList"
 DataSourceID="ProductDataSource"
 AutoGenerateColumns="False" DataKeyNames="ProductID" >
...
</asp:GridView>

<asp:EntityDataSource ID="ProductDataSource" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities"
 EntitySetName="Products">
</asp:EntityDataSource>

<asp:QueryExtender ID=" ProductQueryExtender" runat="server"
 TargetControlID="ProductDataSource">
 <asp:RangeExpression DataField="UnitsInStock"
 MaxType="Inclusive"
 MinType="Inclusive">
 <asp:ControlParameter ControlID="LowerQuantity"
 PropertyName="Text" Type="Int16" />
 <asp:ControlParameter ControlID="HigherQuantity"
 PropertyName="Text" Type="Int16" />
 </asp:RangeExpression>
</asp:QueryExtender>

You can see the resulting page in figure 5.9.
 If you’ve used the declarative control filters offered by ObjectDataSource, you

might’ve found this approach familiar.
 In the next example, we’ll take a look at how easy it can be to apply filters using

custom methods.

Listing 5.9 Specifying a range using the RangeExpression control to filter results

Operators
<= and >=

Low value
control ID

High value
control ID

121TECHNIQUE 31 The QueryExtender control

Filtering using custom methods
The truth is that you’ll probably need filters that are more advanced than a simple
range. When you do, you can use the MethodExpression controls that work against a
classic LINQ query.

 To filter using your own method, you have to provide markup similar to that shown
in the following listing.

<asp:EntityDataSource ID="CustomerDataSource" runat="server"
 ConnectionString="name=NorthwindEntities"
 DefaultContainerName="NorthwindEntities" EntitySetName="Customers" />

<asp:QueryExtender ID="CustomerQueryExtender" runat="server"
TargetControlID="CustomerDataSource">

 <asp:MethodExpression MethodName="GetFilter">
 <asp:ControlParameter Name="CompanyName" ControlID="CompanyName"

PropertyName="Text"
 Type="String" />
 </asp:MethodExpression>
</asp:QueryExtender>

You have to define the method in your page code, or define it externally by setting the
Type property on the MethodExpression declaration:

C#:
public static IQueryable<Customer> GetFilter(IQueryable<Customer>
 customers, string companyName)
{
 return customers.Where(c => c.CompanyName.Contains(companyName));
}

Listing 5.10 Using a custom method and the MethodExpression control to filter data

Figure 5.9 The RangeExpression data control displays only items whose property matches the
range. This control makes this kind of scenario simple—you can use markup instead of code.

Filter method

122 CHAPTER 5 Data binding in ASP.NET Web Forms

VB:
Public Shared Function GetFilter(ByVal customers As IQueryable(Of

NorthwindModel.Customer), ByVal companyNameAs String) As IQueryable(Of
NorthwindModel.Customer)

 Return customers.Where(
 Function(c)
 c.CompanyName.Contains(companyName)
 End Function)
End Function

As you can see, this is a standard LINQ query expression where you can apply all the
filtering you need. The important things here are the parameter name and the return
type, which must be identical to those defined in markup. You can see the results in
figure 5.10.

 This example works with strings, but you can also use it to implement complex fil-
tering rules. If you just need to work with strings, you can use a specific control, which
we’ll talk about next.

Working with strings
If you need to search strings, you can use the SearchExpression control. The Search-
Type property can assume a value that’s between Contains, StartsWith, and End-
sWith. This value will influence the operator to be used. The rest of the markup is
similar to the previous example:

<asp:QueryExtender ID="CustomerQueryExtender" runat="server"
 TargetControlID="CustomerDataSource">
 <asp:SearchExpression
 ComparisonType="InvariantCultureIgnoreCase"
 DataFields="CompanyName"
 SearchType="Contains
 <asp:ControlParameter Name="customerName"
 ControlID="CustomerName" PropertyName="Text"
 Type="String" />
 </asp:SearchExpression>
</asp:QueryExtender>

Normally, empty values are ignored, unless you set the ConvertEmptyStringToNull
property on the filter element to true. If you run this example, you’ll notice that all
the customers are shown the first time you run it.

 The controls defined inside the SearchExpression are the same ones that you can
specify in other filtering scenarios: you can filter by querystring, session, profile,
route, controls, and so on. You can even write custom parameters if you need to
accomplish specific tasks!

Figure 5.10 You can add a simple search to your page using a MethodExpression control. Using this

control, you can define your own filtering rule quickly.

123TECHNIQUE 32 The first application

DISCUSSION

You’ve got to be able to filter and sort your data. If you like to write declarative con-
trols to query your objects, the query extender mechanism will fill a gap found in pre-
vious versions. If you prefer more control over what’s happening under the covers,
you can achieve the same results with code.

 In the next part of this chapter, we’ll cover Dynamic Data controls. This feature
was introduced in ASP.NET 3.5 SP1. It simplifies common data-entry tasks by using
Entity Framework or LINQ to SQL models to automatically generate all the masks used
to display, alter, or insert data.

5.4 Working with Dynamic Data controls
Dynamic Data controls are a new wave of declarative controls that enable you to
develop simpler data-based applications. Many applications are essentially data ori-
ented; instead of relying on the typical n-layer architecture, they directly manipulate
data. The idea behind Dynamic Data controls is to dynamically build the view and
editing masks, using Entity Framework’s ObjectContext or LINQ to SQL’s Data-
Context. ASP.NET 4.0 supports custom providers using the typical Provider Model
design pattern.

 If you need to quickly compose an editable area over your mapped objects,
Dynamic Data controls are the best answer in terms of productivity. You can literally
build an admin area for your sites in seconds.

 The first application

Visual Studio 2010 contains two templates specifically targeted to Dynamic Data con-
trols. Choose the right one, depending on whether you’ll use LINQ to SQL or Entity
Framework. If you want to build your own provider, which is supported in version 4.0,
the route you take might be different.

 Dynamic Data controls are a group of controls (both custom and user controls)
that leverage some of the most interesting new features of ASP.NET 4.0 (such as URL
routing, or query extender).

PROBLEM

The problem that this scenario will solve is simple: provide a dynamic way to display,
filter, sort, and manipulate data efficiently. Dynamic Data controls certainly fit
the bill.

SOLUTION

To begin your first application based on this feature, you need to create a new project
in Visual Studio 2010. The available options are shown in figure 5.11.

 Our application will be based on Entity Framework (using the mapping you cre-
ated in technique 26, based on Northwind, and that we analyzed in technique 31).
Keep in mind that although the templates are similar, you can’t switch from Entity
Framework to LINQ to SQL (or vice versa) after you’ve created the project.

TECHNIQUE 32

124 CHAPTER 5 Data binding in ASP.NET Web Forms

A typical Dynamic Data control application is based on the following concepts:

■ MetaModel—Represents the logical model
■ MetaTable—Contains the representation of the logical table, inside the Meta-

Model

■ MetaColumn—Represents the logical column, inside the MetaTable

Each MetaTable is inside a MetaModel, which holds all the information about the
tables. Each MetaTable contains information about the columns, represented by an
instance of MetaColumn. This information is registered at runtime, generally using the
RegisterContext method of MetaModel. By default, all the tables and the columns are
visible, but you can change that; we’ll tell you how later.

 It’s not mandatory to register the model in global.asax, but that’s the default
behavior. You have to register the model at startup, and global.asax is the default
option. You’ll see code similar to that shown in the following listing.

C#:
public class Global : System.Web.HttpApplication

Listing 5.11 Registering the model in global.asax

Figure 5.11 ASP.NET Dynamic Data controls have two templates in VS 2010. You must choose between
a model based on Entity Framework or LINQ to SQL.
{

125TECHNIQUE 32 The first application

 private static MetaModel s_defaultModel = new MetaModel();
 public static MetaModel DefaultModel
 {
 get
 {
 return s_defaultModel;
 }
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 ContextConfiguration config = new ContextConfiguration() {
 ScaffoldAllTables = true };
 DefaultModel.RegisterContext(typeof(NorthwindEntities), config);
 }
}

VB:
Public Class [Global]
 Inherits System.Web.HttpApplication
 Private Shared s_defaultModel As New MetaModel()
 Public Shared ReadOnly Property DefaultModel() As MetaModel
 Get
 Return s_defaultModel
 End Get
 End Property

 Public Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 Dim config As New ContextConfiguration()
 config.ScaffoldAllTables = True
 DefaultModel.RegisterContext(
 GetType(NorthwindEntities),
 config)
 End Sub
End Class

In this example, we’re using Entity Framework, but with LINQ to SQL both the code
and the concepts are identical. The ScaffoldAllTables property is important
because by default its value is false. By setting it to true, you’ll automatically show all
the tables in the first page.

 When you create a new application based on this project, you’ll notice that all the
code is already in place, and you don’t need to write it! A new route is also registered:

C#:
routes.Add(new DynamicDataRoute ("{table}/{action}.aspx")
{
 Constraints = new RouteValueDictionary(new {
 action = "List|Details|Edit|Insert" }),
 Model = DefaultModel
});

VB:
routes.Add(New DynamicDataRoute("{table}/{action}.aspx") With
{

Shows all tables

ObjectContext
 .Constraints = New RouteValueDictionary(New With {

126 CHAPTER 5 Data binding in ASP.NET Web Forms

 .Action = "List|Details|Edit|Insert"}),
 .Model = DefaultModel
})

Dynamic Data controls work with a friendly URL, such as /Products/List.aspx. You can
change the generated URL to reflect your needs. You can protect these URLs using
standard authorization and authentication features from ASP.NET, such as UrlAutho-
rization and FormsAuthentication. When you’re running the project, you’ll receive
a list of tables, shown in figure 5.12.

 If you navigate to each table, you can see how the controls perform in different sit-
uations, such as filtering, paging, or inserting.

 From a technical point of view, the page templates are defined under the Dynamic-
Data/PageTemplates directory. The magic is performed by a special control, Dynam-
icControl, which works with GridView and DetailsView to display fields dynamically.
Traditionally, you had to use these controls with hard-coded fields, which limits the
possibility of providing flexible masks. These controls have been adapted to work eas-
ily with these new features provided by Dynamic Data. You can also use other controls,
like ListView or FormView, using the same approach.

INTEGRATING DYNAMIC DATA CONTROLS IN EXISTING SITES If you need to inte-
grate this feature in existing applications, you need to copy the DynamicData
directory and global.asax. You can set a different directory for the template
using the DynamicDataFolderVirtualPath property on ContextConfigura-
tion, as explained on MSDN at http://mng.bz/nNS4. You can read more
about adding Dynamic Data to an existing website at http://mng.bz/uQn7.

The interesting part is that DynamicControl works with invisible, but useful, informa-
tion called metadata. You can use the data annotations features from the System.Com-
ponentModel.DataAnnonations namespace to decorate the classes and to provide
additional information that Dynamic Data controls can read to understand how a col-
umn is composed, which type it holds, and so on. Data annotation is a transversal con-
cept, and can be used outside Dynamic Data controls. For example, ASP.NET MVC uses
it to automatically build the UI associated with a given model.

Figure 5.12 The default
page in Dynamic Data will
display the list of mapped
entities. In Dynamic Data,
mapped entities are

called tables.

http://mng.bz/nNS4
http://mng.bz/uQn7

127TECHNIQUE 33 Working with metadata and templates

DISCUSSION

Dynamic Data controls present a powerful technology that simplifies data entry, where
your data strategy coincides with your mapped model. Thanks to data annotations,
Dynamic Data controls automatically provide form validation, based on the metadata
available. The rendering is associated with specific controls, depending on the data type.

 Believe it or not, you can extend this behavior even further. You’re going to see
that in the next scenario.

 Working with metadata and templates

Dynamic Data controls work with templates, for both views and data types. Each col-
umn is rendered according to its type, using a simple mechanism. You can alter this
behavior to achieve different results.

PROBLEM

When you’re dealing with mapped entities coming from a database, the database
schema infers some metadata information, such as data type, maximum length, and
so on. When data is being displayed, the column name, the validation, or the UI data
type might differ from the underlying database schema. Sometimes, you might need
different templates.

SOLUTION

Dynamic Data templates are grouped by type. Page templates are in the Dynamic-
Data/PageTemplates folder, where each page represents a different action:

■ List.aspx—Contains a GridView, used to display data. You can specify foreign keys,
boolean values, and custom filters using a special control, called DynamicFilter.

■ Edit.aspx—Contains a DetailsView, used to display the data while in editing.
■ Insert.aspx—Used to insert a new item, using a DetailsView.
■ ListDetails.aspx—Can be used to override List.aspx behavior. Provides, on the

same page, both a list and edit panel, using a master/detail approach.

All the templates share a common base, using a DynamicDataManager to instruct the
data controls, a ValidationSummary to display validation errors, and an UpdatePanel
to provide AJAX capabilities, using ASP.NET AJAX (see chapter 12).

Changing the display behavior
Each column is rendered according to its data type, using the appropriate template
in the DynamicData/FieldTemplates directory. Table 5.4 describes the types that are
supported.

Table 5.4 Default field templates in Dynamic Data

Template Description

Boolean Represents a boolean value using a CheckBox.

Children Gets a link that navigates to the child entities, in a relation.

TECHNIQUE 33
DateTime Displays a DateTime value.

128 CHAPTER 5 Data binding in ASP.NET Web Forms

When the type of a column is a non-primitive data type, data annotations come to the
rescue. Using the DataTypeAttribute attribute from System.ComponentModel.

DataAnnotations, you can specify a type that’s more specific than the CLR type. Using
the templates listed in table 5.4, you could map a string property to be represented by
the Url template, or by MultilineText. The CLR type, in this kind of situation,
remains System.String, but for display purposes you would use a more specific one.

 Because we’re working with autogenerated entities, we need to use an attribute called
MetadataType to tell Dynamic Data which class contains metadata information. If you’re
using Entity Framework’s POCO support (see chapters 2 and 3), you can use the attribute
directly. An example of using MetadataType is shown in the following listing.

C#:
[MetadataType(typeof(CustomerMetaData))]
public partial class Customer
{}
public class CustomerMetaData
{
 [DataTypeAttribute(DataType.MultilineText)]
 public string Address { get; set; }
}

VB:
<MetadataType(GetType(CustomerMetaData))>
Partial Public Class Customer
End Class

Public Class CustomerMetaData
 <DataTypeAttribute(DataType.MultilineText)>
 Public Address As String

Decimal Displays a Decimal value.

EmailAddress Represents an email address. The address is clickable.

Enumeration Supports enumeration. New in verson 4.0.

ForeignKey Displays a link to the foreign key column.

Integer Displays an Integer value.

ManyToMany Represents a many to many relationship, if that’s supported by the provider.

MultilineText Displays multiline text.

Text Displays simple text.

Url Displays a hyperlink to the given URL.

Listing 5.12 Extending the Customer entity with custom attributes

Table 5.4 Default field templates in Dynamic Data (continued)

Template Description

Specify class containing
annotations

Specify different
data type
End Class

129TECHNIQUE 33 Working with metadata and templates

Generally, the DataTypeAttribute holds one of the values from the DataType enum.
(You can fine more information about this enum on MSDN at http://mng.bz/7d3n.)
You can specify a string, which forces Dynamic Data to use the corresponding custom
template. We’ll talk about custom templates in technique 34.

 To just control the selected control, without altering the data type, you can use
UIHintAttribute, which is specifically targeted at visual rendering. When you specify
this attribute, Dynamic Data bypasses the DataTypeAttribute value, which can be
accessed in the corresponding custom field template.

Changing the display format
If you need to change how the value is handled at display time, you need to use Dis-
playFormatAttribute. This attribute has interesting properties that handle the for-
mat string, null display text, and whether the display should be applied in editing:

C#:
public class ProductMetadata
{
 [DisplayFormat(ApplyFormatInEditMode = false,
 DataFormatString = "{0:C}",
 NullDisplayText = "not set")]
 public decimal UnitPrice {get; set;}
}

VB:
Public Class ProductMetadata
 <DisplayFormat(ApplyFormatInEditMode := False,
 DataFormatString := "{0:C}",
 NullDisplayText := "not set")>
 Public Property UnitPrice As Decimal
End Class

You can see an example in figure 5.13.

Figure 5.13 A custom
display format is applied to
the UnitPrice property.

The results will influence
how the data is rendered.

http://mng.bz/7d3n

130 CHAPTER 5 Data binding in ASP.NET Web Forms

This attribute is useful because it provides an advanced format specific to the corre-
sponding attribute and column combination.

Changing the display name
The model is used to represent the entities, which aren’t directly exposed to your
users. For this reason, you can specify a display name that’s used to provide a better
display name, using DisplayNameAttribute. You can find the results in figure 5.14.

 The corresponding code is simple:

C#:
public class ProductMetadata
{
 [DisplayName("Price")]
 public decimal UnitPrice {get; set;}
}

VB:
Public Class ProductMetadata
 <DisplayName("Price")>
 Public Property UnitPrice As Decimal
End Class

If you need to specify a description, you can use DescriptionAttribute.

Hiding tables and columns
You can hide tables and columns from the layout completely by setting the Scaffold-
Table or ScaffoldColumn property. To hide the Product table, you can use this code:

C#:
[ScaffoldTable(false)]
public class ProductMetadata
{
}

VB:
<ScaffoldTable(false)
Public Class ProductMetadata
End Class

If you need to hide a column, the code is similar.

DISCUSSION

Dynamic Data controls are designed to be extensible. You can control every aspect of

Figure 5.14 You can specify a custom display name (in this example, Price instead of
UnitPrice). Using custom names makes your page more user-friendly.
page layout and data manipulation, using the data annotations to add specific meaning

131TECHNIQUE 34 Extending Dynamic Data

to tables and columns. If you need to extend its capabilities even more, read on. We’re
going to talk about address validation, custom templates, and searching.

 Extending Dynamic Data

It’s easy to extend Dynamic Data and use advanced features, such as validation or
searching. You can achieve interesting results by leveraging specific attributes.

PROBLEM

In a typical application, you need to validate user input, use a custom template, and
integrate your own search criteria. Let’s see how you can integrate these features into
Dynamic Data.

SOLUTION

Validation is probably the most requested feature in data entry. You can’t simply trust
the user input; you need to provide a validation mechanism. We’ll start our solution
with this problem.

Validation
Dynamic Data uses the attributes of data annotations to perform validation. You can
find more information about all the attributes at http://mng.bz/nqz1.

 The most interesting attributes for validation are presented in table 5.5.

If you want to specify that the UnitPrice property on Product is mandatory and that
its value must be between 0 and 100, you’ll write the following code:

C#:
public class ProductMetadata
{
 [Required]
 [Range(0, 100, ErrorMessage="Valid only between 0 and 100")]
 public decimal UnitPrice;
}

Table 5.5 Data annotation attributes used in validation

Template Description

CustomValidationAttribute New in ASP.NET 4.0. Using this attribute, you can define rules
attached to the entity.

RangeAttribute Can be used to specify the valid value range.

RegularExpressionAttribute Contains a regular expression to validate the property value.

RequiredAttribute Marks the property as required.

StringLengthAttribute Defines the string length.

ValidationResult Used in custom validation attributes to represent the valida-
tion result.

TECHNIQUE 34

http://mng.bz/nqz1

132 CHAPTER 5 Data binding in ASP.NET Web Forms

VB:
Public Class ProductMetadata
 <Required>
 <Range(0, 100, ErrorMessage := "Valid only between 0 and 100")]
 Public UnitPrice As Decimal
End Class

If you run the Dynamic Data site using this modi-
fied property, you’ll get the result shown in fig-
ure 5.15.

 You can also provide validation using LINQ to
SQL or Entity Framework extensibility. Data anno-
tations use attributes and are easier to use in sim-
ple scenarios like this one.

Building a custom template
To build a custom template, you need to create a
new user control under the DynamicData\Field-
Templates directory. The control must derive
from System.Web.DynamicData.FieldTemplate-
UserControl, which is the base class used by
Dynamic Data to define custom templates.

 You can define two custom templates: one for
the display status and the other for the editing. The
edit template must include _edit after the template
name and before the .ascx extension. If you omit
the edit template, the default one for the type will
be used.

 To specify a custom template, you must use the UIHintAttribute attribute:

C#:
[UIHintAttribute("Phone")]
public string Phone { get; set; }

VB:
<UIHintAttribute("Phone")
Public Property Address As String

Save the Phone template inside Dynamic Data’s template directory. To create a simple
template, you can use one of the existing ones as a starting point. In our case, the
most similar is the Url template, so our new template code will be similar to that
shown in the following listing.

C#:
public partial class PhoneField :
 System.Web.DynamicData.FieldTemplateUserControl

Listing 5.13 Defining a custom field template to display phone number

Figure 5.15 Dynamic Data validation
is based on data annotations. You can
use attributes to specify custom rules
that maintain data consistency.
{

133TECHNIQUE 34 Extending Dynamic Data

 protected override void OnDataBinding(EventArgs e)
 {
 HyperLinkUrl.NavigateUrl = GetUrl(FieldValueString);
 }

 private string GetUrl(string phone)
 {
 return string.IsNullOrEmpty(phone) ? "#"
 : string.Concat("callto:", phone);
 }

 public override Control DataControl
 {
 get
 {
 return HyperLinkUrl;
 }
 }
}

VB:
Public Partial Class PhoneField
 Inherits System.Web.DynamicData.FieldTemplateUserControl
 Protected Overloads Overrides Sub OnDataBinding(ByVal e As EventArgs)
 HyperLinkUrl.NavigateUrl = GetUrl(FieldValueString)
 End Sub

 Private Function GetUrl(ByVal phone As String) As String
 Return If(String.IsNullOrEmpty(phone), "#",
 String.Concat("callto:", phone))
 End Function

 Public Overloads Overrides ReadOnly Property DataControl() As

➥ Control
 Get
 Return HyperLinkUrl
 End Get
 End Property
End Class

In our example, the Phone property will be rendered as a hyperlink, using the callto
protocol to automatically initiate a Voice over Internet Protocol (VoIP) conversation
by clicking on the phone number. The resulting page is shown in figure 5.16.

 You can extend this approach even further to use it on a complex type. You can use
it to attach a WYSIWYG (What You See Is What You Get) editor to specific properties or
to provide custom behavior for your application. By inspecting the existing template,
you can learn a lot and create your own implementations.

Custom filter templates
You can customize the search mechanism by writing filter templates. Similar to display
templates, you save a filter template under DynamicData\Filters, and the user control
must inherit from System.Web.DynamicData.QueryableFilterUserControl.

 To implement this behavior, you must understand how IQueryable works and
know something about LINQ, lambda, and Func<T>. You can read more about this

Display value

Format
callto link

Control used
by template

Display value

Format
callto link

Control used
by template
topic on MSDN at http://mng.bz/YKP4.

http://mng.bz/YKP4

134 CHAPTER 5 Data binding in ASP.NET Web Forms

DISCUSSION

You can enhance and customize Dynamic Data controls to suit your needs. The new
version available with ASP.NET 4.0 introduces some new, long-awaited features, like
custom filters, custom page templates, new templates, and better integration with
existing and custom providers.

 If you need to provide a dynamic data entry interface, you can do it easily with
Dynamic Data controls.

5.5 Summary
Data binding is a central topic in every ASP.NET application. Data binding isn’t neces-
sarily tied to a database as a data source. You can, in fact, get data from different kinds
of sources, and perform the same step to display the data. This is the first advantage of
using data binding: you can use the same techniques to display data coming from dif-
ferent sources.

ASP.NET supports data binding in different ways, by providing specific controls to
display data (called data controls) and other controls to get data without writing code
(called data source controls). You’ll find that using controls to get data is useful in
some situations, and you can always write code if you prefer more control over the
results. The important thing to remember is that the data controls can display data,
and provide sorting, paging, and editing capabilities. You choose whether you want to
automate ASP.NET data source controls, or if you just want to write code.

 Dynamic Data controls have a new, exciting platform that you can use to build pow-
erful, visually rich data entry forms without writing code. Instead, you use the power
behind Entity Framework and LINQ to SQL, which you can extend in ASP.NET 4.0 to cus-
tom providers. You can enhance the platform by writing specific code and achieve inter-
esting and useful results.

 We’ll continue our examination of ASP.NET Web Forms by looking at how you can

Figure 5.16 The custom template for the phone number in action. You can specify custom behaviors
and provide better usability for your users.
use custom controls to enhance componentization. Let’s get to it.

Custom controls
You can use custom controls in ASP.NET Web Forms to benefit from componentiza-
tion. As you learned in previous chapters, ASP.NET Web Forms are based on the
concept of controls, which are used as placeholders for their given features. Con-
trols are useful when you’re developing complex applications because you can
avoid code duplication. Because custom controls are objects, you can use the typi-
cal features offered by OOP.

 You can start from scratch with your own control, or use an existing control and
enrich it. Depending on your needs, you can interact with the Web Form during
PostBacks, or support data binding (introduced in chapter 5).

 One of the most interesting aspects of custom controls is that you can encapsu-
late your logic and reuse it many times in your application, without rewriting it.

This chapter covers
■ An introduction to how to build custom controls
■ Composite controls
■ Handling PostBack in custom controls
■ Complex controls
■ Data binding and templates in custom controls
135

136 CHAPTER 6 Custom controls

This feature will be a great help when you need to enhance the control even more
because the modifications will reflect automatically.

 When you’re dealing with custom controls, you need to have a solid understanding
of how ASP.NET Web Forms work because you’re more exposed to some internals than
you are in other situations. If you need to brush up on ASP.NET Web Forms, be sure
that you’ve read chapters 4 and 5.

 In this chapter, we’ll take a look at how to build custom controls, starting with the
simple ones. After that, we’ll move on to analyzing more complex scenarios, such as
data binding and templating. Most of the topics presented here aren’t entirely new to
ASP.NET 4.0, but they’re definitely important if you’re working with ASP.NET.

6.1 The basics of custom controls
A custom control is a class that handles a scenario and offers a solution. Typically, it
generates a markup (HTML or XHTML), but some scenarios don’t do that. For exam-
ple, in chapter 5 we talked about data source controls, which don’t generate markup.

 When you write a custom control, you’re trying to solve a recurring problem in
order to avoid writing the same logic—and code—multiple times. Because the control
will be available in the page’s control tree, you need to code it accordingly.

 Generally, custom controls are divided into the following groups, based on their
features:

■ Basic controls are the simplest ones
■ Composite controls are created by composing existing controls to create new ones
■ Templated controls use a template to give you advanced control over the gener-

ated markup
■ Data binding controls help you display data coming from a data source
■ Control designers are used to leverage Visual Studio’s 2010 design surface
■ Control builders let you use your own markup format in the control

In this chapter, we’ll talk about most of these controls, but we won’t peer too deeply.
These scenarios can become quite complicated, depending on your needs; the space
in this chapter is sufficient to cover only the most common—and interesting—
approaches.

 Simple controls and custom controls have some commonalities. Before you start
writing custom controls, you should take a look at how to build a simple control.
That’s what we’re going to do in our first scenario.

 Simple controls

Custom controls are built by inheritance. You can enhance complex controls and add
your modifications, or start with the simplest one. If you want to build a simple control,
or if you don’t want additional features, you can start with System.Web.UI.Control.

 The most interesting aspect of custom controls is that you’ll generate the markup
with code—you don’t have to write it directly. If you want to build simple reusable

TECHNIQUE 35
objects, ASP.NET Web Forms embrace the concept of user control (which is similar to a

137TECHNIQUE 35 Simple controls

partial view in ASP.NET MVC). A user control is a small piece of a page, with all the
same peculiarities. It has markup and code that are well separated from each other,
and you can freely define your markup using a designer. Keep in mind, though, that
you can’t use the approach you use to build custom controls to build user controls
because the markup is generated fully in code.

PROBLEM

You need to start to reuse code to solve recurring problems. Our objective with this
scenario is to save you time when you’re adding more features. You want to write the
code once and use it in different situations.

SOLUTION

When you’re writing a custom control, you have to create a new class that inherits
from the Control class. This base class has few members, the most important of which
is the Render method. This class is responsible for generating the markup and holds a
single instance of HtmlTextWriter. It’s used to write the resulting markup to the buf-
fer, and it inserts the generated output from the control in the final output stream.
This approach is used by each control in the control tree, and, as you learned in chap-
ter 5, the ASP.NET Web Form itself (the page) is a control; the rendering is performed
in the same way as it is for the page.

 When you need to provide output, the easiest way is to just generate it in the Ren-
der method. Even though the custom control we’ll build in a moment is simple (it dis-
plays only the value of its Text property) you can appreciate some of the most
common issues you’ll need to deal with when building custom controls. The code for
our custom control is shown in the following listing.

C#:
[DefaultProperty("Text")]
[ToolboxData("<{0}:FreeText runat=server
[CA]text=\"Your text \"></{0}:FreeText>")]
public class FreeText : Control
{
 [Bindable(true)]
 [Category("Appearance")]
 [DefaultValue("")]
 [Localizable(true)]
 public string Text
 {
 get
 {
 Return ViewState["Text"] as String;
 }
 set
 {
 ViewState["Text"] = value;
 }

Listing 6.1 A simple custom control with a string property

Default property in
Visual Studio’s designer

Markup
inserted by
designer

Attributes
used to
control
behavior
 }

http://msdn.microsoft.com/en-us/library/aa310917.aspx
http://msdn.microsoft.com/en-us/library/aa310917.aspx
http://msdn.microsoft.com/en-us/library/aa310917.aspx

138 CHAPTER 6 Custom controls

 protected override void Render(HtmlTextWriter output)
 {
 output.Write(Text);
 }
}

VB:
<DefaultProperty("Text")>
<ToolboxData("<{0}:FreeText runat=server

➥ text=""Insert your text here""></{0}:FreeText>")>
Public Class FreeText
 Inherits Control
 <Bindable(True)>
 <Category("Appearance")>
 <DefaultValue("")> <Localizable(True)>
 Public Property Text() As String
 Get
 Return DirectCast(ViewState("Text"), String)
 End Get
 Set
 ViewState("Text") = value
 End Set
 End Property

 Protected Overrides Sub Render(output As HtmlTextWriter)
 output.Write(Text)
 End Sub
End Class

As you can see from this code, attributes are
widely used in custom controls to work with
both the ASP.NET Page Parser and Visual Stu-
dio’s designer. Most of these attributes aren’t
necessary to make the control work, but will be
useful to other members on your team.

 In figure 6.1, you can see how Visual Stu-
dio 2010 will host this control in its designer.

 Now you’ve got the control on your page.
But before you can use it, you have to register it.

Registering a control
You can register a control in two ways:

■ Locally on the page—The control will be
available only on this page

■ Globally—The control will be available
to the whole application

The syntaxes you use in each of these two cases
are similar, and there isn’t a preferred choice.
If you need a set of controls in many pages and

Output is
generated

Default property in
Visual Studio’s designer

Markup inserted
by designer

Attributes used to
control behavior

Output is
generated

Figure 6.1 Our custom control as it appears
when hosted in the designer. At the bottom
you don’t want to repeat the registration every are the properties related to our control.

http://gregor.manning.com/gregor/explorer.action?xx=0&cms=1302123918736&crudId=
http://gregor.manning.com/gregor/explorer.action?xx=13625&cms=1302123918737&crudId=
http://gregor.manning.com/gregor/explorer.action?xx=13625&cms=1302123918737&crudId=
http://gregor.manning.com/gregor/explorer.action?xx=256180&cms=1302123918737&crudId=
http://gregor.manning.com/gregor/explorer.action?xx=256162&cms=1302123918737&crudId=
http://gregor.manning.com/gregor/explorer.action?xx=256162&cms=1302123918737&crudId=
http://gregor.manning.com/gregor/explorer.action?xx=256172&cms=1302123918737&crudId=

139TECHNIQUE 36 Composite controls

time, the global approach is the best way to go. On the other hand, if you need them
only on one page, it’s better to register them on the page where you use them.

 If you want to globally register a control, you need to open your web.config and place
the registration under configuration\system.web\pages, as in the following snippet:

<controls>
 <add tagPrefix="controls"
 namespace="CustomControls.Composite"
 assembly="CustomControls.Composite" />
</controls>

 You can locally register a control in a page (or user control) using the @Register
directive:

<%@ Register TagPrefix="controls"
 Namespace="CustomControls.Composite"
 Assembly="CustomControls.Composite" %>

The TagPrefix attribute is used to represent the first part of the typical control decla-
ration. The second part, the one after the :, is the class name itself. For our example,
the definition in the markup will be:

<controls:FreeText runat="server" Text="This is a test" />

Because it will influence the way you declare the control in markup, the class name is
important and must be chosen accordingly.

TIPS FOR CONTROL REGISTRATION If you can, avoid using a long name for your
control and don’t add the control suffix (it’s not necessary).

Don’t use the default asp tag prefix either because it will slow down the con-
trol’s lookup performance. Using this prefix will add more namespaces to
consider when the Page Parser tries to understand where the control is
defined; it’s a system namespace, which is often used to clearly identify the
fact that a control is coming from the Base Class Library (BCL) BCL.

Everything we’ve introduced with this scenario can be applied to user controls, too.
For user controls, you specify the src property to specify the path.

DISCUSSION

Congratulations! Your first control is complete. This control is quite simple, but shows
some of the fundamental aspects you’ll have to deal with when you write custom con-
trols. In the real world, it’s more common to write custom controls that are based on
existing controls. They will enhance and combine other controls’ features in a single
point and will provide an easier way of coding a feature. In the next scenario, we’ll
take a look at how these composite controls work in ASP.NET.

 Composite controls

Custom controls are often created by combining existing ones, enhancing their fea-
tures. In most situations, this process consists of picking two or more controls and

TECHNIQUE 36
combining them to produce a single result. Knowing how to do this is important

140 CHAPTER 6 Custom controls

because you can reuse existing controls and add more features to simplify the use of
common, recurring situations.

 We’re talking about composite controls separately because combining controls is
more challenging than creating a new one from scratch. When you create composite
controls, you’ll encounter special problems. For example, the controls need to be
wrapped, and their members need to be exposed in the corresponding control. This
task is simple to perform but it’s also time consuming. The reality is that you’ll map
only the most used and useful members, and add the others as you need them.

 The problem with this class of controls is that you’re hiding them from the out-
side, deciding what the external world may and may not use. For this reason, events
handled internally by these controls can become a nightmare. You need to implement
an event bubbling technique (to let events propagate through the control tree), or opt
to define new events to expose just the existing ones outside the wrapped controls. To
fully understand how all this will affect how you create a composite control, our next
scenario will cover how to build composite controls using ASP.NET.

PROBLEM

Let’s suppose you need to create a special DropDownList that, in a single declaration,
can be used to both insert the description and the options to be selected by the user.
By using this control, you can save a lot of time in terms of markup to be written, and
you can reuse the same feature over and over in your projects.

SOLUTION

Composite controls are generally created by deriving from CompositeControl in Sys-
tem.Web.UI.WebControls. This class implements a lot of the logic necessary to imple-
ment custom controls that are web controls, too—composite controls support styling,
for example. If you don’t need these features, you can opt for the simple Control class
from System.Web.UI. Using the Control class will ensure that the generated markup
remains simple, but you’ll need to manually add the missing features that Composite-
Control already provides.

 Figure 6.2 illustrates the concept of composite controls.
 Whether you use the CompositeControl class or the Control class, you need to

manipulate the page’s control tree and dynamically instantiate controls at runtime.

Composite Control

Control A
Treated as a single
control

Control B

Figure 6.2 A composite control combines other controls. Externally, they’re treated

as a single control that encapsulates the entire logic.

141TECHNIQUE 36 Composite controls

Contrary to the previous example, where the Render method was used to compose the
markup, composite controls work by combining controls together, so the controls are
added using the CreateChildControls method.

 The CreateChildControls method is called via a call to the EnsureChildControls
method whenever a child control is needed. When you’re manipulating the control
tree, you need to be careful and remember that these are controls that will be nested
into the control itself and then into the page. To add a control inside another, you
have to access its Controls properties and add it via the Add method, as shown in the
following listing.

C#:
public class SuperDropDownList: CompositeControl, INamingContainer
{
 protected override void CreateChildControls()
 {
 if (ChildControlsCreated)
 return;

 Controls.Clear();

 Controls.Add(new LiteralControl("<p>"));

 Label labelText = new Label();
 labelText.Text = Description;
 Controls.Add(labelText);

 Controls.Add(new LiteralControl(
 string.IsNullOrEmpty(Description)?

 string.Empty:": "));
 DropDownList listControl = new DropDownList();

 Controls.Add(listControl);

 Controls.Add(new LiteralControl("</p>"));

 ChildControlsCreated = true;
 }
...
}

VB:
Public Class SuperDropDownList
 Inherits CompositeControl
 Implements INamingContainer
 Protected Overrides Sub CreateChildControls()
 If ChildControlsCreated Then
 Return
 End If

 Controls.Clear()

 Controls.Add(New LiteralControl("<p>"))

Listing 6.2 CreateChildControl contains the nested controls declaration

Avoids control
creation

B

Removes existing
controls

Avoids control
creation

B

Continues
code

Avoids control
creation

B

Removes existing
controls

http://msdn.microsoft.com/en-us/library/wxh45wzs.aspx
http://msdn.microsoft.com/en-us/library/wxh45wzs.aspx

142 CHAPTER 6 Custom controls

 Dim labelText As New Label()
 labelText.Text = Description
 Controls.Add(labelText)

 Controls.Add(New LiteralControl(If(String.IsNullOrEmpty(Description),
 String.Empty, ": ")))

 Dim listControl As New DropDownList()
 Controls.Add(listControl)

 Controls.Add(New LiteralControl("</p>"))

 ChildControlsCreated = True
 End Sub
...
End Class

As you can see in this listing, we’re basically adding some controls in order to display a
DropDownList and a description. To remove unwanted controls from the control tree
(which could be Literal controls that can be added in markup), we’re performing a
call to Controls.Clear to reset the control tree. The code in B isn’t actually necessary
because it’s already included by Composite-
Control. Listing 6.2 shows how to deal with this
problem when another simpler base control
(as Control) is used. Look at figure 6.3 to see
the results.

 We’ve omitted the declaration of the proper-
ties from listing 6.2 for brevity. When you need to
set the properties for the inner controls, you
have to use a special approach: you need to
access an inner object’s property from outside
the control. In these situations, the preferred
way to go is shown in the following snippet:

C#:
public IList DataSource
{
 get
 {
 EnsureChildControls();
 return ((DropDownList)Controls[3]).DataSource as IList;
 }

 set
 {
 EnsureChildControls();
 ((DropDownList)Controls[3]).DataSource = value;
 }
}

VB:
Public Property DataSource() As IList

Avoids control
creation

B

Continues
code

Will call
CreateChildControls

Figure 6.3 The new SuperDrop-
DownList control is in action. This
control combines different controls
to provide a simple implementation.
 Get

143TECHNIQUE 36 Composite controls

 EnsureChildControls()
 Return TryCast(DirectCast(Controls(3), DropDownList).DataSource, IList)
 End Get

 Set
 EnsureChildControls()
 DirectCast(Controls(3), DropDownList).DataSource = value
 End Set
End Property

As you can see, we’re referring to the control we created in listing 6.2 (in this case, the
DropDownList), finding it by position, and directly exposing its inner property. Because
you don’t have to keep the inner property in sync (it’s automatically performed using
this pattern), this example shows you the best way to handle this situation.

HOW TO AVOID REFERENCING A CONTROL BY POSITION To produce cleaner
code, you can also save a reference to the controls in CreateChildControls
and then refer to the controls using this syntax (instead of finding them by
position).

The calls to EnsureChildControls are not only important—they’re mandatory. These
calls ensure that the controls are created before we access them.

 Now that the infrastructure of our control is in place, let’s take a look at how to use
events in composite controls.

Events in composite controls
Events are used in custom controls to simplify the code necessary to handle a state. A
composite control hides the child controls, so you need to propagate their events out-
side the container by implementing an event wrapper.

 Redirecting an event is a simple technique. The event is sent outside by first inter-
cepting it locally and then propagating it outside. Take a look at the following snippet
to understand how it works. In this case, the code is worth 1,000 words.

C#:
public event EventHandler SelectedValueChanged;

protected void OnSelectedValueChanged(EventArgs e)
{
 if (SelectedValueChanged != null)
 SelectedValueChanged(this, e);
}

VB:
Public Event SelectedValueChanged As EventHandler

Protected Sub OnSelectedValueChanged(e As EventArgs)
 RaiseEvent SelectedValueChanged(Me, e)
End Sub

This snippet will expose a new event, called SelectedValueChanged, and a new OnSe-
lectedValueChanged method, which is used to define the event handler in the

Will call
CreateChildControls
markup. The last addition we need to make, in order to attach the event to the inner

144 CHAPTER 6 Custom controls

control, is to add this simple code in the CreateChildControls method, right after
the DropDownList instance:

C#:
DropDownList listControl = new DropDownList();
listControl.SelectedIndexChanged += (object sender, EventArgs e) => {
 OnSelectedValueChanged(e);
};

VB:
Dim listControl as New DropDownList()
listControl.SelectedIndexChanged += Function(sender As Object,
 e As EventArgs) Do
 OnSelectedValueChanged(e)
End Function

This snippet ensures that when the DropDownList’s SelectedIndexChanged event is
fired, our event will be fired, too. The result is that the event handler created inside the
page will also be called, and our event will propagate outside the contained control.

DISCUSSION

When you’re building composite controls, you need to pay attention to the fact that
you’re not generating markup, but composing your controls, mixing them together,
and manipulating the page’s control tree. This task is certainly easy to implement in a
simple scenario like the one we covered here because you’re leveraging existing con-
trols, but it can also be prone to error. As you learned in this scenario, you need to
understand how CreateChildControls and EnsureChildControls work.

 Now that you’ve created the basic controls, we’ll explore how you can add Post-
Back to custom controls. This feature can be useful when you’re building custom
controls, and you can use it in composite controls to enhance the result by adding
new behaviors.

 Handling PostBack

In the ASP.NET Web Form model, PostBack is important and is used to provide sup-
port for events. (We introduced this topic in chapter 1, so go back to that chapter if
you need a refresh.) When you build custom controls, you’ll need to provide PostBack
when the control needs to be refreshed or its state is altered.

PROBLEM

ASP.NET pages are based on the concept of programmable controls. To intercept
events fired by the controls present on a page, ASP.NET Web Forms use PostBacks. We
want to write a control that can change its state and execute specific code attached to
a defined event.

SOLUTION

A custom control that can perform a PostBack, fire an event, and alter the control
state in response to the action performed by the user is what we need to create.

 If you need to perform PostBacks, your control must implement the IPostBack-

TECHNIQUE 37
EventHandler interface from System.Web.UI. This interface provides a simple

145TECHNIQUE 37 Handling PostBack

RaisePostBackEvent method that must be implemented to capture the PostBack
and handle it correctly. This method is the entry point for every PostBack generated
by the control. It must contain the related logic to handle the multiple states that
your control might have.

CONTROL VERSUS WEBCONTROL You might have already noticed that we’ve
mixed the use of Control and WebControl in this chapter. WebControl
derives from Control and offers more properties, primarily related to styles,
and wraps its content inside a tag.

Let’s suppose you’ve created a new event called ValueChanged. (If you need to, take a
look back at the previous scenario to discover how to add an event to a control.) Your
control will look like the one shown in the following listing.

C#:
public class PostControl : WebControl, IPostBackEventHandler
{
 public void RaisePostBackEvent(string eventArgument)
 {
 Value = DateTime.Parse(eventArgument);
 OnValueChanged(EventArgs.Empty);
 }

 public event EventHandler ValueChanged;
 protected void OnValueChanged(EventArgs e)
 {
 if (ValueChanged != null)
 ValueChanged(this, e);
 }
}

VB:
Public Class PostControl
 Inherits WebControl
 Implements IPostBackEventHandler

 Public Sub RaisePostBackEvent(eventArgument As String)
 Value = DateTime.Parse(eventArgument)
 OnValueChanged(EventArgs.Empty)
 End Sub

 Public Event ValueChanged As EventHandler
 Protected Sub OnValueChanged(e As EventArgs)
 RaiseEvent ValueChanged(Me, e)
 End Sub
End Class

When the PostBack is fired, the control simply takes the parameter, assigns it to a
property, and fires the associated event.

 To fire the PostBack, we need to create an action that will perform a POST request

Listing 6.3 A simple control that supports PostBack

Get value from
PostBack

Fire
event

Define
event

Get value from
PostBack

Fire
event

Define
event
to the page. You usually do this by adding a hyperlink to the page that calls the

146 CHAPTER 6 Custom controls

JavaScript doPostBack function, which is dynamically added to every ASP.NET page.
Although you can embed this call directly, it’s better to have it generated by using the
GetPostBackClientHyperlink method offered by ClientScript, which is accessible
through the current Page instance. The code is shown in the following listing.

C#:
protected override void RenderContents(HtmlTextWriter writer)
{
 string postBackLink =
 Page.ClientScript.GetPostBackClientHyperlink(this,
 Value.ToString(), true);
 HyperLink link = new HyperLink();
 link.NavigateUrl = postBackLink;
 link.Text = "Test PostBack";
 link.RenderControl(writer);
}

VB:
Protected Overrides Sub RenderContents(writer As HtmlTextWriter)
 Dim postBackLink As String =
 Page.ClientScript.GetPostBackClientHyperlink(Me,
 Value.ToString(), True)
 Dim link As New HyperLink()
 link.NavigateUrl = postBackLink
 link.Text = "Test PostBack"
 link.RenderControl(writer)
End Sub

This code will generate a new link that will post the
control back to the page. The RaisePostBackEvent
from listing 6.3 will be raised, and the event will be
fired. You can take a look at the results in figure 6.4.

 The control you created in this scenario is simple,
but it does show you how to add PostBack support in
an easy way. Another important topic related to han-
dling state that you should consider when you’re
writing a custom control that performs PostBack is
ViewState. We’re not going to cover that here
though; we’ll save that for chapter 13.

DISCUSSION

After working through this scenario, you’ve got a basic understanding of how to cre-
ate custom controls in ASP.NET applications. You can generate custom markup, com-
bining existing controls to provide a new way of using them together. Last, but not
least, you know how to fire PostBacks and handle them in custom controls.

 Now that you’re comfortable with the basics, the next part of this chapter will cover
how to write complex controls. In particular, we’ll take a look at how to use templating

Listing 6.4 A simple control that generates a link for a PostBack

Figure 6.4 When the link is clicked,
it causes a PostBack. Given the code
that’s associated with our control,
our page will intercept the event and
write the current date and time.
and data binding, which will open a new set of more complex scenarios for you.

147TECHNIQUE 38 Container controls

6.2 Complex controls
In most common situations, you’ll need to build controls that are more complex than
the ones we’ve previously introduced. In real-world scenarios, it’s common to provide
advanced features like templating or data binding to enhance control reusability.

 You can personalize the visual appearance of the control depending on your need,
without duplicating the inner code, by implementing templates. You can also do this
with data binding to display data coming from external sources, like a database.

ASP.NET has special features related to data binding and templating, but before we
can move on, we need to address what a container control is and how it works. This
concept is important in this model, where controls are nested.

 Container controls

Container controls are a special kind of control that contain other controls. This is an
important concept if you consider ASP.NET’s page structure, where a control must
have a unique ID. Container controls ensure that the contained controls have a
unique ID across the container. As per the ASP.NET control tree, the generated ID
(often referred to as ClientID) is composed by concatenating the parent and child
IDs, to avoid conflicts across the page.

PROBLEM

You usually build complex controls by creating the controls programmatically and nest-
ing them inside the parent. You need to know how to put the right pieces in the right
positions to fully leverage ASP.NET’s page framework and get the behavior you expect.

SOLUTION

The most important thing to remember about container controls is that most of the
time, you’ll need to implement a marker interface for your class or decorate it with
some attributes. You have to do this because you need to tell the server how to deal
with the control. Figure 6.5 shows how a container control works.

 To instruct the Page Parser that the control is a container, you need to implement
the INamingContainer interface. As previously noted, this interface is only a marker
interface, so you don’t have to write any code. The Page Parser will find the interface

TECHNIQUE 38

Container

Control1 ControlID Control1

Controln ControlID Controln

ClientID

ClientID

Figure 6.5 A container control influences the inner control’s ID. To learn about how the

ClientID is generated, see chapter 4.

148 CHAPTER 6 Custom controls

and generate unique IDs for the child controls. You need unique IDs when you need
different instances of your control in a single page, to avoid conflicts. To implement
this behavior, you’ll need to write some code like the following:

C#:
public class Message : Control, INamingContainer {}

VB:
Public Class Message
 Inherits Control
 Implements INamingContainer
End Class

You don’t need to do anything else to support this feature.
 Another interesting aspect of custom controls is how child controls are created.

Let’s suppose we want to declare our control using this form:

<controls:Message runat="server">
 <ItemTemplate>...</ItemTemplate>
</controls:Message>

The ItemTemplate tag used in this case is in fact a property, which is declared in this
form because it can’t be expressed by a simple literal property. You need to use a spe-
cial attribute, called ParseChildrenAttribute, to instruct the Page Parser accord-
ingly; otherwise, the Page Parser (by default) will treat the inner tag as a literal
content and add a new LiteralControl under the control’s tree. You declare this
attribute on the class, as in the following snippet:

C#:
[ParseChildren(true)]
public class Message : Control, INamingContainer {}

VB:
<ParseChildren(true)>
Public Class Message
 Inherits Control
 Implements INamingContainer
End Class

This attribute can assume different meanings, depending on how you declare it.
When it’s present and set to true, child elements must correspond to the properties
of the control; if they don’t, a parser error is generated (like it would be for non-
mapped properties or literal text). This behavior is especially useful in templating and
data binding controls.

 When you omit ParseChildrenAttribute or explicitly set it to false, the inner
elements must be server controls. The Page Parser will create them by calling the
AddParsedSubObject method, coming from the IParserAccessor interface. By
default, IParserAccessor adds the child controls to the tree. All the remaining literal
controls (like spaces or tabs between controls) are added to the tree as instances of
LiteralControl. This outcome is the preferred behavior when you’re building pan-

els, where inner controls are placed directly inside the control definition.

149TECHNIQUE 39 Templated controls

Properties as inner tags
To define a property as an inner tag, as we did in the previous example, ParseChil-
drenAttribute isn’t enough. You also need to define PersistenceModeAttribute,
this time on the property itself:

C#:
[PersistenceMode(PersistenceMode.InnerProperty)]
public ITemplate ItemTemplate { get; set; }

VB:
<PersistenceMode(PersistenceMode.InnerProperty)>
Public Property ItemTemplate() As ITemplate

In this scenario, you define the property as an inner tag, but the options listed in
table 6.1 are also available.

Mixing the different values provided by PersistenceMode enum will give you different
results. Experimentation will guide you in building a control that best suits your
needs.

DISCUSSION

The topics covered in this scenario are extremely useful when you’re dealing with
templated controls, where data binding must be supported. In these situations, you’ve
got to specifically instruct the Page Parser to achieve the behavior you’re after.

 The next scenario will cover the basics of templated controls and guide you in
effectively supporting data binding.

 Templated controls

We’ve already explored how server controls maintain their values across PostBacks,
how to combine them to build richer controls, and how to control the Page Parser.
The next, natural evolution is to take a look at templating, which is the ability to reuse
the control’s inner behavior, but with the specific purpose of improving layout. Using
templated controls gives you benefits in terms of code reusability; you can reuse more
code and simply provide a new layout when you need one. Templated controls are

Table 6.1 PersistenceMode enum values to use with PersistenceModeAttribute

Value Description

Attribute The property or event is defined as an attribute. This is the
default behavior.

EncodedInnerDefaultProperty Similar to InnerDefaultProperty, but the property
value is HTML encoded.

InnerDefaultProperty The property is defined as the inner text and is the default
property. Only one property can be marked this way.

InnerProperty The property is defined as a nested tag.

TECHNIQUE 39
especially useful when you’re implementing data binding. We’ll cover that here, too.

150 CHAPTER 6 Custom controls

PROBLEM

Quite often, we tend to duplicate code only to provide different outputs, suited to dif-
ferent situations. In this scenario, all we need to do is provide a template that differs
from case to case.

SOLUTION

Templated controls offer a template that you use to customize the visual appearance
of your page. We discussed templates in chapter 5 when we talked about data binding
because they’re used specifically in a data-binding situation to provide flexibility when
showing data coming from external sources, like a database. In this scenario, we’re
going to cover how to use them in custom controls. Figure 6.6 shows how templated
controls work.

 Remember that a template is represented by a special marker type, called ITem-
plate. We’ll declare our template properties this way:

C#:
[TemplateContainer(typeof(MessageItem))]
[PersistenceMode(PersistenceMode.InnerProperty)]
public ITemplate ItemTemplate { get; set; }

VB:
<TemplateContainer(GetType(MessageItem))>
<PersistenceMode(PersistenceMode.InnerProperty)>
Public Property ItemTemplate() As ITemplate

As you can see in this snippet, we’ve added a new TemplateContainerAttribute to
the property definition, which indicates the template container type. This attribute is
useful to enable correct IntelliSense in Visual Studio, too.

 We’ll get back to TemplateContainer soon. Right now, you need to understand
how to instantiate the template. The preferred way is to override the CreateChild-
Controls method and provide the correct initialization. Because ParseChildren-
Attribute is added to the class, no LiteralControls will be created. Listing 6.5 shows
the corresponding code.

Control

ITemplate ITemplate.InstantiateIn

Data source

Item 1

Item 2

Item 3

Item n

Figure 6.6 You usually use templated controls to repeat a given template when
performing data binding. A templated control renders each item loaded from the data

source using the same template.

151TECHNIQUE 39 Templated controls

C#:
[ParseChildren(true)]
public class Message : Control, INamingContainer
{
 [TemplateContainer(typeof(MessageItem))]
 [PersistenceMode(PersistenceMode.InnerProperty)]
 public ITemplate ItemTemplate { get; set; }

 public string Text
 {
 get { return ViewState["Text"] as string; }
 set { ViewState["Text"] = value; }
 }

 protected override void CreateChildControls()
 {
 if (ItemTemplate != null)
 {
 MessageItem template = new MessageItem(this);
 ItemTemplate.InstantiateIn(template);
 this.Controls.Clear();
 this.Controls.Add(template);
 }
 else
 {
 Controls.Add(new LiteralControl(Text));
 }
 }

 protected override void OnDataBinding(EventArgs e)
 {
 EnsureChildControls();
 base.OnDataBinding(e);
 }
}

VB:
<ParseChildren(True)>
Public Class Message
 Inherits Control
 Implements INamingContainer
 <TemplateContainer(GetType(MessageItem)),
 PersistenceMode(PersistenceMode.InnerProperty)>
 Public Property ItemTemplate() As ITemplate

 Public Property Text() As String
 Get
 Return TryCast(ViewState("Text"), String)
 End Get
 Set
 ViewState("Text") = value
 End Set
 End Property

Listing 6.5 A simple templated control

Instantiates
template…

B

…and adds
to tree

C

Used if template’s
omitted

Calls
EnsureChildControls

D

 Protected Overrides Sub CreateChildControls()

152 CHAPTER 6 Custom controls

 If ItemTemplate IsNot Nothing Then
 Dim template As New MessageItem(Me)
 ItemTemplate.InstantiateIn(template)
 Me.Controls.Clear()
 Me.Controls.Add(template)
 Else
 Controls.Add(New LiteralControl(Text))
 End If
 End Sub

 Protected Overrides Sub OnDataBinding(e As EventArgs)
 EnsureChildControls()
 MyBase.OnDataBinding(e)
 End Sub
End Class

In this example, a strongly typed template is defined. First, the code instantiates the
container B and then performs the rendering inside the container itself, which is
then added to the control tree C. The template container is a simple class, which is
used to simplify the data binding.

 The OnDataBinding method inherited from Control is overridden to invoke the
EnsureChildControls method D; this guarantees that child controls in the template
are created before the data binding takes place.

 Because our template will just show some text, the corresponding template con-
tainer has only one property, which makes things simple. All the code is contained in
the following listing.

C#:
public class MessageItem : Control, INamingContainer
{
 private Message parentControl;
 public MessageItem(Message parent)
 {
 parentControl = parent;
 }

 public string Text
 {
 get
 {
 return parentControl.Text;
 }
 }
}

VB:
Public Class MessageItem
 Inherits Control
 Implements INamingContainer
 Private parentControl As Message

Listing 6.6 A custom implementation for a template container

Instantiates
template…

B

…and adds
to tree

C

Used if template’s
omitted

Calls
EnsureChildControls

D

Parent control
is passed…

… so its Text property
can be used
 Public Sub New(parent As Message)

153TECHNIQUE 40 Data binding in custom controls

 parentControl = parent
 End Sub

 Public ReadOnly Property Text() As String
 Get
 Return parentControl.Text
 End Get
 End Property
End Class

Now you can use this template with the following markup:

<controls:Message runat="server" ID="MyMessage"
 Text="This is test">
<ItemTemplate>
 <p>Here’s a formatted template: <%#Container.Text %></p>
</ItemTemplate>
</controls:Message>

When you define a template, the control will
render it. Thanks to our custom template con-
tainer, we can reference the Text property via
the Container property that’s defined on the
template. In real-world situations, you can
define the container even more to better rep-
resent your needs. Figure 6.7 show the result
of our work in this section.

 Although this exercise was useful so that
you could understand how templated controls
work, this example is limited in use because data binding isn’t performed in the strict
sense of its meaning.

DISCUSSION

Templating is an important thing to keep in mind when you’re building custom con-
trols. It lets you freely define a visual appearance for your page that can be changed
without you rewriting the code.

 This scenario leads us directly into the next one, where we’re going to address how
to use data binding in custom controls.

 Data binding in custom controls

To show how data binding works, we need to define a scenario that’s more complex
than the previous one. The basics are similar; what changes is the base class that you
use. ASP.NET, via the .NET Framework’s BCL, provides a lot of base classes to use as a
starting point, without the need to manually implement every single feature. In this
scenario, we’ll cover how to build simple custom controls that support data binding
and implement all the techniques we’ve covered so far.

PROBLEM

ASP.NET already provides support for the most common situations related to data
binding. We want to write a lightweight custom control that can display a single item

Parent control
is passed…

… so its Text property
can be used

TECHNIQUE 40

Figure 6.7 You can use a template
container to enhance the look of your
control. In this example, we’re taking a
value from the control and formatting it.
(using a template) and directly handle the empty state.

154 CHAPTER 6 Custom controls

SOLUTION

Data binding is so powerful that it’s often used with custom layouts because of its flex-
ibility. Although it’s perfectly legitimate to use a Repeater to display one item from a
collection, that’s not the best way to go.

 Data-binding controls accept only collections as a data source, so you need to add
your item to a fictitious collection in order to display it. In other words, you’re wasting
a lot of power to perform a simple operation that involves two templates and a couple
of lines of code. In this kind of situation, a custom control might be just what you need.

 We’ll start with CompositeDataBoundControls in System.Web.UI.WebControls,
which is the preferred starting point when you need to build a custom composite con-
trol. Because this control is a container control, the INamingContainer interface is
implemented, too. By default, the DataSource property supports only IEnumerable as
the source, so the property itself is overridden.

 To support data binding, you need to override the CreateChildControls method
with parameters. This method is called several times in different stages:

C#:
protected override int CreateChildControls(IEnumerable dataSource, bool

dataBinding)
{
 if (ItemTemplate == null)
 throw new ArgumentNullException("ItemTemplate");

 RepeaterItem container = new RepeaterItem(0, ListItemType.Item);
 Controls.Add(container);
 ItemTemplate.InstantiateIn(container);

VB:
Protected Overrides Function CreateChildControls(ds As IEnumerable,

dataBinding As Boolean) As Integer
 If ItemTemplate Is Nothing Then
 Throw New ArgumentNullException("ItemTemplate")
 End If

 Dim container As New RepeaterItem(0, ListItemType.Item)
Controls.Add(container)

 ItemTemplate.InstantiateIn(container)

We don’t need a special template container, so we reused the one provided by
Repeater. If you prefer to provide your own implementation, take a look at how it’s
implemented. This control has an EmptyTemplate property that defines a template to
be used when the DataSource property is null. The following code checks the Data-
Source property and adds EmptyTemplate if it’s needed:

C#:
 if (dataBinding)
 {
 if (DataSource == null)
 {

Add the template
container

Add the template
container
 if (EmptyTemplate != null)

155TECHNIQUE 40 Data binding in custom controls

 {
 this.Controls.Clear();
 EmptyTemplate.InstantiateIn(this);
 }
 }
 else
...
 }

VB:
 If dataBinding Then
 If DataSource Is Nothing Then
 If EmptyTemplate IsNot Nothing Then
 Me.Controls.Clear()
 EmptyTemplate.InstantiateIn(Me)
 End If
 Else
...
 End if

The remaining part of the code, after the else block, picks the DataSource property
and assigns it to the template container, via the DataItem property:

C#:
container.DataItem = DataSource;
if (!Page.IsPostBack)
 container.DataBind();
container.DataItem = null;

VB:
container.DataItem = DataSource
If Not Page.IsPostBack Then
 container.DataBind()
End If
container.DataItem = Nothing

As you can see from the following code snippet, the controls can be used as a normal
data binding control:

<controls:SingleView runat="server" ID="AuthorView">
 <ItemTemplate>
 <p><%#Eval("FirstName") %>
 <%#Eval("LastName") %></p>
 </ItemTemplate>
 <EmptyTemplate>
 <p>No author specified.</p>
 </EmptyTemplate>
</controls:SingleView>

Because the ItemTemplate property is marked for two-way data binding, this template
can also be used to alter existing data. Figure 6.8 contains different examples of the
control at work.

 This example shows how to combine all the different techniques that you’ve

To support data
binding

To support data
binding
learned in this chapter. By combining attributes, templates, INamingContainer, and

156 CHAPTER 6 Custom controls

data binding, you can build a powerful control in few lines, and you get great perfor-
mance with maximum flexibility.

DISCUSSION

Data binding is a powerful feature in ASP.NET Web Forms. You can build rich layouts
without duplicating any code. If you need special behavior in data binding, you can
create a custom control to suit your needs with little effort, thanks to ASP.NET’s page
framework.

 To complete our examination of custom controls, we’ll turn now to advanced con-
trols that you can use to control the way you declare your controls.

6.3 Advanced controls
You’re going to either love or hate the level of customization that ASP.NET lets you
achieve with custom controls. Using custom controls puts you in charge of how to
write the markup inside the control. You can also achieve extreme customization by
implementing design-time support. We’re not going to address this topic directly here
because it’s not mandatory for using custom controls. Implementing design-time sup-
port is a matter of deciding whether to support a rich design-time experience. You can
find more information about this topic on MSDN at http://www.mng.bz/URn5.

 The next topic addresses a special scenario, showing you how to control the decla-
ration of nested controls. You’ll be using a special kind of control, called control
builders.

 Control builders

These controls are called control builders because they’re responsible for regulating
how nested controls are built. In this scenario, you’ll learn how to simplify the markup
you use when you’re declaring a control.

PROBLEM

We want to control how the markup inside the control is defined by building our own
semantic. Having your own semantic will help you simplify the control’s declaration.

SOLUTION

In most situations, you don’t want the verbosity of ASP.NET’s control declaration that

Figure 6.8
Two outcomes for our data-
binding control. On the left, the
ItemTemplate property is
displaying the source. On the
right, the EmptyTemplate
was instantiated.

TECHNIQUE 41
the prefix:controlname pattern uses. For example, when you’re building a CMS, it’s

http://www.mng.bz/URn5

157TECHNIQUE 41 Control builders

important to have a simplified markup if you plan to let non-technical users rearrange
some parts of it. In this scenario, you’ll learn how to build our own semantic to sim-
plify the control declaration.

 You can use control builders in a lot of situations. They’re frequently used in
ASP.NET to simplify control markup. For example, let’s compare this pseudo-markup:

<controls:Tabs runat="server">
 <Tab Title="Tab A">Content</Tab>
 <Tab Title="Tab B">Content</Tab>
 <Tab Title="Tab C">Content</Tab>
</controls:Tabs>

To this:

<controls:Tabs runat="server">
 <controls:Tab Title="Tab A">Content</controls:Tab>
 <controls:Tab Title="Tab B">Content</controls:Tab>
 <controls:Tab Title="Tab C">Content</controls:Tab>
</controls:Tabs>

Even though the difference isn’t huge, the first version is simpler to declare, less error
prone, and easier to understand for a user who knows basic HTML. You can use con-
trol builders to transform the second version into the first one.

 A control builder is a special class that inherits from the System.Web.UI.Control-
Builder class. This class offers basic infrastructure and has a method called
GetChildControlType, which will be overwritten to include the logic. Before we cre-
ate our control builder, we need to focus on our scenario. First, we’ll implement a
markup dialect to be used in a mini-CMS solution. In a situation like this, the page is
typically divided into blocks, also called zones. A zone can both contain controls and be
contained by controls. Its role is only to be a placeholder for other controls. Let’s step
back to the example pseudo-markup and try to provide our final markup. It will look
like this:

<controls:Zone runat="server">
 <box title="First box">
 <articles PageSize="10" Category="ASP.NET" />
 </box>
 <box title="Second box">
 <articles PageSize="5" Category="Silverlight" />
 </box>
</controls:Zone>

This code is self-explanatory. It’s composed of only ASP.NET custom controls, where
box represents a box (a container for something), and articles is special syntax that
will instantiate a control with a list of articles, organized by category. Figure 6.9 con-
tains a schema of this concept.

 If you take a deeper look at the code, you’ll see how simple this markup is for a
user who knows HTML. It uses no special ASP.NET-only tags! (In chapter 15, when we
analyze how to dynamically load and compile markup from other sources, like a data-

base, you’ll learn how you can use the virtual path provider to close this circle. You’ll

158 CHAPTER 6 Custom controls

be able to load this content from a database where the user has stored it). The
markup is stored in a pared-down format that’s transformed in control instances at
runtime. You don’t need to transform them by hand because the Page Parser will do
the trick for you.

 Before moving on, let’s take a look at the Zone class, which holds most of the logic.
The code is in the following listing.

C#:
[ControlBuilder(typeof(ZoneBuilder))]
[ParseChildren(false)]
public class Zone : CMSPartBase
{
 protected override void RenderContents(HtmlTextWriter writer)
 {
 for (int i = 0; i < this.Controls.Count; i++)
 {
 Controls[i].RenderControl(writer);
 }
 }

}

VB:
<ControlBuilder(GetType(ZoneBuilder))>
<ParseChildren(False)>
Public Class Zone
 Inherits CMSPartBase
 Protected Overrides Sub RenderContents(writer As HtmlTextWriter)
 For i As Integer = 0 To Me.Controls.Count - 1

Listing 6.7 The Zone control contains other controls

Zone

Box

Articles

List of articles

Box

Articles

List of articles

Figure 6.9 A zone contains one or more boxes. Each box can contain one or more lists of articles (or
other views). This schema can be expanded easily to represent different needs.

Indicates
control builder

Controls how
children are parsed

Indicates
control builder

Controls how
children are parsed
 Controls(i).RenderControl(writer)

159TECHNIQUE 41 Control builders

 Next
 End Sub
End Class

The Zone class is simple but holds two special attributes:

■ ParseChildrenAttribute—Regulates how the child controls are parsed
■ ControlBuilderAttribute—Points to the class that specifies how the markup

is declared

The CMSPartBase class is a simple base class, one that’s shared by all the controls
involved in this scenario and that gives them a common set of properties. Using this
class will help you to have a set of tags that share some common properties and will
simplify the general effort to write a consistent markup.

 Now let’s get back to the control builder. The code for it is in the following listing.

C#:
public class ZoneBuilder : ControlBuilder
{
 public override Type GetChildControlType(string tagName,
 IDictionary attribs)
 {
...
 if (tagName.Equals("articles",
 StringComparison.InvariantCultureIgnoreCase))
 return typeof(ArticleView);
 else if (tagName.Equals("box",
 StringComparison.InvariantCultureIgnoreCase))
 return typeof(Box);

 return null;
 }
}

VB:
Public Class ZoneBuilder
 Inherits ControlBuilder
 Public Overrides Function GetChildControlType(
 tagName As String,
 attribs As IDictionary) As Type
...
 If tagName.Equals("articles",
 StringComparison.InvariantCultureIgnoreCase) Then
 Return GetType(ArticleView)
 ElseIf tagName.Equals("box",
 StringComparison.InvariantCultureIgnoreCase) Then
 Return GetType(Box)
 End If

 Return Nothing
 End Function

Listing 6.8 The ZoneBuilder class takes care of markup

Add more
options
here

Convert from
markup to

control

Add more
options
here

Convert from
markup to

control
End Class

160 CHAPTER 6 Custom controls

The code is self-explanatory. We’re converting the tag name coming from our control
to the effective instance of the corresponding controls. Controls that aren’t mapped
inside this method (as plain HTML markup) will be ignored and output as written.
This is another advantage of this technique, which you can use to easily mix server-
generated parts with plain HTML.

 To make nesting easy, the Box class inherits from Zone. We can nest more boxes
into a zone to compose complex markups. In contrast, the ArticleView class corre-
sponds to the article tag and has a simple structure:

C#:
public class ArticleView : CMSPartBase
{
 public string Category { get; set; }

 protected override void Render(HtmlTextWriter writer)
 {
 writer.Write("<h1>" + Title + "</h1>");
 writer.Write("<p>This is a list of " + PageSize.ToString() +
 " articles in " + Category + ".</p>");
 }
}

VB:
Public Class ArticleView
 Inherits CMSPartBase

 Public Property Category() As String

 Protected Overrides Sub Render(writer As HtmlTextWriter)
 writer.Write("<h1>" & Title & "</h1>")
 writer.Write("<p>This is a list of " + PageSize.ToString() &
 " articles in " & Category & ".</p>")
 End Sub
End Class

This scenario provides a simple explanation of how you can build controls that live
inside this ecosystem. In a real-world situation, the control you’ve built would pick the
list of articles from the data source and display them in the page. Figure 6.10 shows
the results of this page when browsed.

Figure 6.10 Our control instantiates
the contained controls, using our
control builder. A control builder will
let you use a personalized markup.

161Summary

Control builders are a powerful tool to have because you can decide how your markup
will be declared. We’ve explored only a fraction of what you can do with control build-
ers, but you can find more information on MSDN at http://www.mng.bz/Cpk.

DISCUSSION

With this last scenario, our journey of exploration into the features provided by cus-
tom controls in ASP.NET Web Forms is complete. This last scenario will come in handy
when you need to take your controls to the next level. Now you can control how the
markup is written or how the control reacts when other controls are nested.

 By combining all the techniques you’ve learned in this chapter, you can build pow-
erful custom controls to take your ASP.NET Web Form-based application to the limit!!

6.4 Summary
Building custom controls is often treated as an art. In fact, it’s one of the most chal-
lenging aspects of ASP.NET.

Getting started with custom controls isn’t difficult, but advanced scenarios, like the
last one we presented in this chapter, involve a deep understanding of ASP.NET. In more
simple situations, custom controls can help you avoid code duplication by implement-
ing and supporting repetitive tasks. You can easily add PostBack and templates to every
control, and implementing support for data binding isn’t all that difficult.

 For brevity, we omitted some specialized scenarios, like control designer and sup-
port in Visual Studio. The idea behind this chapter was to offer you a glimpse of what
ASP.NET has to offer in this area. It’s up to you to find out more on your own.

 The next chapter is going to show you how to control the way markup is generated
by controls. Most of what we’ll reveal will also come in handy when you’re building
custom controls.

http://www.mng.bz/Cpk

Taking control of markup
Although ASP.NET MVC is the ideal choice when you want to precisely control the
markup generated by your pages, you can use an ASP.NET Web Form to achieve sim-
ilar results. Plus, the truth is that you probably have investments in Web Form-based
applications. You can’t rewrite them because that will cost you money—and time.

 As you learned in chapter 4, ASP.NET 4.0 is committed to generating better
markup and providing better adherence to web standards, so in most situations you
won’t need to modify the standard output. At the risk of repeating ourselves,
remember that ASP.NET is built with extensibility in mind, so if you need to adapt a
control rendering to a specific need, you can leverage one of the most underesti-
mated features—and the hidden gem—of ASP.NET: adaptive rendering.

 Adaptive rendering isn’t entirely new to ASP.NET 4.0, but its features are
enhanced in this version, with a new pluggable provider model added to the
browser capabilities engine. By writing a new provider, you can alter the rendering

This chapter covers
■ Adaptive rendering
■ How to build control adapters
■ Browser capabilities providers in ASP.NET 4.0
162

process without changing your code.

163ASP.NET adaptive rendering

 Adaptive controls, on the same hand, can be used to modify the output generated
by a single control, to adapt it to different browsers, or simply to provide a different
output without needing to change the markup already in place.

 Both adaptive rendering and browser capabilities work together, so this chapter
will address their respective features and highlight how they interact.

7.1 ASP.NET adaptive rendering
Adaptive rendering was introduced in the first version of ASP.NET to provide different
rendering for different devices. The first incarnation was used to differentiate
between browsers and platforms: Internet Explorer, Netscape, Palm, and so on. It
might seem that we’re talking about something that happened ages ago. In fact, the
first version of ASP.NET was shipped in 2002, and the web was very different than it is
now. Things like XHTML and HTML 4.01 support, cookies, and tables are established
features in today’s browsers, but they weren’t then. The idea behind this adaptive ren-
dering engine was to adapt the output to different devices to provide better results
with different features. To accomplish this task, a database with different browser pro-
files (called browser capabilities) was created.

 You can access the current browser capabilities by querying the Browser property
on the HttpRequest class, which contains an instance of the HttpBrowserCapabili-
ties class. For example, if you want to know whether the current browser supports a
specific feature, such as XMLHTTP (used in Ajax applications), you can simply write
something like this:

<%=Request.Browser.SupportsXmlHttp%>

You can find more information on this class on MSDN at http://mng.bz/N94X.
 Where ASP.NET browser capabilities failed in the past was in the lack of updates for

new browsers and devices. To name a few, FireFox wasn’t supported by ASP.NET 1.1,
and iPhone wasn’t recognized by ASP.NET 3.5. What that means is that specific fea-
tures (like Ajax, validator controls, or mobile controls) couldn’t be activated, and the
rendered markup probably didn’t reflect the true power of the device requesting the
resource. Unfortunately, the definitions weren’t updated after the initial version, so
they didn’t reflect the current market.

NEW BROWSER CAPABILITIES DEFINITION FILE IN ASP.NET 4.0 The browser
capabilities definition format was updated for ASP.NET 4.0 with a new
format that isn’t compatible with the previous one. If you need to migrate
your definitions, you have to copy the old files under the global configura-
tion directory.

Version 4.0 introduces a new set of devices previously not supported, such as Google’s
Chrome, RIM’s BlackBerry, and Apple’s iPhone. Major browsers like Internet
Explorer, FireFox, Opera, and Safari (for different platforms, where available) are
already supported.

http://mng.bz/N94X

164 CHAPTER 7 Taking control of markup

You can specify browser definitions globally (under %SystemRoot%\Microsoft.NET\
Framework\v4.0.30319\Config\Browsers\), or locally for a single application using a
.Browser file under the special directory \App_Browsers\.

 Figure 7.1 gives you a look at how adaptive rendering works.
 When a specific control is ready to generate its markup, the ASP.NET infrastructure

looks for a special class, called the control adapter. A control adapter indicates the
rendering strategy associated with a particular control. By changing the control
adapter (via browser capabilities), you can change the rendering strategy imple-
mented by a control. You can change the strategy for a built-in control, for a given set
of browsers, or globally. Implementing a control adapter can be an easy and fun task,
and you can adapt your controls to your specific needs. You can find more informa-
tion about control adapter architecture on MSDN at http://mng.bz/gz37.

 Add OptionGroups to DropDownList

When you need to change the markup of a simple control, you have the choice of com-
pletely replacing it with another one. Doing this is easy, except when you’re substituting
complex controls, and reproducing all the features by hand costs you time. There are
cases where you need to modify the output globally, and though you can do that by writ-
ing a custom control and replacing the previous one, that will also cost you some time.

 To simplify these scenarios, you can modify the output generated by a given con-
trol globally by simply implementing a control adapter. And you can reuse it in other
projects if you need to.

PROBLEM

The problem with this scenario involves markup generation and how you can adapt

Control

RenderInternal()

Control.Render() Adapter.Render()

Adapter?

No Yes

Control adapters

Browser definitions

Figure 7.1 ASP.NET adaptive rendering works at both the page and control level. You can modify the
output of any controls before rendering. If an adapter is associated with the control, rendering is
performed by calling its Render method; otherwise, normal control rendering occurs.

TECHNIQUE 42
the output to your specific needs. In this first dive into ASP.NET adaptive rendering,

http://mng.bz/gz37

165TECHNIQUE 42 Add OptionGroups to DropDownList

we’ll take a look at how you can increase the benefits of using the classic DropDown-
List by adding support for option groups.

SOLUTION

To build a control adapter, you have to implement a class
that overrides System. Web.UI.Adapters.ControlAdapter
or System.Web.UI.WebControls.Adapters.WebControl-

Adapter. You’ll have to override System.Web.UI.WebCon-
trols.Adapters.WebControlAdapter for web controls,
and it includes some basic features. If you want more con-
trol, the first option is the preferred choice. You can also
specify a page adapter to alter page rendering, but this tech-
nique isn’t widely used; it’s more common to alter a single
control markup than the Page markup.

 A control adapter typically overrides the rendering
logic. As we talked about in chapter 6, server controls usu-
ally generate their markup in a series of RenderSomething
methods, such as RenderBeginTag, RenderInput, and so
on. These methods, per convention, are invoked from the
Render method, which is associated with the rendering of
the control in the page.

 Note that a control adapter is not the way to go if you
need to alter the behavior of a control. If you use a control
adapter, you can’t add new properties or methods to the
original control; you can only overwrite its rendering.

 To understand what we’re going to do, look at the
option groups in figure 7.2.

 From a markup point of view, option groups are based
on the following tags:

<select name="ProductsList" id="ProductsList">
 <optgroup label="Milk and dairy product">
 <option value="Yogurt">Yogurt</option>
 <option value="Butter">Butter</option>
 </optgroup>
 <optgroup label="Eggs">
 <option value="Eggs">Eggs</option>
 </optgroup>
 ...
</select>

Unfortunately, the classic DropDownList doesn’t support option groups. You can only
add ListItem inside the controls, so you have to change the control rendering.

 To implement this feature, you have to write a new control adapter that will generate
the child controls, honoring a new OptionGroup attribute. This attribute on the list item
will be passed to the container, thanks to the IAttributeAccessor interface that List-

Figure 7.2 Option groups
are used in a drop-down list
to visually group elements.
By organizing elements with
groups, you can increase the
usability of your page.
Item implements. This interface lets you specify custom attributes inside a control. By

166 CHAPTER 7 Taking control of markup

default, these attributes are rendered as they’re written. In our scenario, we’ll take
advantage of this behavior to intercept the value and generate the markup accordingly.

 To modify the output, we have to override the RenderContents method. In this
method, the control generates its output. (To understand how the control works, we
suggest that you get Red Gate’s .NET Reflector at http://reflector.red-gate.com/.)
The rendering is performed by the ListControl class, which DropDownList inherits
from. The following listing contains the code to reproduce the original behavior.

C#:
public class DropDownListAdapter : WebControlAdapter
{
 protected override void RenderContents(HtmlTextWriter writer)
 {
 DropDownList list = this.Control as DropDownList;

 uniqueID = list.UniqueID;

 string lastOptionGroup = null;
 string currentOptionGroup = null;
 foreach (ListItem item in list.Items)
 {
 currentOptionGroup = item.Attributes["OptionGroup"] as string;

 if (currentOptionGroup != null)
 {
 if (lastOptionGroup == null ||
 !lastOptionGroup.Equals(currentOptionGroup,
 StringComparison.InvariantCultureIgnoreCase))
 {
 if (lastOptionGroup != null)
 RenderOptionGroupEndTag(writer);

 RenderOptionGroupBeginTag(currentOptionGroup, writer);
 }

 lastOptionGroup = currentOptionGroup;
 }

 RenderListItem(item, writer);
 }

 if (lastOptionGroup != null)
 RenderOptionGroupEndTag(writer);
 }
 }

VB:
Public Class DropDownListAdapter
 Inherits WebControlAdapter
 Protected Overloads Overrides Sub RenderContents(
 ByVal writer As HtmlTextWriter)
 Dim list As DropDownList = TryCast(Me.Control, DropDownList)

Listing 7.1 The control adapter code

Adapt
control

Cycle through
items

Render
closing tag

Render
by item

Adapt
control
 uniqueID = list.UniqueID

http://reflector.red-gate.com/

167TECHNIQUE 42 Add OptionGroups to DropDownList

 Dim lastOptionGroup As String = Nothing
 Dim currentOptionGroup As String = Nothing
 For Each item As ListItem In list.Items
 currentOptionGroup = TryCast(item.Attributes("OptionGroup"), String)

 If Not currentOptionGroup Nothing Then
 If lastOptionGroup Is Nothing OrElse
 Not lastOptionGroup.Equals(currentOptionGroup,
 StringComparison.InvariantCultureIgnoreCase) Then
 If Not lastOptionGroup Is Nothing Then
 RenderOptionGroupEndTag(writer)
 End If

 RenderOptionGroupBeginTag(currentOptionGroup, writer)
 End If

 lastOptionGroup = currentOptionGroup
 End If

 RenderListItem(item, writer)
 Next

 If lastOptionGroup IsNot Nothing Then
 RenderOptionGroupEndTag(writer)
 End If
 End Sub
End Class

The markup to include the control remains the same, but a new attribute is added to
every ListItem (unfortunately, this attribute isn’t supported by IntelliSense):

<asp:DropDownList runat="server" ID="ProductsList" AutoPostBack="true">
 <asp:ListItem OptionGroup="Milk and dairy product">Yogurt</asp:ListItem>
 <asp:ListItem OptionGroup="Milk and dairy product">Butter</asp:ListItem>
 <asp:ListItem OptionGroup="Nuts">Tree nuts (walnuts)</asp:ListItem>
 <asp:ListItem OptionGroup="Soy">Soy</asp:ListItem>
 <asp:ListItem OptionGroup="Other">Other</asp:ListItem>
</asp:DropDownList>

Thanks to the IAttributeAccessor interface implemented by ListItem, you can add
the attribute without any problem. In the following listing, you’ll find the code that
generates the single option in the list.

C#:
private void RenderListItem(ListItem item, HtmlTextWriter writer)
{
 writer.Indent++;
 writer.WriteBeginTag("option");
 writer.WriteAttribute("value", item.Value, true);

 if (item.Selected)
 writer.WriteAttribute("selected", "selected", false);

 foreach (string key in item.Attributes.Keys)

Listing 7.2 Code necessary to generate a single item

Cycle through
items

Render
closing tag

Render by
item
 {

168 CHAPTER 7 Taking control of markup

 if (!key.Equals("optiongroup",
 StringComparison.CurrentCultureIgnoreCase))

 writer.WriteAttribute(key, item.Attributes[key]);
 }

 writer.Write(HtmlTextWriter.TagRightChar);

 if (Page != null)
 {
 Page.ClientScript.RegisterForEventValidation(uniqueID,
 item.Value);

 }

 HttpUtility.HtmlEncode(item.Text, writer);
 writer.WriteEndTag("option");
 writer.WriteLine();
 writer.Indent--;
}

VB:
Private Sub RenderListItem(ByVal item As ListItem,
 ByVal writer As HtmlTextWriter)
 writer.Indent += 1
 writer.WriteBeginTag("option")
 writer.WriteAttribute("value", item.Value, True)

 If item.Selected Then
 writer.WriteAttribute("selected", "selected", False)
 End If

 For Each key As String In item.Attributes.Keys
 If Not key.Equals("optiongroup",

StringComparison.CurrentCultureIgnoreCase) Then
 writer.WriteAttribute(key, item.Attributes(key))
 End If
 Next

 writer.Write(HtmlTextWriter.TagRightChar)

 If Page IsNot Nothing Then
 Page.ClientScript.RegisterForEventValidation(uniqueID,
 item.Value)
 End If

 HttpUtility.HtmlEncode(item.Text, writer)
 writer.WriteEndTag("option")
 writer.WriteLine()
 writer.Indent -= 1
End Sub

Much of the code in listing 7.2 reflects the code implemented by the original Drop-
DownList control. The changes to the behavior are, in fact, included in listing 7.1 to
support the <optgroup/> tag. The code to generate the optgroup tag is simple and is
shown in the following listing.

Every
attribute
will be
rendered

Necessary
for PostBack

Every attribute
will be rendered

Necessary
for PostBack

http://www.asp.net/mobile/
http://www.asp.net/mobile/
http://mdbf.codeplex.com/
http://mdbf.codeplex.com/

169TECHNIQUE 42 Add OptionGroups to DropDownList

C#:
private void RenderOptionGroupBeginTag(string name, HtmlTextWriter writer)
{
 writer.Indent++;
 writer.WriteBeginTag("optgroup");
 writer.WriteAttribute("label", name);
 writer.Write(HtmlTextWriter.TagRightChar);
 writer.WriteLine();
}

VB:
Private Sub RenderOptionGroupBeginTag(ByVal name As String,
 ByVal writer As HtmlTextWriter)
 writer.Indent += 1
 writer.WriteBeginTag("optgroup")
 writer.WriteAttribute("label", name)
 writer.Write(HtmlTextWriter.TagRightChar)
 writer.WriteLine()
End Sub

To apply the adapter to the control, you need to create a new file with the extension
.browser under the \App_Browsers\ directory. This file will register the adapter locally
to the application:

<browsers>
 <browser refID="Default">
 <controlAdapters>
 <adapter
 controlType="System.Web.UI.WebControls.DropDownList"
 adapterType=" ASPNET4InPractice.DropDownListAdapter,App_Code" />
 </controlAdapters>
 </browser>
</browsers>

The refID attribute is used to specify the kind of browser the adapter should be
applied to. If you use Default, the adapter will be applied globally.

DISABLING AND FORCING ADAPTIVE RENDERING If you don’t want to let ASP.NET
decide on the adapter for a particular control, you can set the Adapter-
Enabled property to false. The original markup is generated with that value.
If you want to specify an attribute for only a particular set of browsers, you can
use this syntax:

<asp:label IE:Text="IE only text" Text="Other browsers text" runat="server" />

The IE: filter sets the Text property only when the page is accessed via Inter-
net Explorer.

If you omit the OptionGroup property, the DropDownList will work like it usually does;
using the control adapter isn’t intrusive and will preserve your existing forms. When
you need to, you can leverage this new feature by simply writing the correct markup.

Listing 7.3 Each option group is generated when needed

http://www.asp.net/cssadapters/
http://mdbf.codeplex.com/
http://mdbf.codeplex.com/
http://mdbf.codeplex.com/

170 CHAPTER 7 Taking control of markup

DISCUSSION

The scenario we’ve covered here is simple and pretty self-explanatory. By registering
the control adapter, you can alter the control behavior without changing the markup
already present in your application. Being able to do this is a big advantage because
you can enhance the markup produced without compromising the functionalities. A
custom control will achieve the same goals, but a control adapter has the advantage of
letting you decide when to implement the markup, from project to project, at a cen-
tral point and without changing anything in the application.

 To better understand how deeply you can influence the inner workings of a cus-
tom control, the next scenario will cover an advanced solution: how to modify the
DataList control to produce a table-less layout, using <div /> tags instead of a table.

 Build a table-less control adapter for the DataList

DataList is probably considered obsolete in ASP.NET applications. You might be ask-
ing, why are they even mentioning DataList in this book? We already have ListView,
GridView, and all their friends. The answer is simple: DataList is the only control
capable of displaying more than one item per row (natively, without having to do any
CSS hacking).

 To implement this formatting, DataList generates a table. Tables are good for dis-
playing numerical data or reports, but they’re not intended to be used as the basis for
the layout. For layout problems, the solution is to use CSS.

PROBLEM

Tables aren’t intended to be used to compose layout, but rather to display tabled data,
such as financial lists and similar information. If you need to work with accessibility
constraints, using a table for layout purposes could represent a problem. You can
achieve the same results by using a table-less, CSS-based layout. By implementing a
control adapter for the DataList control, you can continue to use a built-in control
and change its behavior globally, like we did in the previous scenario.

SOLUTION

The solution proposed to handle this scenario is to use a new control adapter to mod-
ify the markup generated by DataList, without replacing the control in the markup.
DataList can show multiple items per row by setting the RepeatColumns and Repeat-
Direction properties. You can specify a vertical or horizontal alignment, and the
items will be organized automatically in rows. This effect might be useful in a lot of sit-
uations. From product catalogs to image galleries, it can help you organize the layout
visually in a better way.

 As in the previous example, the central task is to write a new class that inherits from
WebControlAdapter and change the rendering process by overriding the Render-
Contents method. This example differs from the previous one in that DataList is a
templated control, but this isn’t a critical problem; we can create the inner controls man-
ually as the control does originally. This new adapter ignores SeparatorItemTemplate,

TECHNIQUE 43
but if you think that template might be useful to you, you can always implement the

171TECHNIQUE 43 Build a table-less control adapter for the DataList

corresponding code. As a good starting point, we suggest that you take a look at the code
that’s generated with Red Gate’s .NET Reflector disassembler. The following listing
shows the code that generates the structure.

C#:
protected override void RenderContents(HtmlTextWriter writer)
{
 DataList dataList = Control as DataList;
 if (dataList != null)
 {
 if (dataList.HeaderTemplate != null)
 RenderHeader(writer, dataList);

 if (dataList.ItemTemplate != null ||
 dataList.AlternatingItemTemplate != null)
 {
 RenderItem(writer, dataList);

 if (dataList.RepeatDirection == RepeatDirection.Horizontal)
 return;
 }

 if ((dataList.Items.Count % RepeatColumns) != 0)
 {
 writer.Indent--;
 writer.WriteLine();
 writer.WriteEndTag("div");
 }

 }

 writer.Indent--;
 writer.WriteLine();

 if (dataList.FooterTemplate != null)
 RenderFooter(writer, dataList);
}

VB:
Protected Overloads Overrides Sub RenderContents(
 ByVal writer As HtmlTextWriter)
 Dim dataList As DataList = TryCast(Control, DataList)
 If dataList IsNot Nothing Then
 If Not dataList.HeaderTemplate Is Nothing Then
 RenderHeader(writer, dataList)
 End If

 If Not dataList.ItemTemplate Is Nothing OrElse
 Not dataList.AlternatingItemTemplate Is Nothing Then
 RenderItem(writer, dataList)

 If dataList.RepeatDirection = RepeatDirection.Horizontal Then
 Exit Sub
 End If

Listing 7.4 Code that generates the markup structure

Render
HeaderTemplate

Add
items

Add
final div

Render
FooterTemplate

Render
HeaderTemplate

Add
items
 End If

172 CHAPTER 7 Taking control of markup

 If (dataList.Items.Count Mod RepeatColumns) <> 0 Then
 writer.Indent -= 1
 writer.WriteLine()
 writer.WriteEndTag("div")

 End If
 End If

 writer.Indent -= 1
 writer.WriteLine()

 If dataList.FooterTemplate IsNot Nothing Then
 RenderFooter(writer, dataList)
 End If
End Sub

The complex part is encapsulated in the RenderItem method. You have to address the
fact that, depending on the RepeatDirection value, you need to display a specific
index. Take a look at the next listing.

C#:
private void RenderItem(HtmlTextWriter writer, DataList dataList)
{
 DataListItemCollection items = dataList.Items;

 writer.WriteLine();
 DataListItem currentItem;

 int itemsPerColumn = (int)Math.Ceiling(
 ((Double)dataList.Items.Count) / ((Double)RepeatColumns));

 int rowIndex, columnIndex, currentIndex = 0;

 for (int index = 0; index < dataList.Items.Count; index++)
 {
 rowIndex = index / RepeatColumns;
 columnIndex = index % RepeatColumns;
 currentIndex = index;

 if (dataList.RepeatDirection == RepeatDirection.Vertical)

 currentIndex = (columnIndex * itemsPerColumn) + rowIndex;
 currentItem = items[currentIndex];

VB:
Private Sub RenderItem(ByVal writer As HtmlTextWriter,
 ByVal dataList As DataList)
 Dim items As DataListItemCollection = dataList.Items

 writer.WriteLine()
 Dim currentItem As DataListItem

 Dim itemsPerColumn As Integer =
 Convert.ToInt32(Math.Ceiling(
 Convert.ToDouble(dataList.Items.Count) /
 Convert.ToDouble(RepeatColumns)))

 Dim rowIndex As Integer, columnIndex As Integer,

Listing 7.5 The DataList adapter renders templates and content

Add
final div

Render
FooterTemplate

Calculate
page size

B

Get row and
column index

C

Calculate
index

D

Get
itemE

Calculate
page size

B

 currentIndex As Integer = 0

173TECHNIQUE 43 Build a table-less control adapter for the DataList

 For index As Integer = 0 To dataList.Items.Count - 1
 rowIndex = Convert.ToInt32(Math.Floor(
 Convert.ToDouble(index) /
 Convert.ToDouble(RepeatColumns)))
 columnIndex = index Mod RepeatColumns
 currentIndex = index

 If dataList.RepeatDirection = RepeatDirection.Vertical Then
 currentIndex = (columnIndex * itemsPerColumn) + rowIndex

 currentItem = items(currentIndex)

In the first part of this listing, you’ll see the formula that calculates the index to dis-
play B before getting the row and column index C. Next, based on the items to be
displayed per row, a new width property is added (via CSS) to every element, wrapped
inside a div. Finally, ItemTemplate (or AlternatingItemTemplate) is instantiated in
the container to display the template specified in the page, using the markup. After
we have the current item index D, we need to get the item E.

 At this point, we’re ready to produce the output for the first row:

C#:
 if ((index % RepeatColumns) == 0)
 {
 writer.WriteLine();
 writer.WriteBeginTag("div");

 writer.WriteAttribute("style", "clear:both");

 writer.Write(HtmlTextWriter.TagRightChar);
 writer.Indent++;
 }

VB:
 If (index Mod RepeatColumns) = 0 Then
 writer.WriteLine()
 writer.WriteBeginTag("div")

 writer.WriteAttribute("style", "clear:both")

 writer.Write(HtmlTextWriter.TagRightChar)
 writer.Indent += 1
End If

The next step is to write the current element in the markup:

C#:
 writer.WriteBeginTag("div");

 TableItemStyle style = (currentItem.ItemType == ListItemType.Item) ?
 dataList.ItemStyle :
 (dataList.AlternatingItemStyle == null ?
 dataList.ItemStyle :
 dataList.AlternatingItemStyle);

 style.Width = new Unit((int)Math.Abs((double)100 / RepeatColumns),
 UnitType.Percentage);

Get row and
column index

C

Calculate
index

D

Get itemE
 CssStyleCollection finalStyle = GetStyleFromTemplate(dataList, style);

174 CHAPTER 7 Taking control of markup

 if (dataList.RepeatColumns > 1)
 finalStyle.Add("float", "left");

 writer.WriteAttribute("style", finalStyle.Value);

 writer.Write(HtmlTextWriter.TagRightChar);
 writer.Indent++;

 foreach (Control itemCtrl in currentItem.Controls)
 {
 itemCtrl.RenderControl(writer);
 }

 writer.Indent--;
 writer.WriteLine();
 writer.WriteEndTag("div");

VB:
 writer.WriteBeginTag("div")

 Dim style As TableItemStyle = If(
 (currentItem.ItemType = ListItemType.Item),
 dataList.ItemStyle,
 (If(dataList.AlternatingItemStyle Is Nothing,
 dataList.ItemStyle,
 dataList.AlternatingItemStyle)
)
)

 style.Width = New Unit(CInt(Math.Abs(CDbl(100) / RepeatColumns)),
 UnitType.Percentage)

 Dim finalStyle As CssStyleCollection =
 GetStyleFromTemplate(dataList, style)
 If dataList.RepeatColumns > 1 Then
 finalStyle.Add("float", "left")
 End If

 writer.WriteAttribute("style", finalStyle.Value)

 writer.Write(HtmlTextWriter.TagRightChar)
 writer.Indent += 1

 For Each itemCtrl As Control In currentItem.Controls
 itemCtrl.RenderControl(writer)
 Next

 writer.Indent -= 1
 writer.WriteLine()
 writer.WriteEndTag("div")

Finally, we need to close the div element we opened in the first part of this code (list-
ing 7.5) when a new row is needed:

C#:
if (((index + 1) % RepeatColumns) == 0)
{
 writer.Indent--;
 writer.WriteLine();
 writer.WriteEndTag("div");

Render inner
controls

Render inner
controls
}

175TECHNIQUE 43 Build a table-less control adapter for the DataList

VB:
If ((index + 1) Mod RepeatColumns) = 0 Then
 writer.Indent -= 1
 writer.WriteLine()
 writer.WriteEndTag("div")
 End If
Next

As you can see, the code isn’t complex, but it requires that you understand how the
DataList (and template controls) works. To complete the scenario, we need to show
you how to render the header (and footer). The following listing contains the code.

C#:
private void RenderHeader(HtmlTextWriter writer, DataList dataList)
{
 writer.WriteBeginTag("div");

 CssStyleCollection style = GetStyleFromTemplate(dataList,
 dataList.HeaderStyle);

 if (!String.IsNullOrEmpty(style.Value))
 writer.WriteAttribute("style", style.Value);

 writer.Write(HtmlTextWriter.TagRightChar);

 PlaceHolder container = new PlaceHolder();
 dataList.HeaderTemplate.InstantiateIn(container);
 container.DataBind();

 if ((container.Controls.Count == 1) &&
 typeof(LiteralControl)
 .IsInstanceOfType(container.Controls[0])) {
 writer.WriteLine();

 LiteralControl literalControl =
 container.Controls[0] as LiteralControl;
 writer.Write(literalControl.Text.Trim());
 }
 else
 {
 container.RenderControl(writer);
 }

 writer.WriteEndTag("div");
}

VB:
Private Sub RenderHeader(ByVal writer As HtmlTextWriter,
 ByVal dataList As DataList)
 writer.WriteBeginTag("div")

 Dim style As CssStyleCollection = GetStyleFromTemplate(dataList,
 dataList.HeaderStyle)

 If Not String.IsNullOrEmpty(style.Value) Then

Listing 7.6 Rendering the header with a special function

Preserve style,
if specifiedB

Instantiate and
bind templateC

Specific to text-
only controlsD
 writer.WriteAttribute("style", style.Value)
Preserve style,
if specifiedB

176 CHAPTER 7 Taking control of markup

 End If

 writer.Write(HtmlTextWriter.TagRightChar)

 Dim container As New PlaceHolder()
 dataList.HeaderTemplate.InstantiateIn(container)
 container.DataBind()

 If (container.Controls.Count = 1) AndAlso
 GetType(LiteralControl)
 .IsInstanceOfType(container.Controls(0)) Then
 writer.WriteLine()

 Dim literalControl As LiteralControl =
 TryCast(container.Controls(0), LiteralControl)
 writer.Write(literalControl.Text.Trim())
 Else
 container.RenderControl(writer)
 End If

 writer.WriteEndTag("div")
End Sub

The interesting part in this code listing is how the styles are restored (which is per-
formed for the ItemTemplate, too). This code lets you specify a CSS style using the
ItemStyle B or HeaderStyle properties, so you won’t lose any features from the stan-
dard DataList. Data binding C is also supported, as well as Literal-only controls D.

 The RenderFooter method is similar to RenderHeader, so we’ve omitted it from the
code (you can find it in the downloadable samples). Just as with the header, the footer
is rendered if a template is specified.

 If you register this control adapter (as we did in the previous scenario), you can
adapt the DataList rendering to be more standard-friendly. Figure 7.3 shows you the
result. This layout is identical to what you would get if you didn’t use the adapter.

 To produce this result, both the RenderBeginTag and RenderEndTab methods are
overridden to generate a container <div /> tag, instead of the original <table /> tag.
In this way, you can replace all the tags with your own.

Instantiate and
bind templateC

Specific to
text-only
controlsD

Products (Vertical)
Yogurt
Beef
Cheese
Bread

Biscuits
Fish
Peanuts
Pasta

Pork
Soy
Other

Products (Horizontal)
Yogurt
Bread
Peanuts
Soy

Beef
Biscuits
Pasta
Other

Cheese
Fish
Pork

Figure 7.3 The layout generated for the DataList control remains the same as the original. You

can use control adapters to enhance the visual results without changing the control declaration.

177TECHNIQUE 43 ASP.NET 4.0 browser capabilities

DISCUSSION

Control adapters are incredibly powerful, as you might have noticed by examining the
two scenarios we covered in this chapter. Because you can also write page adapters—
after all, a page is a control, so this makes sense—the sky’s the limit when it comes to
what control adapters can do for you.

 You can use adaptive rendering to selectively adapt the control rendering to differ-
ent devices or to globally change its behavior if you need to. Even though the focus of
ASP.NET 4.0 is to be friendlier to web standards, old controls like DataList might ben-
efit from a little makeup.

7.1.1 Mobile controls and the Control Adapter Toolkit

Mobile controls were the first example of adaptive rendering. Introduced in
ASP.NET 1.0, they were intended to provide the right markup for different kinds of
mobile devices automatically. At the time, mobile devices were quite different from
each other: there was cHTML, XHTML, WML, and so on.

 Right now, it’s clear that the mobile web is composed of smart devices capable of
rendering complex layouts, and these original control adapters (and their respective
controls) aren’t needed any more. For that reason, mobile controls are deprecated in
ASP.NET 4.0.

 If you need to maintain a solution based on this technology, you can update the
browser definitions on this page: http://mdbf.codeplex.com/. (Note that the informa-
tion on this website is no longer updated or supported.) From http://www.asp.net/
mobile/, you can browse for more content and access the original controls source code.

CSS Friendly Control Adapters, also known as the CSS Control Adapter Toolkit, is a
pack of control adapters shipped after ASP.NET 2.0 that increases adherence to web
standards for controls like Login, Menu, and so on. They were intended to provide
more CSS-friendly controls, with a cleaner markup structure.

 At the time of this writing, a Control Adapter Toolkit equivalent doesn’t exist for
ASP.NET 4.0, which actually makes sense if you think about it. In chapter 6, we explained
the new features of ASP.NET web controls, and the short story is that they now embed
a set of adapters to produce better markup without adding external classes.

 At http://www.asp.net/cssadapters/ you can download the original implementa-
tion. We’re recommending that you download this implementation because you can
look at it to understand how to implement control adapters. The download contains
great examples of how to deal with adaptive rendering.

 Now that we’re done with adaptive rendering, the next part of the chapter is dedi-
cated to how you can influence this feature by specifying the browser capabilities.
Some new features in ASP.NET 4.0 make this area more interesting than ever.

7.2 ASP.NET 4.0 browser capabilities
We’ve talked about ASP.NET browser capabilities before. They work in conjunction with
adaptive rendering. To be more precise, browser capabilities influence the way control

adapters are used by ASP.NET for rendering infrastructure, for both pages and controls.

http://mdbf.codeplex.com/
http://www.asp.net/mobile/
http://www.asp.net/mobile/
http://www.asp.net/cssadapters/

178 CHAPTER 7 Taking control of markup

This feature is innate in ASP.NET and is based on a set of file definitions that include the
most common user agents, from both stand-alone and mobile device browsers.

 Time has proven that it’s practically impossible for Microsoft to maintain this list
and keep it updated, so new alternatives have emerged. To maintain updated defini-
tions before ASP.NET 4.0, you had to do it manually. Now several different sources pro-
vide the definitions, and one of the most authoritative is the definition distributed at
http://mdbf.codeplex.com/.

 In the current version of ASP.NET, the following browsers and platforms are
directly supported:

Plus, there’s a generic profile, a profile for search engine crawlers/spiders, and a
default profile to cover the other platforms and browsers.

 Even though the file definitions represent a useful way to instruct browser capabil-
ities and adaptive rendering, it’s sometimes better to control the way the capabilities
are provided via code. Even if .browser files (and everything else in ASP.NET) are con-
verted in objects, having complete control over the process can produce simpler
results than editing or updating those XML files. That’s why ASP.NET 4.0 introduces
the concept of browser capabilities providers.

 Building a custom browser capabilities provider

You can use ASP.NET browser capabilities providers to totally replace the standard
capabilities definition mechanism or to expand it by adding new functionalities. By
replacing the standard definition, you can alter the way ASP.NET produces output.

PROBLEM

One of the problems of the default file definitions is that they’re not updated regu-
larly. We want to bypass the standard mechanism and provide a new one that will pro-
duce, for every request, the best markup possible.

SOLUTION

ASP.NET 4.0 introduces a new class, named HttpCapabilitiesProvider. This feature
implements the Provider Model pattern, which we’ll explain in chapter 11. Basically, it
works the same way as the Membership Provider pattern: you can define a provider to
implement a specific behavior, using a base class as the interface to implement. The
providers are guaranteed to have the same identical structure, so they can be defined
in the configuration. The advantage is that you don’t need to write specific adapters
or define file configurations, but you can express your own rules in code.

 To implement a custom engine, you have to overwrite the GetBrowserCapabili-
ties method and provide a new instance of HttpBrowserCapabilities. Because this

■ RIM’s Blackberry ■ Internet Explorer Mobile
■ Google Chrome ■ Apple’s iPhone
■ Mozilla FireFox ■ Opera
■ Internet Explorer ■ Apple’s Safari

TECHNIQUE 44

http://mdbf.codeplex.com/

179TECHNIQUE 44 Building a custom browser capabilities provider

method will be called several times during the page lifecycle, you need to specify a
caching pattern. (If you don’t know how cache works, you can find more information
in chapter 14.)

 The following listing shows a basic implementation of a provider.

C#:
public class MyBrowserProvider : HttpCapabilitiesProvider
{
 public override HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest

request)
 {
 string cacheKey = "MyBrowserProvider_"+
 request.UserAgent??"empty";
 int cacheTimeout = 360;

 HttpBrowserCapabilities browserCaps = HttpContext.Current.Cache[cacheKey]
as HttpBrowserCapabilities;

 if (browserCaps == null)
 {
 browserCaps = new HttpBrowserCapabilities();
 Hashtable values = new Hashtable(20, StringComparer.OrdinalIgnoreCase);
 values["browser"] = request.UserAgent;
 values["tables"] = "true";
 values["supportsRedirectWithCookie"] = "true";
 values["cookies"] = "true";
 values["ecmascriptversion"] = "3.0";
 values["w3cdomversion"] = "1.0";
 values["jscriptversion"] = "6.0";
 values["tagwriter"] = "System.Web.UI.HtmlTextWriter";

 values["IsIPhone"] = ((request.UserAgent ??
 string.Empty).IndexOf("iphone") > -1).ToString();

 browserCaps.Capabilities = values;
 HttpRuntime.Cache.Add(cacheKey,
 browserCaps,
 null,
 DateTime.Now.AddSeconds(cacheTimeout),
 TimeSpan.Zero,
 CacheItemPriority.Low,
 null);
 }

 return browserCaps;
 }
}

VB:
Public Class MyBrowserProvider
 Inherits HttpCapabilitiesProvider
 Public Overloads Overrides Function GetBrowserCapabilities(
 ByVal request As HttpRequest) As HttpBrowserCapabilities

Listing 7.7 The custom browser capabilities provider

Unique key for
user agent

Standard
capabilities

Custom
capabilities
 Dim cacheKey As String = If("MyBrowserProvider_" &

180 CHAPTER 7 Taking control of markup

 request.UserAgent, "empty")

 Dim cacheTimeout As Integer = 360

 Dim browserCaps As HttpBrowserCapabilities =
 TryCast(HttpContext.Current.Cache(cacheKey),
 HttpBrowserCapabilities)
 If browserCaps Is Nothing Then
 browserCaps = New HttpBrowserCapabilities()
 Dim values As New Hashtable(20, StringComparer.OrdinalIgnoreCase)
 values("browser") = request.UserAgent
 values("tables") = "true"
 values("supportsRedirectWithCookie") = "true"
 values("cookies") = "true"
 values("ecmascriptversion") = "3.0"
 values("w3cdomversion") = "1.0"
 values("jscriptversion") = "6.0"
 values("tagwriter") = "System.Web.UI.HtmlTextWriter"

 values("IsIPhone") = (
 (If(request.UserAgent,
 String.Empty)).IndexOf("iphone") > -1)
 .ToString()

 browserCaps.Capabilities = values
 HttpRuntime.Cache.Add(cacheKey,
 browserCaps,
 Nothing,
 DateTime.Now.AddSeconds(cacheTimeout),
 TimeSpan.Zero,
 CacheItemPriority.Low,
 Nothing)
 End If

 Return browserCaps
 End Function
End Class

As you see in this listing, we’re defining a set of capabilities. The ones we’ve defined
are the minimum you need to make the page work. They’ll instruct the server controls
to use the most advanced markup and JavaScript code. Figure 7.4 contains the results
of the default provider and of our custom provider.

Unique
key for
user
agent

Standard
capabilities

Custom
capabilities

Figure 7.4 The new provider populates the properties according to its code. You can see the default

provider using IE 8.0 on the left and the custom provider on the right.

181TECHNIQUE 44 Building a custom browser capabilities provider

You can specify the provider you want to use in web.config, using this code:

<configuration>
 <system.web>
 <browserCaps
 provider="ASPNET4InPractice.MyBrowserProvider, App_Code" />
 </system.web>
</configuration>

Or, if you prefer, you can define the provider programmatically in global.asax, using
the Application_Start event (or using an equivalent HttpModule):

C#:
void Application_Start(object sender, EventArgs e)
{
 HttpCapabilitiesBase.BrowserCapabilitiesProvider =
 new MyBrowserProvider();
}

VB:
Private Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 HttpCapabilitiesBase.BrowserCapabilitiesProvider =
 New MyBrowserProvider()
End Sub

You can define both standard and non-standard capabilities in your definition, and
you can query them using a similar syntax:

 IsMobile device: <%=Request.Browser.IsMobileDevice %>
 Platform: <%=Request.Browser.Platform %>
 IsIPhone: <%=(Request.Browser["IsIPhone"] as string)%>

As we already noted, you can see the result of all this code in figure 7.4. Note that you
should express the values as strings, even if the capabilities are then exposed as a
boolean. This behavior is probably caused by the first implementation in ASP.NET 1.0,
where text is mandatory (because it was based on XML tags), and you need to address
this problem if you want to make the code work.

DISCUSSION

Browser capabilities providers are super useful when you want to add new properties
or provide a new way to define the default capabilities. In its simplest form, a provider
is composed of few lines of code, but, as you might have noticed in the case of the new
IsIPhone property, you can also define new properties based on code evaluation.

 This solution has no drawbacks, because even the XML definition files are com-
piled. You don’t need to worry about performance impacts—there aren’t any!

 Speaking of browser capabilities, the last scenario of this chapter addresses a com-
mon problem: how to validate your markup against the World Wide Web Consortium
(W3C) Markup Validation Service.

182 CHAPTER 7 Taking control of markup

 Validating ASP.NET pages with the W3C validator

Adaptive rendering can be both a joy and a pain. An example of the latter is certainly
the absence of the W3C validator user agent from the default, recognized browsers.
The W3C validator is a service from W3C (an international community that develops
web standards) that aims to help web developers verify that their pages are using the
right markup.

 The fact that this validator isn’t included can be a problem if you want to validate
your page’s markup, mainly because the output generated for an unknown browser is
a conservative HTML 3.2.

PROBLEM

If you try to validate the markup generated by an ASP.NET page with the W3C valida-
tor, you’ll probably have trouble. ASP.NET doesn’t recognize the user agent and serves
the least advanced markup that it can handle—HTML 3.2. This outcome isn’t a prob-
lem per se, but it can become annoying if you want to validate the markup that’s likely
to be served to most of the browsers.

SOLUTION

As we’ve mentioned before, ASP.NET uses the browser capabilities to produce specific
output for specific browsers. If you need to produce better markup by default, you can
use the example in technique 44, where a unique behavior is applied to all the requests.

 If you don’t want to override the default provider, you can define a custom file def-
inition. The W3C validator user agent contains W3C_Validator in the sent string. To
identify it, all you need is to produce a rule, which is shown in the following listing.

<browsers>
 <browser id="W3C_Validator" parentID="default">
 <identification>
 <userAgent match="^W3C_Validator" />
 </identification>
 <capabilities>
 <capability name="browser" value="W3C Validator" />
 <capability name="ecmaScriptVersion" value="1.2" />
 <capability name="javascript" value="true" />
 <capability name="supportsCss" value="true" />
 <capability name="tables" value="true" />
 <capability name="w3cdomversion" value="1.0" />
 <capability name="tagWriter"
 value="System.Web.UI.HtmlTextWriter" />
 </capabilities>
 </browser>
</browsers>

As you can see in this listing, by specifying HtmlTextWriter instead of
Html32TextWriter, you can produce XHTML/HTML 4.01 markup, instead of HTML 3.2.
The other properties will do the rest to enable DOM, JavaScript, and CSS support.

Listing 7.8 The .browser file to support WC3 validator user agent

TECHNIQUE 45

RegEx intercepts
browser

Tag
writer

183Summary

 You can register the adapter globally or locally by saving this file as w3c.browser in
your \App_Browsers\ folder.

DISCUSSION

ASP.NET 4.0 provides great flexibility in terms of markup generation and browser
capabilities. You can leverage the new features to enrich your applications with less
effort than in the past.

 This last scenario is a great example of how you can add more features by simply
understanding how the infrastructure works. Even if these scenarios don’t fit in every
application you’ll build, they can help you when you need a bit more control.

7.3 Summary
Adaptive rendering and control adapters aren’t entirely new to ASP.NET 4.0, but
they’re great examples of flexibility. You can control virtually any server control and
alter the markup.

 As you learned in this chapter, generating a new markup and substituting the orig-
inal one is pain-free. All you need to do is write a control adapter, register it, and then
ASP.NET automatically performs the choice. Sometimes this isn’t easy (it depends on
how complex the original control is), but the results are always interesting and worth
the effort.

 On the other hand, browser capabilities do have new features in version 4.0. Now
you can completely substitute the entire engine to define your own set of definitions.
When you want to force a particular feature in your output, this capability is priceless.
ASP.NET uses the browser capabilities to drive adaptive rendering, and to provide bet-
ter output when the user agent is recognized and a specific markup profile is loaded.

 By controlling both adaptive rendering and browser capabilities, you can’t only
produce better markup. You can also help put into practice a better web by imple-
menting correct support for web standards and at the same time promoting accessibil-
ity. You can even boost your old, existing applications by moving them to ASP.NET 4.0

 Now that the story behind ASP.NET Web Forms is almost complete, we can take a
look at how ASP.NET MVC lets you build the user interface in a way that’s quite differ-
ent. The next chapter will focus on how you can use ASP.NET MVC even if you’re a nov-
ice developer, by leveraging your ASP.NET Web Forms skills.

Part 3

ASP.NET MVC

In part 2, we took a look at ASP.NET Web Forms. You might not know it, but
using ASP.NET Web Forms isn’t the only way to produce the UI; in part 3, we’re
going to investigate the option of building your UI with ASP.NET MVC.

ASP.NET MVC is a new option added in ASP.NET 3.5 SP1 and directly inte-
grated into ASP.NET 4.0 as ASP.NET MVC 2.0. It’s not the new Web Forms, but a
completely different approach to solving the same problems. ASP.NET MVC lets
you use the Model-View-Controller (MVC) pattern and is built with testability
and great markup control in mind.

 Chapter 8 gives you an introduction to ASP.NET MVC and shows the potential
that this new toolkit offers when you’re building the UI. You’ll learn how to per-
form the basic actions that you’re already acquainted with in ASP.NET Web Forms.

 Chapter 9 covers customizing and extending ASP.NET MVC to unlock its full
potential.

Introducing
 ASP.NET MVC
ASP.NET, and specifically Web Forms, is an awesome technology for building soft-
ware for the World Wide Web. When Microsoft introduced it back in 2002, it repre-
sented an absolute break from the past. It became possible to program for the web
platform with a high-level infrastructure that provided abstractions typical of a
smart client environment, like holding state across multiple requests or adopting
an event-driven approach to handle what was going on with the UI.

ASP.NET grew in popularity in the developer community until some people
began asking for more control over markup and the possibility of effectively testing
web apps. These demands are the reason Microsoft began thinking about a new
incarnation of ASP.NET technology, based on a simpler model that leverages a

This chapter covers
■ Anatomy of the Model-View-Controller pattern
■ Building your first page with ASP.NET MVC
■ The routing infrastructure
■ How to receive user input and validate it
187

188 CHAPTER 8 Introducing ASP.NET MVC

widely known pattern for the UI layer, called Model-View-Controller (MVC). This
vision led to the birth of ASP.NET MVC.

 Although ASP.NET MVC is still ASP.NET, its programming model is different than that
of Web Forms, so it deserves its own chapter to introduce its basic concepts. We’ll start
with a simple project and then move toward more complex requirements and features.

 This chapter will get you comfortable with ASP.NET MVC. You’ll learn how to
design your first pages and how the code you write fits into the overall MVC architec-
ture. The last part of the chapter will look at handling user input, which involves
building forms that get posted to the server and applying validation logic to the data
coming from the browser. To better understand how all these concepts relate to a real-
world scenario, we’re going to use a real application, specifically a blog engine, as our
practice field.

8.1 A new way to build web applications
ASP.NET uses a revolutionary, event-based model to program web applications. Build-
ing a page based on Web Forms is similar to building forms for desktop and client-
server scenarios. These processes are similar because the framework tends to hide a
lot of details that are intrinsic to the web platform from the developer, who can con-
centrate on the business problem his software is supposed to solve. Unfortunately, all
these comforts have their drawbacks.

 When you build enterprise applications, the only way to deal with a high level of
complexity is to adopt a layered architecture, similar to the schema shown in figure 8.1.
The complexity is spread across multiple, simpler components, separating UI concerns
from business logic or data access strategies.

 Even if you rigorously follow this path, what
often happens is that handling user interactions
quickly becomes tricky, and the UI code becomes
cumbersome and difficult to maintain. ASP.NET
Web Forms are no exception: despite the awe-
some stateful and event-driven programming
model it provides, the risk of ending up having
monolithic pages with methods running for
hundreds lines of code is quite high.

 During the last few years, the need for writing
automated tests has gained popularity in the
software industry. Developers want a test suite
that ensures their code is correct and will do its
job. Writing unit tests for the UI layer is unfortu-
nately a tricky task if you have a Web Forms
application because, as figure 8.2 shows, its logic
is (usually) tightly coupled with the overall infra-
structure and is sometimes embedded in the

Presentation
Layer

Business
Layer

Data Access
Layer

Object
Model

Database

Figure 8.1 A typical 3-layer partition-
ing schema. The Presentation, Busi-
ness Logic, and Data Access Layers
have their own responsibilities and
communicate with each other using
server controls. a shared object model.

189A new way to build web applications

ASP.NET Web Forms deliberately hide the details of markup generation from the
developer, who’s just supposed to add a GridView control to obtain a tabular represen-
tation of the data without worrying about how the markup is rendered. It’s a valuable
feature, although interactions with graphic designers, who speak in terms of HTML
nodes and CSS styles, tend to become more difficult.

 This state of affairs recently pushed Microsoft in the direction of creating another
platform, parallel to Web Forms. This platform proposes a different model to develop
web applications, but still shares the same ASP.NET infrastructure. The platform is
ASP.NET MVC.

8.1.1 The Model-View-Controller pattern

Model-View-Controller—we’ll refer to it
using its acronym MVC from now on—is a
common and widely known pattern for
designing the UI layer. It was first intro-
duced in Smalltalk during the late 70s.
Since then, it’s gained a lot of popularity,
becoming the pillar upon which web devel-
opment platforms such as Ruby on Rails
(and MonoRail, its unofficial porting for
the .NET world), JavaServer Pages and, of
course, ASP.NET MVC, are based. Figure 8.3
shows its conceptual schema.

 The MVC pattern aims to reduce UI

New Author

Author

Email invalidmail

New Author

Author

Email invalidmail

Errors!

Application code

Page.IsValid

System.Web.Page

ASP .NET validators

.NET Framework code

Figure 8.2 How form validation works in Web Forms. The user code checks only
whether the page is valid; everything else is handled by .NET Framework code, based
on validators on the page. Entry points for plugging in unit test code don’t exist.

Controller

Model View

Builds the model Selects the view

Renders the model

Figure 8.3 The Model-View-Controller
pattern’s conceptual schema. The controller
handles a user request: first, it builds the model,
which represents the data being shown on the
UI, and then it forwards it to a view, which
code complexity by splitting it into three knows how to represent it.

190 CHAPTER 8 Introducing ASP.NET MVC

components, in the same way a layered architecture does for the whole application logic.
Each component has its own goals and responsibilities, which are described in table 8.1.

For the rest of this chapter, we’re going to deeply explore all these concepts and try to
help you understand how you can take advantage of ASP.NET MVC to build a simple
application. You’ll learn how to simplify and rationalize the UI logic in a more struc-
tured design to keep code simple, maintainable, and testable.

8.2 Your first experience with ASP.NET MVC
The first release of ASP.NET MVC was available only as a separate download. Today,
ASP.NET MVC 2 is officially part of ASP.NET 4.0. The corresponding project template is
natively available in Visual Studio 2010, as figure 8.4 shows.

Table 8.1 Components of the MVC pattern

Name Description

Model This component acts as a data container and represents all the information you want to
send back to the user. This information often comes in the form of plain .NET classes,
exposing only properties and containing almost no logic at all. This form doesn’t have to be
strictly enforced, although it’s a best practice when applications already have a business
layer that encompasses the business logic.

View The view is responsible for rendering the model and translating it into HTML. It contains
only the specific logic needed to accomplish this task. For example, if the model contains a
list of items, the associated view will probably have the logic to loop over them and repeat a
particular HTML template for each one.

Controller The controller acts as a bridge between the other two components. It inspects and vali-
dates the request coming from the browser, builds the model (perhaps leveraging BLL ser-
vices), and forwards it to the appropriate view to generate the response.
Figure 8.4 Creating a new ASP.NET MVC 2 application project from Visual Studio 2010

191TECHNIQUE 46 The model

To give you a better understanding of how ASP.NET MVC works, we’re going to show
you how to build a simple blog engine called CoolMVCBlog. The first feature you’re
going to deal with is its homepage, whose mockup is shown in figure 8.5. To simplify
all the explanations, let’s suppose that you already have an object model available,
along with its ADO.NET Entity Framework data context.

 Let’s start examining the page components from the MVC pattern point of view.

 The model

Generally speaking, a model in ASP.NET MVC is a series of classes, preferably simple and
possibly, without any logic, whose purpose is to hold all the data that’s going to be on
the page. It’s probably the simplest part of the MVC pattern. Although ASP.NET MVC
doesn’t impose any specific rules on how to design it, neither does Visual Studio 2010
provide facilities to guide you while building it. Let’s take a look at how to build a model
for CoolMVCBlog’s homepage.

PROBLEM

We need to build a proper model for CoolMVCBlog’s homepage, reusing our applica-
tion’s object model whenever possible.

SOLUTION

When developers build layered applications, they often use an object model to repre-
sent the various business entities. This model might be generated using ADO.NET
Entity Framework’s designer, as you learned in chapter 3.

Figure 8.5 CoolMVCBlog’s homepage mockup. You’re going to achieve this
result when you build your first ASP.NET MVC page.

TECHNIQUE 46

192 CHAPTER 8 Introducing ASP.NET MVC

The model in the MVC pattern has a slightly different meaning. An application object
model is made of entities that have a business purpose, like customers, bills, or orders.
On the other hand, an MVC’s model strictly relates to what you’re going to show to the
UI, which often results in a composition of both business entities and interface-
specific objects. In figure 8.6, we’ll consider once again the homepage mockup that
you saw in figure 8.5.

 This time we’ve highlighted the components that contribute to our page. Putting
it all together, we can represent them with a HomepageModel class like the one shown
in the following listing and store it in the Models subfolder.

C#:
public class HomepageModel
{
 public List<Post> Posts { get; set; }
 public List<TagCloudItem> TagCloudItems { get; set; }
}

public class TagCloudItem
{
 public int CategoryId { get; set; }
 public string Description { get; set; }
 public string Size { get; set; }

Listing 8.1 Homepage model

Tag cloud

Posts

Figure 8.6 CoolMVCBlog homepage revisited. Notice how every dynamic homepage component
maps to a distinct model object.

Model class
for homepage

B

Item belonging
to TagCloud

C

}

193TECHNIQUE 46 The model

public class TagCloudService
{
 public List<TagCloudItem> GetTagCloudItems()
 {
 List<TagCloudItem> res =
 from p in context.PostSet // more Linq code here...

 return res;
 }
}

VB:
Public Class HomepageModel
 Public Property Posts As List(Of Post)
 Public Property TagCloudItems As List(Of TagCloudItem)
End Class

Public Class TagCloudItem
 Public Property CategoryId As Integer
 Public Property Description As String
 Public Property Size As String
End Class

Public Class TagCloudService
 Public Function GetTagCloudItems() As List(Of TagCloudItem)

 Dim res as List(Of TagCloudItem) =
 From p In context.PostSets ' more Linq code here...

 Return res
 End Function

End Class

As you can see, we used our domain model’s Post entity B. We did that because it
exactly matches what we’re going to show on the page. Our model also contains a new
class, named TagCloudItem C, which is a concept that belongs strictly to our Presen-
tation Layer. This class isn’t part of our domain model, and it doesn’t have a corre-
sponding table on the database, but it’s created using an ad-hoc LINQ To Entities
query in TagCloudService D, which is also part of our MVC model.

DISCUSSION

In the last example, you built a model for CoolMVCBlog’s homepage, which holds a list

Service to calculate
TagCloud

D

Model class
for homepage

B

Item belonging
to TagCloud

C

Service to calculate
TagCloud

D

Wasn’t our model supposed to just hold data?
The model we just introduced isn’t as anemic as we previously indicated it would be.
It exposes a service and executes a query to retrieve the TagCloudItems. You need
to do this every time you have to deal with classes that belong only to the Presenta-
tion Layer or when the application is simple and doesn’t have a BLL on its own. In
these scenarios, exposing services at the model level results in code that’s central-
ized in a single place and that’s easily reusable.
of posts and a tag cloud. Your model also contains a service that queries the database to

194 CHAPTER 8 Introducing ASP.NET MVC

retrieve and calculate the tag cloud composition, with the purpose of having this UI
logic centralized in a single specific location.

 When you’re building a page in ASP.NET MVC, the first thing you should take care
of is creating a model for it, which is a bunch of classes that represent the information
you’re going to show the user. This process is significantly different from what you do
with ASP.NET Web Forms. When you’re using Web Forms, you’re pushed to think in
terms of controls (grids, buttons, textboxes), but ASP.NET MVC takes into greater
account the nature of the data that will populate the page.

 The model is also the preferred entry point for storing high-level services that
respond to UI-specific needs. As you just saw in this example of building the tag cloud,
when you need to introduce additional logic to what is already provided by the BLL
(or if there isn’t a BLL at all) the best way to proceed is to create a service class at the
model level.

 In the next section, you’ll see how these classes and services are involved in the
process of handling a browser request. This process introduces the next component
of the MVC pattern: the controller.

 The controller

When an ASP.NET MVC application receives an HTTP request, the framework must
execute some code to generate the response. This concept is better expressed in the
MVC idiom by saying that the framework handles the request by selecting the proper
controller. The logic that does this is contained within an action method, which the
runtime automatically invokes based on the particular URL the user requested.

 To be able to show our blog’s homepage to the user, we have to build a controller
class. The controller class will take care of generating a valid instance for the model
we designed in the previous section and forwarding it to a view.

PROBLEM

We want to build a controller to handle all the requests that come to our application’s
homepage.

SOLUTION

Our blog engine still lacks a controller that can handle homepage visualization. To fill
this gap, you can create a new one. Right-click the Controllers folder (the location
where all the application controllers conventionally reside) and select the Add Con-
troller option; the dialog box shown in figure 8.7 opens. When you choose the con-
troller name, you should follow the ASP.NET MVC naming convention and always
terminate it with the -Controller suffix.

TECHNIQUE 47

Figure 8.7 The Add Controller
dialog box in Visual Studio 2010.
Notice how the proposed name
follows the controller naming
convention. This dialog box can
optionally generate methods for

typical controller actions.

195TECHNIQUE 47 The controller

When you click the Add button, Visual Studio creates a class that inherits from the
Controller base class and contains an empty method named Index. This method is
called an action method and represents the actual handler of a request. In fact, as
you’ll see shortly, ASP.NET MVC associates a URL to a controller/action pair that then
executes to generate the response; this process happens via the routing infrastructure.
The code you need to show the homepage is in the following listing.

C#:
public class HomeController : Controller
{
 public ActionResult Index()
 {
 using (var ctx = new BlogModelContainer())
 {
 var model = new HomepageModel();
 model.Posts = ctx.PostSet
 .OrderByDescending(p => p.DatePublished)
 .Take(3)
 .ToList();

 var service = new TagCloudService(ctx);
 model.TagCloudItems = service.GetTagCloudItems();

 return View(model);
 }
 }
}

VB:
Public Class HomeController
 Inherits Controller

 Public Function Index() As ActionResult
 Using ctx As New BlogModelContainer

 Dim model As New HomepageModel()
 model.Posts = ctx.PostSets.
 OrderBy(Function(p) p.DatePublished).
 Take(3).
 ToList()

 Dim service = New TagCloudService(ctx)
 model.TagCloudItems = service.GetTagCloudItems()

 Return View(model)
 End Using
 End Function
End Class

This method is pretty straightforward. It does nothing more than build a new Homepa-
geModel instance and populate its two properties, Posts and TagCloudItems. The
method populates the first property by executing a LINQ to Entities query B (which

Listing 8.2 HomeController and its Index action

Fetch latest
posts

B

TagCloud composition
via TagCloudService

C

Fetch latest
posts

B

TagCloud composition
via TagCloudService

C

retrieves the last three posts) and the second one by using TagCloudService C.

196 CHAPTER 8 Introducing ASP.NET MVC

The Index action ends by invoking the View method, passing the model as a parame-
ter. In turn, the View method generates a ViewResult return value.

DISCUSSION

In this example, we built a controller, along with its action, to create a new instance of
a Homepage class and then send it to a view, using the View method. An action doesn’t
always end with this kind of result. ASP.NET MVC doesn’t impose any restriction on
actions signatures, and the controller base class itself provides several helper methods
to generate different response types. The possible results are listed in table 8.2.

We’ve managed to build an object model for the data that we want to show in the
homepage. We’ve also added some logic to load it from a database in response to a
request coming from a browser. If we stopped here, you wouldn’t be able to see any-
thing in the browser because there’s still one component missing for our applica-
tion to actually produce HTML. That component is the view, which is the topic of the

Table 8.2 Results that an action can return

Name Description

ContentResult Represents a user-defined content result. This class allows
you to manually specify the content encoding and type.

FileResult The base class for sending a binary file to the browser. Its
three inherited classes identify this file starting from a path
(FilePathResult), a stream (FileStreamResult),
or a byte array (FileContentResult).

JavaScriptResult Represents JavaScript code sent back to the browser.

JsonResult Uses a JavaScript Object Notation (JSON) serializer to serialize
an object and send its representation as a response.

RedirectResult Redirects the browser to the given URL.

RedirectToRouteResult Builds a URL using the route settings and redirects the browser to it.

ViewResult Uses a view to render a model and sends the HTML to the browser.

Web application code made simple
Although the controller we just made is part of a simple example, it highlights a fun-
damental peculiarity of ASP.NET MVC: the application code is intrinsically simpler
than in Web Forms and is absolutely decoupled from any infrastructure. Our controller
is a plain .NET class that exposes a method; the controller base class just provides
some helpers. For this reason, we can create a console application and manually in-
voke an action to check whether it works as expected (or, better yet, we can easily
create unit tests to validate our UI features).
next section.

197TECHNIQUE 48 The view

 The view

The view is the MVC component that’s respon-
sible for building the actual HTML and send-
ing it to the browser. In the default ASP.NET
MVC implementation, view data is stored in
.aspx or .ascx files similar to the Web Form’s
files. They’re contained inside a particular
folder structure, which has a Views folder as
the root and a list of subfolders, similar to the
one shown in figure 8.8.

 Each subfolder has a name that matches
the name of a controller and contains all the
views owned by that controller. Besides that,
there’s a Shared folder to which all the views
shared by two or more controllers and the
application master pages belong.

PROBLEM

We must build a view to render CoolMVCBlog’s
homepage that will accept an instance of
HomepageModel and render the HTML. It must be the default view for the Homepage-
Controller’s Index action.

SOLUTION

As we stated in technique 47, a ViewResult isn’t the sole kind of response an action
can return, but it’s the most common one. Visual Studio provides a facility to automat-
ically create a view from within an action code. All you have to do is right-click its code
and select the Add View option from the contextual menu (see figure 8.9).

TECHNIQUE 48

Figure 8.9 Adding a new view
to the project is made easy by

Figure 8.8 Views folder structure. The
Views folder has a subfolder for each
controller that stores its views, plus a
Shared subfolder to contain all the
shared views.
this dialog box provided by
Visual Studio 2010.

198 CHAPTER 8 Introducing ASP.NET MVC

The dialog box in figure 8.9 provides the following options to customize how the view
is created:

■ The master page you might want to use
■ Whether the new view must be a partial view (more on this shortly)
■ The model class the new view must be based on, if you want to create a strongly

typed view

The following listing contains the code needed to properly render an instance of
HomepageModel.

C#:
<asp:Content ContentPlaceHolderID="MainContent"
 runat="server">
 <div class="content">
 <% foreach (var i in this.Model.Posts) { %>
 <h2>
 <%: Html.ActionLink(i.Title, "Post",
new { Id = i.Id }) %>
 </h2>
 <div><%: i.Text %></div>
 <% } %>
 </div>
 <% Html.RenderPartial("TagCloud", this.Model.TagCloudItems); %>
</asp:Content>

VB:
<asp:Content ContentPlaceHolderID="MainContent"
 runat="server">
 <div class="content">
 <% For Each i in me.Model.Posts %>
 <h2>
 <%: Html.ActionLink(i.Title, "Post",
New With {.id = i.Id})%>
 </h2>
 <div>
 <%: i.Text %>
 </div>
 <% Next%>
 </div>
 <% Html.RenderPartial("TagCloud", this.Model.TagCloudItems) %>
</asp:Content>

For those of you with experience building ASP or PHP applications, this code might
seem familiar because it’s mostly HTML markup mixed with C# or VB.NET. This simi-
larity is apparent only because the view code contains just the logic needed to render
the model. For example, the code repeats a specific template using a foreach block,
which accesses the model using the Model property and iterates on every post it con-
tains. You have absolute control over the generated markup (as opposed to what you

Listing 8.3 Homepage view code

Link to post’s
page

B

Show post
contentC

Link to post’s
page

B

Show post
contentC
have with Web Forms), without hiding it behind the server controls abstraction.

199TECHNIQUE 48 The view

 In our design, every post title must be a link to open the specific post page point-
ing to a URL that follows the /Home/Post/postId pattern. Although it’s obviously possi-
ble to manually construct that link, the code in B uses the ActionLink HTML helper
and dynamically composes the link based on routing settings (we’ll cover this topic in
section 8.3).

 Last of all, the <%: ... %> syntax used in C allows us to show that any special char-
acters that the post body contains are automatically encoded, thus avoiding cross-site
scripting (XSS) attacks. The view engine leverages the provider-based encoding archi-
tecture of ASP.NET that you saw in chapter 4.

The tag cloud is part of the UI that will likely be part of many pages of our blog appli-
cation, so it’s worth building as a reusable component. In this case, we can render
it via the RenderPartial method, which invokes a TagCloud view and passes the list
of TagCloudItems.

TagCloud is a partial view, which is a componentized version of a particular
markup. You can create a partial view by selecting Create A Partial View in the Add
View dialog box shown in figure 8.9. The TagCloud code is in the following listing.

C#:
<%@ Control Language="C#"
 Inherits="ViewUserControl<IEnumerable<TagCloudItem>>" %>

<div class="cloud">
 <div class="cloud_title">
 Tag cloud
 </div>
 <% foreach (var i in this.Model) { %>
 <%= Html.ActionLink(i.Description, "Tag",
 new { Id = i.CategoryId },
 new { style = "font-size: " + i.Size,
 @class = "cloud_item" }) %>
 <% } %>
</div>

VB:
<%@ Control Language="VB"

Listing 8.4 Content of TagCloud.ascx partial view

Am I allowed to add Web Forms server controls?
As you’ve already seen, ASP.NET MVC and Web Forms share the same ASP.NET in-
frastructure as their basis; in fact, we’ve been able to reuse a lot of ASP.NET con-
cepts, like pages to build the views, master pages, and ContentPlaceHolders.
When you’re creating a view, you can also use Web Forms server controls, as you’ll
see in the next chapter, although generally speaking this isn’t an advisable approach.
You lose absolute control over the generated markup, which is one key point in favor
of ASP.NET MVC.
 Inherits="ViewUserControl(Of IEnumerable (Of TagCloudItem))" %>

200 CHAPTER 8 Introducing ASP.NET MVC

<div class="cloud">
 <div class="cloud_title">
 Tag cloud
 </div>
 <%For Each i In Me.Model%>
 <%= Html.ActionLink(i.Description, "Tag",
 New With {.Id = i.CategoryId},
 New With {.style = "font-size: " + i.Size,
 .class = "cloud_item"})%>
 <%Next%>
</div>

The tag cloud template is just a bunch of links, again built using the ActionLink
method. The size of this template is dynamically modified on the basis of the Tag-
CloudItem.Size property.

DISCUSSION

Designing views in ASP.NET MVC is just a matter of combining markup and code to
build intelligent templates able to render instances of model objects. You can leverage
special methods, called HTML helpers, which encapsulate some useful logic. For
example, the ActionLink method calculates a link based on the application routing
settings. Partial views, on the other hand, provide the ability to build reusable compo-
nents, which are the best way to ensure that the same markup is rendered consistently
across the different pages of the application.

 Successfully building the view concludes our first overview of the main compo-
nents of the MVC pattern, but this isn’t enough for our application to work properly.
We still have to link URLs and actions together. Creating these links is called URL rout-
ing. In the next section, we’ll delve into how it works in an ASP.NET MVC application.

8.3 Routing in ASP.NET MVC
So far, we’ve managed to build a controller class that incorporates the logic needed
to display the homepage. In fact, its Index action is able to create a model instance
and use some services to populate it; then it selects a view that translates all those bits
into HTML.

 We’re still missing the trigger that executes that action. A user starts a request by
typing our blog’s URL into their browser, but there must be some additional logic that
links that URL to the actual C# code you just finished writing. Enter URL routing.

8.3.1 Basic routing concepts in ASP.NET MVC

We introduced the concept of routing in chapter 4, when you saw how easy it is to
plug it into a Web Forms application to map human-readable URLs to the pages.
Thanks to the pluggable architecture of its infrastructure, routing is so flexible that
it can be easily expanded to support different situations, such as a Dynamic Data
controls-based website or ASP.NET MVC applications.

 In ASP.NET MVC, routing plays a central role during the handling of an HTTP

request. It connects the URL coming from the browser to the specific controller and

201TECHNIQUE 48 Routing in ASP.NET MVC

the action, which are going to be executed to fulfill the request. A valid URL for an
ASP.NET MVC application, by default, follows the RESTful (Representational State
Transfer-compliant) schema:

http://myDomain/{Controller}/{Action}/{id}

This structure allows the runtime to easily locate the resources needed to handle the
request, while at the same time giving your URLs a meaning that’s easy to understand.
For example, a URL like http://myDomain/Posts/Show/4 maps to the Posts-
Controller controller (specifically to its Show action); the value 4 will be given to its
id parameter.

 Routes are usually registered in the global.asax file during the Application.Start
event. The typical routes configuration is shown in the following listing.

C#:
public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new
 {
 controller = "Home",
 action = "Index",
 id = UrlParameter.Optional
 }
);
}

VB:
Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}")

 routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {

Listing 8.5 Registering URL routes in global.asax

Routing was originally only an ASP.NET MVC peculiarity
Routing in ASP.NET was originally part of the first release of ASP.NET MVC. It signaled
a break from the past, giving the URLs a functional meaning instead of just being a
physical path. Routing gained a lot of popularity among developers and was easily
portable to Web Forms, too, thanks to its open architecture. The ASP.NET team de-
cided to promote it as one of the core features in ASP.NET 3.5 SP1. Today, it remains
one of ASP.NET MVC’s pillars, as you’ll see.

Ignored by
routing

B

Ignored by
routing

B

 .controller = "Home",

202 CHAPTER 8 Introducing ASP.NET MVC

 .action = "Index",
 .id = UrlParameter.Optional} _
)
End Sub

We can define a route configuration using the routes.MapRoute method B, provid-
ing a name (Default in our example) and a schema. The schema uses the reserved
{controller} and {action} tags to identify which portion of the URL maps to the
controller and action name, respectively. This method also accepts an anonymous
type as a third parameter, which provides default values for the variables in the
schema in case they’re not present in the requested URL.

 Routing doesn’t necessarily affect every request. For example, the ASP.NET run-
time uses the .axd extension to retrieve resources from assemblies. Requests to this
kind of URL must not be redirected to an ASP.NET MVC controller, which is why we’re
using the routing.IgnoreRoute method at the top of the routes mapping section,
before defining any actual route.

 We can obviously alter routing settings to inject our customized rules. For exam-
ple, if we wanted the URL of a search page to be something like http://myDomain/
Posts/August/2008, we could add the new mapping to global.asax, as shown in the
following listing.

C#:
public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "PostsByMonth",
 "Posts/{month}/{year}",
 new { controller = "Posts", action = "Search" });

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new
 {
 controller = "Home",
 action = "Index",
 id = UrlParameter.Optional
 }
);
}

VB:
Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}")

 routes.MapRoute(_
 "PostsByMonth", _
 "Posts/{month}/{year}", _

Listing 8.6 Custom URL route for post search

Additional
route rule

B

Additional
route rule

B

 New With { controller = "Posts", action = "Search" })

203TECHNIQUE 48 Routing in ASP.NET MVC

 routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {
 .controller = "Home",
 .action = "Index",
 .id = UrlParameter.Optional} _
)
End Sub

In this code, all we did was add a new mapping B called PostsByMonth, using the
same routes.MapRoute method you’ve seen before. The URL schema has just two
placeholders, month and year; controller and action names (Posts and Search) are
provided by the routing defaults.

When you’re building a view, if you want to create a link that points to another page,
you can use the ActionLink or RouteLink HTML helpers, shown in the following
listing.

C#:
<%: this.Html.ActionLink(
 "Go back to Homepage",
 "Index",
 "Home") %>

<%: this.Html.RouteLink(
 "Search July 2010",
 "PostsByMonth",
 new { month = "July", year = 2010})%>

VB:
<%: this.Html.ActionLink(_
 "Go back to Homepage", _
 "Index",
 "Home") %>

<%: this.Html.RouteLink(_
 "Search July 2010", _
 "PostsByMonth", _

Listing 8.7 HTML helpers for creating links to other controllers

Be careful with routing definitions order
A real-world application typically defines multiple routing schemas. The order you use
when declaring them plays a key role in how requests are handled. When the routing
engine looks for the schema that’s compliant with the request’s URL, these sche-
mas are evaluated by the definition order. That’s the reason was in first position in
listing 8.5; otherwise, if a URL was valid for, it would be handled by ASP.NET MVC,
whether or not it contained the .axd extension.

Link text

Link text
 New With { .month = "July", .year = 2010})%>

204 CHAPTER 8 Introducing ASP.NET MVC

You can use either ActionLink or RouteLink, depending on how you want to refer-
ence the linked page. ActionLink works with the action (Index) and controller
(Home) names and exposes explicit parameters for them. RouteLink talks in terms of
routes and routing variables.

 Whichever one you choose, take a moment to realize how powerful this way of ref-
erencing pages is. You’re not forced to hardcode URLs in your views because they’re
dynamically built using the routing settings and automatically recalculated if these set-
tings change in the future.

 Routes are a great and effective way to improve URL readability. ASP.NET MVC
natively sets up a routing scheme that avoids query string parameters where possible,
giving the application URLs a static look. Unfortunately, as applications grow in size,
routing definitions quickly tend to become a maintenance nightmare. You can miti-
gate this problem by partitioning the projects in functional sections, called Areas.

 Partitioning using Areas

Enterprise applications are often made of different modules, each one providing its
own pages and services. These modules cooperate together to implement complex
business logic. Let’s think about software that manages orders and deliveries for
products. As figure 8.10 shows, you’re most likely going to split it up into the follow-
ing modules:

■ A master module that stores data about products and clients
■ An orders management module that keeps track of and records orders placed

by customers
■ A billing module
■ A delivery tracking module

Integrating all these modules into a single,
monolithic ASP.NET MVC application could
be tricky. You could easily end up with doz-
ens of controllers (and hundreds of related
views), all mixed up in the same folder struc-
ture. The concept of project Areas can help
you handle this scenario in a more struc-
tured way.

PROBLEM

You have an application that is composed of different functional sections. You want to
keep them separated from each other, so that your project structure reflects the logi-
cal partitioning of the application itself.

SOLUTION

When you have a set of functionalities that all together implement a single, distinct
logical module of your application, encompassing them within a separated area can

TECHNIQUE 49

Enterprise deliviries management

Customers and products records

Orders placing system

Deliveries tracking services

Figure 8.10 An enterprise application often
consists of many modules interacting together
to implement complex business logic.
be a good way to rationalize how your ASP.NET MVC project is designed. The first step

205TECHNIQUE 49 Partitioning using Areas

toward this goal is to add a new Area to
the project, using the contextual menu
shown in figure 8.11.

 After you give a name to the new
Area, Visual Studio 2010 creates a cor-
responding folder in your project that
internally replicates the subfolder
structure typical of ASP.NET MVC. If you
add an Area called Backoffice, the
result that you’ll get is similar to the one
in figure 8.12.

 Now you’ve got a new container
available for the application’s back-
office module. Controllers, modules,
and views that implement the logic for
inserting new posts to our blog appli-
cation are kept separated from the
front office ones, resulting in a more
consistent and better-designed project
structure. This separation doesn’t happen just at the file level; Visual Studio 2010
automatically stores the classes in separate namespaces, so our application’s object
model reflects the logical partitioning we’ve just made.

 Our new Backoffice Area also has its own routing rules, which are stored in the
BackofficeAreaRegistration.cs file, which you can see in figure 8.12. The following list-
ing shows its content.

C#:
public class BackofficeAreaRegistration : AreaRegistration
{
 public override string AreaName

Listing 8.8 BackofficeAreaRegistration content

Figure 8.11 The project’s contextual menu lets you add a new Area to the project.

Area name

Figure 8.12 When Visual Studio 2010 creates the
Backoffice Area, it replicates the folder structure
typical of an ASP.NET MVC project.
 { registrationB

206 CHAPTER 8 Introducing ASP.NET MVC

 get
 {
 return "Backoffice";
 }
 }

 public override void RegisterArea(AreaRegistrationContext context)
 {
 context.MapRoute(
 "Backoffice_default",
 "Backoffice/{controller}/{action}/{id}",
 new { action = "Index", id = UrlParameter.Optional }
);
 }
}

VB:
Public Class BackofficeAreaRegistration
 Inherits AreaRegistration

 Public Overrides ReadOnly Property AreaName() As String
 Get
 Return "Backoffice"
 End Get
 End Property

 Public Overrides Sub RegisterArea(
 ByVal context As AreaRegistrationContext)
 context.MapRoute(_
 "Backoffice_default", _
 "Backoffice/{controller}/{action}/{id}", _
 New With {.action = "Index", .id = UrlParameter.Optional} _
)
 End Sub
End Class

BackofficeAreaRegistration inherits from the base AreaRegistration class and
overrides its AreaName B and RegisterArea C members to provide the Area name
and the routing rules. This code is automatically executed when the application starts,
as shown in the following listing.

C#:
protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);
}

VB:
Sub Application_Start()
 AreaRegistration.RegisterAllAreas()

 RegisterRoutes(RouteTable.Routes)

Listing 8.9 Global.asax registers all areas when the application starts

Area name
registrationB

CArea-specific
routing rules

B Area name
registration

CArea-specific
routing rules
End Sub

207TECHNIQUE 50 Handling user input at the controller level

The Application_Start event handler invokes a static RegisterAllAreas method,
which dynamically explores the application assemblies, looking for classes that inherit
from AreaRegistration to execute their RegisterArea method.

DISCUSSION

When applications are composed of many functional modules, it might be worth orga-
nizing them into specific Areas so that you’ll have a more maintainable and structured
ASP.NET MVC project. When you’re creating an Area, Visual Studio 2010 automatically
sets up the folder structure and the code to register it at application startup.

 Each application Area comes with its own controllers, models, and views, and has
specific routing rules that you can customize to fit your needs.

8.4 Accepting user input
Congratulations! You’ve built your first page in ASP.NET MVC. Your application can
respond to a browser that’s requesting its homepage and show the last blog posts.
These requests are called GET requests; they always originate from a user typing an
address into the browser.

 A real-world web application is also made of forms in which someone can insert
data and that result in POST requests to your web server. The overall approach in
ASP.NET MVC isn’t different from what happens for GETs: an action receives some
parameters from the request and executes the business logic. In this section, we’re
going to explore how this process occurs in ASP.NET MVC and which facilities you can
leverage to build forms easily.

 Handling user input at the controller level

Let’s imagine you want to let your CoolMVCBlog readers write comments on blog
posts. When the user asks to view a single post, the corresponding view must provide a
form to accept their input. Assume that you’ve already defined a Post.aspx view to

Can areas be componentized?
Areas are a great way to rationalize the application structure by splitting it into mod-
ules, but they belong strictly to the project where they were defined. Even so, some-
times applications can share some functional modules. Consider a security module
that provides controller and logic to register users, lets them authenticate them-
selves, or lets an administrator manage roles.

Unfortunately, ASP.NET MVC areas can’t be stored directly in a class library and ref-
erenced by many applications. Developers are forced to copy the same code over and
over. A possible solution to that problem is called Portable Areas, which is part of the
MvcContrib side project. You can download source and binaries and read the docu-
mentation at its Codeplex web site (http://mvccontrib.codeplex.com/).

TECHNIQUE 50
specify how a post is rendered. Now, to better isolate the markup of the form from the

http://mvccontrib.codeplex.com/

208 CHAPTER 8 Introducing ASP.NET MVC

rest of the page, we’re going to build an additional partial view for it, like the one
shown in figure 8.13.

 As you can see in the next listing, Post.aspx internally uses a partial view, named
NewComment.ascx, to encapsulate the form template within a discrete and reusable
component.

C#:
<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <div class="content">
 .. markup here ..
 <% Html.RenderPartial("NewComment",
 new CoolMVCBlog.Models.Comment()); %>
 </div>
</asp:Content>

VB:
<asp:Content ContentPlaceHolderID="MainContent" runat="server">
 <div class="content">
 .. markup here ..
 <% Html.RenderPartial("NewComment",
 New CoolMVCBlog.Models.Comment()) %>
 </div>
</asp:Content>

Because NewComment works on a model of Comment type, the Post.aspx view in this list-
ing renders it by providing an empty instance B. Let’s get started on the process that
will retrieve the model, along with its values, when the form is posted to the server.

Listing 8.10 Post.aspx referencing NewComment.ascx partial view

Figure 8.13 A complete
look at the Post.aspx
view. This view leverages
a NewComment.ascx
partial view to render the
comment input form.

HTML helper renders
the partial view

B

HTML helper renders
the partial view

B

Then we’ll use it to actually attach a new comment to the original post.

209TECHNIQUE 50 Handling user input at the controller level

PROBLEM

You want to give your readers the chance to send comments to blog posts by using a
form. This data must be handled by a controller that adds it to the post’s comments
collection.

SOLUTION

As we’ve mentioned, we want to encapsulate the form to input the new comment
within a reusable component. To do this, we created a strongly typed partial view that
provides an editing template for a Comment instance. We won’t provide the complete
listing here (its code is very repetitive), but the next listing is worth a look because of a
couple of interesting points that we’ll discuss.

C#:
<%@ Control Language="C#" ... %>

<% using (Html.BeginForm()) {%>

 <div class="editor-label">
 <%: Html.LabelFor(model => model.Author) %>
 </div>
 <div class="editor-field">
 <%: Html.EditorFor(model => model.Author)%>
 <%: Html.ValidationMessageFor(model => model.Author, "*") %>
 </div>
 <div class="clear"></div>

 ... more fields here ...

 <div class="editor-label"> </div>
 <div class="editor-field">
 <input type="submit" value="Post comment" />
 </div>
 <div class="clear"></div>
<% } %>

VB:
<%@ Control Language="VB" ... %>

<% Using Html.BeginForm()%>

 <div class="editor-label">
 <%: Html.LabelFor(Function(model) model.Author)%>
 </div>
 <div class="editor-field">
 <%: Html.EditorFor(Function(model) model.Author)%>
 <%: Html.ValidationMessageFor(Function(model) model.Author, "*")%>
 </div>
 <div class="clear"></div>

 ... more fields here ...

 <div class="editor-label"> </div>
 <div class="editor-field">

Listing 8.11 NewComment.ascx partial view
 <input type="submit" value="Post comment" />

210 CHAPTER 8 Introducing ASP.NET MVC

 </div>
 <div class="clear"></div>
<% End Using%>

Every input control in an HTML form must reside within a <FORM> tag, which posts to
some URL. ASP.NET MVC provides you with an HTML helper called BeginForm to do this.
You can use BeginForm with a using statement that will encompass the form’s content.
Then, every field we want to edit gets rendered with a LabelFor, an EditorFor, and a
ValidationMessageFor HTML helper, which leverage a type-safe, lambda-expression-
based syntax to identify the property they’re referring to. ASP.NET MVC can automati-
cally infer which kind of editor is optimal for particular data by looking at its type.

Finally, a submit button gives the user the chance to post the form back to the server
(in our case, back to the same URL), which triggers the action that’s shown in the fol-
lowing listing.

C#:
[HttpPost]
public ActionResult Post(int id, Comment newComment)
{
 using (var ctx = new BlogModelContainer())
 {
 var post = ctx.PostSet
 .Include("Comments").Where(p => p.Id == id).Single();

 // .. more code here ..

 newComment.Date = DateTime.Now;
 post.Comments.Add(newComment);
 ctx.SaveChanges();

 return RedirectToAction(
 "Post",
 new { id = id });
 }
}

VB:
<HttpPost()>

Listing 8.12 HomeController action that handles the POST request

Why do editors for string properties render differently?
Listing 8.11 uses the same EditorFor syntax for every field; however, if you look
back at the screenshot in figure 8.13, you might notice how the same syntax for two
string properties (for example Author and Text) renders two different editors, a Text-
Box and a multiline TextArea, respectively. This magic happens thanks to the ASP.NET
MVC templated editor infrastructure, which we’re going to cover in detail in chapter 9.

Accepting Comment
instance

B

Saving new
comment

C

Redirecting to
GET actionD

Accepting Comment
instance

B

Public Function Post(

211TECHNIQUE 50 Handling user input at the controller level

 ByVal id As Integer, ByVal newComment As Comment) As ActionResult
 Using ctx = New BlogModelContainer()
 Dim thePost = ctx.PostSets.
 Include("Comments").
 Where(Function(p) p.Id = id).
 Single()

 ' .. more code here ..

 newComment.Date = DateTime.Now
 thePost.Comments.Add(newComment)
 ctx.SaveChanges()

 Return Me.RedirectToAction(
 "Post", New With {.id = id })
 End Using
End Function

The HttpPostAttribute instructs the framework to use this action only in response to
a POST type request. This method (among others) accepts a parameter of type Com-
ment B, which holds all the data coming from the browser. The method’s implemen-
tation is definitely trivial; it just needs to add that object to the post comments
collection C and then save all the changes. Everything ends with a redirection to the
same page, which prevents a page refresh from triggering another insert D.

DISCUSSION

ASP.NET MVC has the awesome peculiarity of letting you write controller methods
without having to worry too much about the fact that you’re actually handling web
requests. Your methods interact with the web infrastructure in terms of strongly typed
objects, and POST requests aren’t an exception.

 In this scenario, we managed to write an action that gets activated in response to a
form posted to the server. This action can also reconstruct an instance of a Comment
object and insert it into the database, as figure 8.14 summarizes.

 As far as building the corresponding view goes, the effort required is trivial thanks
to editor templates. These templates help you build forms by simply specifying the
model properties you want to edit; the infrastructure then takes care of rendering the

Saving new
comment

C

Redirecting to
GET actionD

How does that Comment instance get populated?
Having a Comment instance among the Post arguments gives us the chance to com-
pletely ignore what’s going on under the hood. Under there is an array of strings con-
tained within the request’s form. Thanks to the editors we used to create the input
form and an infrastructural object called Model Binder, ASP.NET MVC is able to rec-
reate the object this form represents.

This level of abstraction is exceptional and is also pluggable to inject customized
binders to handle different kinds of data. In this way, you can work with strongly
typed, high-level objects. We’ll delve deeper into that topic in the next chapter.
proper HTML element based on the data type.

212 CHAPTER 8 Introducing ASP.NET MVC

To get back to our website—some functionality is still missing. We don’t actually check
the user input for correctness. Some data is mandatory (think about the comment’s
body) or requires a particular format to be considered valid (like the email field).
Let’s see how we can take care of all this, too.

 Validating posted data

Whenever data comes from the outside world, you should never trust it. This rule is a
key to writing good applications. You need to validate incoming data not only because
of the security impact (we’ll take care of those later on in the book), but because the
data might be invalid, based on how your application is supposed to work.

 To deal with a new comment posted by the user, we need to follow some integrity
rules. We have a business requirement to trace the author’s email address, so we
designed our database schema to have a not-nullable column in which to store it. In
addition, we definitely don’t want to allow any comments that don’t include one.

 Every evolved web development framework provides an infrastructure that eases
the data validation process. ASP.NET Web Forms, for example, have some validator
server controls and their logic plugged into the page’s IsValid property. ASP.NET
MVC has a model-centric validation architecture, based on a series of attributes called
data annotations. You can use data annotations to decorate the model properties to say
that the Email field is required or that the Author’s name can be no more than 50
characters. If you think about it, this is pretty clever of the MVC pattern because it
shares the responsibilities among the components according to each one’s responsi-
bility. Figure 8.15 shows the highlights of this concept.

 If any of these rules change in the future, you only have to modify the model, with-
out touching the various controllers that use it.

 In the next few pages, you’ll learn how to leverage data annotations to check that
the input you receive is compliant with your rules.

PROBLEM

We want to be sure that a user can insert a comment into the database only if it’s con-
sidered valid. Validation rules must be checked outside the controller code—you
don’t want to pollute its logic with something that relates strictly to the model.

New Comment

Author

Text Lorem ipsum dolor
sit amet...

Marco De Sanctis

Model Binder

c = New Comment();
c.Author = “Marco”;
c.Text = “Lorem...”;

Controller

Figure 8.14 When a form is posted to the server, a model binder uses its content to build a
new Comment instance. This object is then used as a parameter for the controller.

TECHNIQUE 51

213TECHNIQUE 51 Validating posted data

SOLUTION

Data annotations are a series of attributes that were initially introduced to support
ASP.NET Dynamic Data controls. These attributes are now supported by ASP.NET MVC
to validate user inputs. You can use them to decorate a class definition to express the
business constraints an instance has to fulfill to be considered valid, similar to the
code shown in the following listing.

C#:
public class Comment
{
 // .. more code here ..

 [Required(ErrorMessage="Author is mandatory")]
 public string Author { get; set; }

 [Required(ErrorMessage="Email is mandatory")]
 [RegularExpression(
 @"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}\b",
 ErrorMessage="Please provide a valid Email address")]
 public string Email { get; set; }

 [Required(ErrorMessage="You should post some text")]
 [StringLength(int.MaxValue, MinimumLength=5,
 ErrorMessage="Please provide a meaningful text")]
 public string Text { get; set; }
}

Listing 8.13 Sample use of data annotations on an ideal Comment class

Controller View

New Comment

Author

Email invalidmail

New Comment

Author

Email invalidmail

Model
● Author missing
● Invalid email

*

*

Errors!

Figure 8.15 The validation process flows across the components of an ASP.NET MVC
application. When a form is posted to the server, the associated model is validated using
data annotations. Invalid data is handled at the controller level by avoiding saves and at
the view level by showing error messages to the user.

Mandatory
field

B

Regular
expression rule

C

Minimum
text length

D

214 CHAPTER 8 Introducing ASP.NET MVC

VB:
Public Class Comment

 <Required(ErrorMessage:="Author is mandatory")>
 Public Property Author As String

 <Required(ErrorMessage:="Email is mandatory")>
 <RegularExpression(
 "\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}\b",
 ErrorMessage:="Please provide a valid Email address")>
 Public Property Email As String

 <Required(ErrorMessage:="You should post some text")>
 <StringLength(int.MaxValue, MinimumLength:=5,
 ErrorMessage:="Please provide a meaningful text")>
 Public Property Text As String

End Class

In this example, a comment’s Author field is considered mandatory B, as are the
Email field and the actual text. The Email property has a RegularExpression attri-
bute to validate whether its content matches the given pattern C, and the Text isn’t
correct if it’s too short D. Other attributes are also out there, which, for example,
check whether a date or an integer value falls within a given range. A CustomValida-
tion attribute invokes a given method to provide custom validation logic.

 Unfortunately in our case, we can’t use data annotations on our model classes
directly because they’re generated by Entity Framework’s designer. Any manual
change will be lost as soon as the custom tool executes, forcing us to describe our
rules using a metadata type. To avoid this problem, we can create a metadata class like
the one in the following listing.

C#:
public class CommentMetadata
{
 [Required(ErrorMessage="Author is mandatory")]
 public string Author { get; set; }

 // .. more properties here ..

}

[MetadataType(typeof(CommentMetadata))]
public partial class Comment
{ }

VB:
Public Class CommentMetadata

 <Required(ErrorMessage:="Author is mandatory")>
 Public Property Author As String

 ' .. more properties here ..

Listing 8.14 Using a metadata type for generated classes

Mandatory
field

B

Regular
expression
rule

C

Minimum
text length

D

The metadata
type

B

Metadata reference
added to partial class

C

The metadata
type

B

End Class

215TECHNIQUE 51 Validating posted data

<MetadataType(GetType(CommentMetadata))>
Partial Public Class Comment

End Class

The new CommentMetadata B class has the same properties of the actual Comment
class, but it’s not autogenerated. We can decorate them without worrying about losing
our changes at every code generation. This class can be referenced from within Com-
ment by the MetadataType attribute C.

 Now let’s turn our attention to the controller. Having all these attributes on the
model class allows us to check for its correctness by simply evaluating the Model-
State.IsValid property, as in the following listing.

C#:
[HttpPost]
public ActionResult Post(int id, Comment newComment)
{
 using (var ctx = new BlogModelContainer())
 {
 var post = ctx.PostSet.Include("Comments")
 .Where(p => p.Id == id).Single();

 if (!this.ModelState.IsValid)
 {
 return this.View(post);
 }

 // .. here we save the comment as seen before ..
 }
}

VB:
<HttpPost()>
Public Function Post(
 ByVal id As Integer, ByVal newComment As Comment) As ActionResult

 Using ctx = New BlogModelContainer()
 Dim thePost = ctx.PostSets.
 Include("Comments").
 Where(Function(p) p.Id = id).
 Single()

 If Not Me.ModelState.IsValid Then
 Return Me.View(thePost)
 End If

 '.. here we save the comment as seen before ..

 End Using
End Function

As you can see, plugging model validation into the controller is as easy as adding an if
statement that might return the same view without saving the comment B. This view

Listing 8.15 Post action implementation taking model validation into account

Metadata reference
added to partial classC

Invalid data
not saved

B

Invalid data
not saved

B

instance will be responsible for showing the error messages, which are directly

216 CHAPTER 8 Introducing ASP.NET MVC

inferred from the ErrorMessage properties we set up on the model. The result is
shown in figure 8.16.

 The validation summary section can be included using the proper HTML helper in
the view definition, as in the following listing.

C#:
<%@ Control Language="C#" ... %>

<% Html.EnableClientValidation (); %>
<% using (Html.BeginForm()) {%>
 <%: Html.ValidationSummary(
 "There's something wrong with your comment:") %>

 <div class="editor-label">
 <%: Html.LabelFor(model => model.Author) %>
 </div>
 <div class="editor-field">
 <%: Html.EditorFor(model => model.Author)%>
 <%: Html.ValidationMessageFor(
model => model.Author, "*") %>
 </div>

 .. more markup here ..
<% } %>

VB:
<%@ Control Language="VB" ... %>

<% Html.EnableClientValidation() %>
<% Using Html.BeginForm()%>
 <%: Html.ValidationSummary(
 "There's something wrong with your comment:") %>

Listing 8.16 The view showing validation errors

Figure 8.16
The comment form
displaying validation
errors. The errors
are automatically
activated when the
user input isn’t
considered valid
according to the
data annotations.

Enable client-side
JavaScript validation

B

Inject validation
summary

Shows * on
invalid field

Enable client-side
JavaScript validation

B

Inject validation
summary
 <div class="editor-label">

217Summary

 <%: Html.LabelFor(Function(model) model.Author)%>
 </div>
 <div class="editor-field">
 <%: Html.EditorFor(Function(model) model.Author)%>
 <%: Html.ValidationMessageFor(
Function(model) model.Author, "*") %>
 </div>

 .. more markup here ..
<% End Using%>

The code in this listing is all we need to dynamically show validation messages on the
form when the user enters invalid data. The helper method in B automatically injects
JavaScript code to validate the model on the client-side also. For this to work, we have
to add to the page (or preferably to the site’s master page) the script references shown
in the following listing.

<script src="/Scripts/MicrosoftAjax.js"
 type="text/javascript"></script>
<script src="/Scripts/MicrosoftMvcAjax.js"
 type="text/javascript"></script>
<script src="/Scripts/MicrosoftMvcValidation.js"
 type="text/javascript"></script>

That’s it! Now you’ve got a validation implementation that will ensure that your users’
input is complete and valid.

DISCUSSION

Data validation in ASP.NET MVC has an excellent architecture that leverages attribute
use to decorate model classes and encapsulate the business rules within this compo-
nent of the MVC pattern. That said, we need our controllers to check the ModelState’s
property to find out whether it’s valid or not.

 Validation helpers the view close the circle. They automatically detect which rules
are unsatisfied, and they show error messages. These helpers also easily support client-
side validation, thanks to dynamically injected JavaScript code.

 This powerful mechanism is also easily expandable. You can build custom valida-
tors to enforce particular business rules that aren’t easily expressed by default attri-
butes provided by the data annotations infrastructure. We’ll continue our discussion
of this topic in chapter 9.

8.5 Summary
This first chapter about ASP.NET MVC was an introduction to the new concepts this
framework offers. Building an application without Web Forms is a completely differ-
ent approach that lacks the immediacy of server controls, but at the same time it offers
more control over markup. More importantly, this approach gives you a simpler and
componentized model upon which to build modern web applications.

Listing 8.17 Script references needed for client-side validation

Shows * on
invalid field

218 CHAPTER 8 Introducing ASP.NET MVC

 First we explored how the MVC pattern flows to handle a browser request. You
learned how models, controllers, and views organically cooperate to return a response
to the user.

 Then we turned our attention to the routing infrastructure, especially to how it
integrates with ASP.NET MVC. URL routing is an extremely powerful technique that
replaces the old-looking query-string-based URLs with more meaningful ones.

 The third part of the chapter was dedicated to handling user input. Instead of
working with raw request form fields, ASP.NET MVC provides a great feature that
places you at a higher abstraction level, automatically translating the posted data into
custom model classes. Input validation is also easily defined on model-based logic
using custom attributes. After you apply these attributes to your model’s properties,
they get translated into client- and server-side integrity checks.

 Even with all these goodies, the greatest ASP.NET MVC power lies in its pluggabil-
ity and expandability. In the next chapter, we’ll focus on these advanced topics, and
you’ll learn how to bend the framework to fit your needs at the maximum level of
customization.

Customizing and
 extending ASP.NET MVC
Chapter 8 introduced you to the pillars of ASP.NET MVC: controllers, views, models,
and routing. These concepts are the basic ones you have to master to start writing
applications with this new web development platform. But when we move to real-
world contexts, things tend to get a bit more complicated.

 So far, you’ve learned a lot. You know how to handle a web request by using an
appropriate combination of a controller, a model, and a view, but in more complex
scenarios, these notions alone aren’t usually enough. In fact, enterprise-level appli-
cations are often made of multifaceted pages, which are difficult to build and main-
tain unless you can split them into simpler and discrete components. Sometimes
things get even harder, requiring you to plug your own custom logic into the frame-

This chapter covers
■ Data templates and HTML helpers
■ Action filters
■ Custom model binders
■ Search engine optimization of routing
219

work itself to make it tie in to your specific needs.

220 CHAPTER 9 Customizing and extending ASP.NET MVC

ASP.NET MVC has several entry points you can use to inject your own code to extend
and customize it. In this chapter, we’re going to explore some of these features, specif-
ically the ones shown in figure 9.1.

 As usual, we’ll cover these topics starting with typical issues you’ll face while building
a real-world application. An improved version of CoolMVCBlog will once again be our
guest on this journey. Markup and code componentization, transparent interaction
with ADO.NET Entity Framework, and routes optimized for search engines are common
needs. They’re perfect for explaining how, in ASP.NET MVC, writing the right code in
the right place can push your product’s quality one step further. So, let’s get started!

9.1 Building reusable elements in ASP.NET MVC
When you’re building a big web application, you’ll often come across situations in
which pages share the same functionalities and UI elements. In these cases, it’s impor-
tant to have features that allow you to build reusable components, so that you can
avoid code and markup duplication. Reusable components mean you don’t waste
time building the same functionalities again.

 In ASP.NET Web Forms, we typically address these needs by building custom con-
trols, but as you’ve learned, one key difference between Web Forms and ASP.NET MVC
is that the latter lacks the notion of a server control; we need to find something else to
build reusable components. It goes without saying that this isn’t a weakness of ASP.NET
MVC, but rather that the programming model is different. In the upcoming pages,
you’re going to discover the tools it provides to achieve similar results.

9.1.1 Using templates to represent data

In the previous chapter, and specifically in section 8.4, you saw how ASP.NET MVC pro-
vides an EditorFor HTML helper that you can leverage to build input forms easily. We
barely touched on how this method is able to produce different HTML elements based

Markup componentization

Logic componentization
Data templates

Custom HTML
helpers

Model binders Custom routes

Framework customization

Action filtersASP.NET
MVC

Figure 9.1 The areas of ASP.NET MVC customization we’re going to explore in this chapter. These
features are the key ones you’ll need in real-world application design. You can build discrete
components, each one with its own responsibilities, and reuse them throughout the whole project.
on the data type of the property you’re going to edit, as figure 9.2 schematizes.

221TECHNIQUE 52 Building customized data templates

This feature is part of a bigger picture that helps you to componentize how a view ren-
ders data. When you build a view, you must write the HTML elements that will repre-
sent the data on the actual page. Because the same data types will hopefully be
rendered similarly across many views, the idea behind data templates is to define these
elements once for all and reference them by using just two distinct HTML helpers:

C#:
<%: Html.DisplayFor (model => model.myProperty)%>
<%: Html.EditorFor(model => model.myProperty)%>

VB:
<%: Html.DisplayFor(function(model) model.myProperty)%>
<%: Html.EditorFor(function(model) model.myProperty)%>

The engine itself then takes care of analyzing what myProperty is and selects the cor-
rect template for its representation.

ASP.NET MVC already provides some templates that render common data types
such as booleans or strings, although there are actually just a few and they’re quite
basic. The good news is that you can easily customize them or provide new ones.
You’re going to learn how in the next section.

 Building customized data templates

A common requirement when you’re building large web applications is to have the
same kind of data rendered consistently in every page. If you want to address this issue
with minimal effort, you should concentrate your efforts on building a data template
to handle it.

 A data template is no more than a partial view bound to a particular data type.
When the ASP.NET MVC view engine encounters an EditorFor or a DisplayFor state-
ment for a property of a certain type, if you’ve provided a data template for it, it’s
automatically instantiated. Let’s see how all this works in a common scenario.

PROBLEM

You just downloaded the jQuery UI Datepicker, and you want to automatically plug it
in throughout your whole website so that you can use it each time a date object must
be edited.

SOLUTION

The jQuery UI Datepicker is a great piece of JavaScript code that leverages jQuery to
display a fancy calendar to input a date, as shown in figure 9.3.

Category

String description

bool IsActive

Html.EditorFor

ASP.NET MVC

IsActive

TECHNIQUE 52

Figure 9.2
The Html.EditorFor
helper can render differ-
ent editors for object
properties, based on
their type.

222 CHAPTER 9 Customizing and extending ASP.NET MVC

We’re not going to deeply explore Datepicker features or how jQuery works; despite
being dramatically interesting, these concepts are unfortunately beyond the scope of
this book.

INTERESTED IN KNOWING MORE ABOUT JQUERY? If you want to expand your
knowledge of jQuery, you’ll find jQuery in Action, part of Manning’s In Action
book series, to be a great reference guide. This book provides in-depth cover-
age of this powerful JavaScript library.

All you need to know for our purposes is that you have to follow a couple of steps for a
datepicker to be displayed automatically when a user clicks on an input box:

1 Reference jQuery and jQuery UI scripts.
2 Select all the date input boxes on the page and activate the datepicker

functionality.

Because we’re going to need this functionality in our whole web application, a good
idea is to place this code in the master page file, like in the following listing.

<%@ Master Language="C#" ... %>
<head>
 <script src="/Scripts/jquery-1.4.1.js"
 type="text/javascript" />
 <script src="/Scripts/jquery-ui-1.8.2.custom.min.js"
 type="text/javascript"></script>
 <link href="/Content/jquery-ui-1.8.2.custom.css"
 rel="stylesheet" type="text/css" />

</head>
...
<script type="text/javascript">
 $(function () {
 $('.dateInput').datepicker();
 });

Listing 9.1 Master page code that activates jQuery UI Datepicker

Figure 9.3 The jQuery UI Datepicker
applied to a text box shows a calendar
when focused. Showing a calendar
makes selecting a date easier.

References to
scripts and CSS

Code that activates
jQuery UI Datepicker

B

</script>

223TECHNIQUE 52 Building customized data templates

Because this code applies to every page, we don’t know how many input boxes there will
be. A good way to proceed is to leverage the jQuery selector flexibility to pick elements
by their CSS class (dateInput in our case) and then invoke the datepicker JavaScript
method B to activate the calendar on them. Note that dateInput isn’t an actual style
defined somewhere in a CSS file, but just a
marker that lets us identify the elements for
which all this has to happen.

 Now that everything has been set up on
the jQuery side, we can turn our attention to
our application’s views; we still have to make
every date’s input box reference that CSS
class. We can obviously do this by manually
specifying it each time we come across a date
editor, or we can define a custom editor tem-
plate for the System.DateTime type. To use a
custom editor template, we must add an Edi-
torTemplates subfolder under the Shared
views folder and then create a new partial
view with the same name of the type we want
to edit (DateTime for our example). Fig-
ure 9.4 shows the final folder structure.

 The following listing shows how the code we have to write in the view is trivial.

C#:
<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<script runat="server">
 private string dateString
 {
 get
 {
 if (this.Model == null)
 return null;

 return ((DateTime)this.Model).ToShortDateString();
 }
 }
</script>
<%= Html.TextBox("",
 dateString, new { @class = "dateInput" })%>

VB:
<%@ Control Language="VB" Inherits="System.Web.Mvc.ViewUserControl" %>
<script runat="server">
 Private ReadOnly Property DateString As String
 Get
 If Me.Model Is Nothing Then

Listing 9.2 DateTime editor template

String representation
of modelB

TextBox
rendering

C

String representation
of modelB

Figure 9.4 The location of DateTime.ascx in
the folder structure of an ASP.NET MVC project
 Return Nothing

224 CHAPTER 9 Customizing and extending ASP.NET MVC

 End If

 Return DirectCast(Me.Model, DateTime).ToShortDateString
 End Get
 End Property
</script>
<%= Html.TextBox("", _
 DateString, New With {.Class = "dateInput"})%>

Our DateTime.ascx view uses an internal property B to produce the string represen-
tation of the corresponding date. Then it leverages the TextBox HTML helper C
to render an input box styled with the dateInput CSS class, which is what we origi-
nally wanted.

 Now that all this is in place, we just have to use the EditorFor HTML helper to get
ASP.NET MVC to resolve the newly created custom template and to use it to render the
editor. So, for example, if we wanted to edit the date of publishing in the Edit Post
view of CoolMVCBlog, we could write:

C#:
<%: Html.EditorFor(model => model.DatePublished)%>

VB:
<%: Html.EditorFor(Function(model) model.DatePublished)%>

This example shows how easy is to create a custom template and bind it to a particular
CLR type: it’s just a matter of building a partial view with the same name and putting it
in a carefully named folder.

 Sometimes properties of the same CLR type require different templates because
the data they represent is different. Think about a Post entity for our CoolMVCBlog;
although its Title and Text properties are both of type string, we might want to
have different templates to edit them, perhaps a plain text box for Title and a multi-
line text editor for Text (if not a WYSIWYG editor such as CKEditor). In other words,
we might need to handle types at a higher level of abstraction and use a more expres-
sive way to tell the framework that they represent different kinds of data, as shown in
figure 9.5

To define these custom data types, you can mark the corresponding proper-
ties with DataTypeAttribute or UIHintAttribute (their use is equivalent), like in list-
ing 9.3.

TextBox
rendering

C

What if I just want to display data?
Display templates let you design data-type-specific templates to define how this kind
of data has to be visualized. They work exactly the same way as Editor templates,
except that they must be stored in the DisplayTemplates subfolder and are triggered
by using the DisplayFor HTML helper.

225TECHNIQUE 52 Building customized data templates

C#:
public class PostMetadata
{
 [DataType(DataType.MultilineText)]
 public string Text { get; set; }

 [UIHint("Author")]
 public int AuthorId { get; set; }
}

[MetadataType(typeof(PostMetadata))]
public partial class Post
{ }

VB:
Public Class PostMetadata
 <DataType(DataType.MultilineText)>
 Public Property Text As String

 <UIHint("Author")>
 Public Property AuthorId As Integer
End Class

<MetadataType(GetType(PostMetadata))>
Partial Public Class Post
End Class

When it comes across properties marked like those at B and C, the ASP.NET MVC
view engine looks in the Shared View folder for data templates that have the same
names. If it finds any such templates, it renders them.

DISCUSSION

Modern development platforms provide features that help us build consistent and
maintainable UIs. Web Forms, for example, uses the abstraction of custom server
controls to let the developer build discrete and reusable interface portions. ASP.NET
MVC provides a different model, called data templates, which is based on the data
type you want to represent or edit in your page. Anytime you realize there’s a partic-
ular object among your models that appears many times in many pages, and you

Listing 9.3 Marking property type with UIHintAttribute

Figure 9.5 Although Title and Text are both strings, we need EditorFor to produce different
templates because each has a different business meaning.

Standard data
type definition

B

Custom data
type definition

C

Metadata type
reference

Standard data
type definition

B

Custom data
type definition

C

Metadata type
reference

226 CHAPTER 9 Customizing and extending ASP.NET MVC

want to componentize how it gets displayed or how its editor looks when it’s placed
in a form, reach for a custom data template.

 Think about how many times you’ve built a drop-down list to let the user choose a
customer. It doesn’t matter whether that user is going to associate it with an order or
an invoice, a property of type Customer is always going to be there to fill; building
a single editor template for it is enough to automatically have it injected wherever
it’s needed.

 Even though they’re powerful, templates almost always require an association to a
specific data type, but this isn’t always the rule. Consider items like buttons, hyper-
links, or pop ups, just to name a few: although they aren’t necessarily bound to a
DateTime or Customer object, you might still want to build discrete components and
avoid writing the same markup again and again in your pages. HTML helpers are
much more helpful in these situations, as you’re going to see in the next section.

 Componentized markup through HTML helpers

Data templates are an extremely smart solution when you must quickly build input
forms, or when you need to display complex data. On the other hand, sometimes you
need to include a bunch of markup code in something that must be as easily reusable
as templates, but not necessarily bound to a particular model type.

 Let’s think about what happens every time we have to insert a link into a view. The
link can come from data of different types, involve more than just one property of an
object, or even originate from hardcoded values such as the Back To Index link on the
post edit page of CoolMVCBlog. In all these cases, you’ll find that using an HTML
helper called ActionLink is a solution you’ll be satisfied with. Besides generating
markup, this solution also holds the logic to determine a target URL, given action, and
controller names.

 Similar situations are common in real-world applications, and having a library of
customized HTML helpers can surely make the difference for how consistent and
maintainable your product will be. For that reason, it’s worth trying to learn to build
some of your own.

PROBLEM

Our application allows registered users to perform login and logout operations using
the corresponding actions of SecurityController. We want to build a custom compo-
nent that we can re-use to easily build a form to insert login credentials or, if the user
is already authenticated, to show a welcome message to the user.

SOLUTION

HTML helpers are methods you can call from within a view to generate HTML, encap-
sulating all the logic needed to render it. Every time we used the ActionLink exten-
sion method in chapter 8, we used it not only because we didn’t want to manually
write a hyperlink like Link text, but also because it
allowed us to reason in terms of controller and actions, and, fortunately, it also trans-

TECHNIQUE 53
lates it to actual URLs, as in figure 9.6.

227TECHNIQUE 53 Componentized markup through HTML helpers

The idea we’ll use to solve our problem is to create a new HTML helper that can evalu-
ate the request authentication status and generate a login form or welcome message,
whichever is appropriate. We could easily include the helper in a view, or perhaps in
the master page with just this code:

C# and VB:
<%: Html.Login("Security", "Login", "Logout") %>

Building such an HTML helper is the same as writing a method like the one in the
next listing. This method accepts actions and a controller name that we want to use
when the user is logging in or out.

C#:
public static HtmlString Login(this HtmlHelper html,
 string controller, string loginAction, string logoutAction)
{
 if (HttpContext.Current.User.Identity.IsAuthenticated)
 return WelcomeMessage(html, logoutAction, controller);
 else
 return LoginInput(html, loginAction, controller);
}

private static HtmlString WelcomeMessage(HtmlHelper html,
 string logoutAction, string controller)
{
 return new HtmlString(string.Format("Welcome {0} :: {1}",
 HttpContext.Current.User.Identity.Name,
 html.ActionLink("Logout", logoutAction, controller)));
}

VB:
<Extension()>
Public Function Login(ByVal html As HtmlHelper,
 ByVal controller As String, ByVal loginAction As String,
 ByVal logoutAction As String) As HtmlString

 If HttpContext.Current.User.Identity.IsAuthenticated Then
 Return WelcomeMessage(html, logoutAction, controller)
 Else
 Return LoginInput(html, loginAction, controller)

Listing 9.4 Main code of Login HTML helper

Html.ActionLink

HomeController Index action

Figure 9.6 ActionLink can generate
URLs consistent with application routing
settings.

HtmlHelper’s
extension
method

B

Output
selection
logic

C

Composition
of welcome
message

D

HtmlHelper’s
extension
method

B

Output
selection
logic

C

 End If

228 CHAPTER 9 Customizing and extending ASP.NET MVC

End Function

Private Function WelcomeMessage(ByVal html As HtmlHelper,
 ByVal logoutAction As String, ByVal controller As String) As HtmlString

 Return New HtmlString(String.Format("Welcome {0} :: {1}",
 HttpContext.Current.User.Identity.Name,
 html.ActionLink("Logout", logoutAction, controller)))
End Function

Our Login HTML helper is an extension method for the HtmlHelper class B, whose
main code checks whether the current user is authenticated. It also chooses whether it
must render a welcome message or a login form C. The implementation of the first
option is trivial, because WelcomeMessage just builds the output by concatenating
some strings D.

 Notice how we leverage another HTML helper, ActionLink, to build the hyperlink.
Then we wrap the whole result using an HtmlString class. This class represents a
string that contains already encoded HTML, which won’t be affected when it’s dis-
played in a <%: %> tag.

 Conversely, when the user isn’t authenticated, our helper invokes a LoginInput
method. This method is slightly more complex, because it must use the code shown in
the following listing to build an actual HTML form.

C#:
private static HtmlString LoginInput(HtmlHelper html,
 string loginAction, string controller)
{
 TagBuilder form = new TagBuilder("form");

 form.MergeAttribute("action",
 UrlHelper.GenerateUrl(null, loginAction,
 controller, new RouteValueDictionary(), html.RouteCollection,
 html.ViewContext.RequestContext, true));

 form.MergeAttribute("method", "post");

 form.InnerHtml = string.Format("User: {0} Pass: {1} {2}",
 html.TextBox("username"),
 html.Password("password"),
 "<input type=\"submit\" value=\"Login\" />");

 return new HtmlString(form.ToString());
}

VB:
Private Function LoginInput(ByVal html As HtmlHelper,
 ByVal loginAction As String, ByVal controller As String)
 As HtmlString

 Dim form As New TagBuilder("form")

 form.MergeAttribute("action",

Listing 9.5 Building an HTML form via code

Composition
of welcome
message

D

Composition of
Action attribute B

Form’s HTML
content

229TECHNIQUE 54 Inject logic using action filters

 UrlHelper.GenerateUrl(Nothing, loginAction,
 controller, New RouteValueDictionary,
 html.RouteCollection, html.ViewContext.RequestContext,
 True))

 form.MergeAttribute("method", "post")

 form.InnerHtml = String.Format("User: {0} Pass: {1} {2}",
 html.TextBox("username"), html.TextBox("password"),
 "<input type=""submit"" value=""Login"" />")

 Return New HtmlString(form.ToString())
End Function

This code takes advantage of an object called TagBuilder, which eases the task of
building HTML tags and decorating them with the attributes we need. For an HTML
form, for example, we must indicate that we want to post it to a certain destination
URL, which we can obtain from the controller and loginInput parameters through
ASP.NET MVC’s UrlHelper class B.

DISCUSSION

HTML helpers are a simple way to include in a method the logic required to generate
HTML code, so that we can easily replicate it when we need it. Building them is only a
matter of creating an extension method for the HtmlHelper type and returning an
HtmlString instance (although the return type can be also a plain string).

 Given its extremely versatile nature, these tools give you a great advantage when
you’re developing applications in ASP.NET MVC. Even though everything you make with
an HTML helper can also be made using partial views, HTML helpers are usually more
immediate and easy to use; after all, you just have to invoke a method, and you don’t
have to deal with models and types like you do with views and templates. Moreover,
they’re just code, so you can build class libraries and reuse them across many projects.

 Of course, there’s always a downside to every great solution. You want to be careful
not to overuse HTML helpers; they’re usually a bit verbose and tend to replace the
actual markup. You don’t want to bury the logic that generates the markup because
that lessens your control over the HTML—one of the key advantages of using ASP.NET
MVC in the first place.

 In summary, HTML helpers and data templates are two key features of ASP.NET MVC
that you can leverage to avoid duplicating the same markup over and over in your views.
But these techniques cover only half the problem—code duplication often happens in
controllers, too. The next section will show you a useful trick for avoiding it.

 Inject logic using action filters

The previous section was about componentizing markup, but sometimes markup
requires code on the controller side to render correctly. If you were forced to replicate
the code each time you wanted to use an HTML helper, a partial view, or a data template,
you would lose almost all the advantages of building these reusable components.

 Let’s recall for a moment the homepage we built in chapter 8. It should look like

Composition
of Action
attribute

B

Form’s HTML
content

TECHNIQUE 54
the one in figure 9.7, which highlights a particular portion of it.

230 CHAPTER 9 Customizing and extending ASP.NET MVC

When we built the corresponding view, we thought the tag cloud would be a shared UI
element, which was supposed to be present in multiple pages; this was one of the rea-
sons we decided to design it as a partial view. Unfortunately, although the template is
actually reusable, we still need some code on the controller to populate the model
with the data the cloud will represent. The HomePageController did it by invoking a
TagCloudService, as shown in the following listing. If things remain as they are, we’ll
have to replicate this code for each action that ultimately shows a tag cloud.

C#:
public ActionResult Index()
{
 // more code here

 var service = new TagCloudService(ctx);
 model.TagCloudItems = service.GetTagCloudItems();

 return View(model);
}

VB:
Public Function Index() As ActionResult
 ' more code here

 Dim service = New TagCloudService(ctx)
 model.TagCloudItems = service.GetTagCloudItems()

 Return View(model)
End Function

It goes without saying that we definitely want to avoid replicating all this. We can do it

Listing 9.6 HomeController fetching tag cloud items

Figure 9.7 Our blog engine’s homepage; it contains a tag cloud that will likely be shared among
multiple pages.
by using a powerful ASP.NET MVC feature: action filters.

231TECHNIQUE 54 Inject logic using action filters

PROBLEM

We want to show our blog’s tag cloud in multiple pages, but we don’t want to replicate
the code required to fetch its items on every action of every controller that references it.

SOLUTION

Action filters are classes that inherit from the infrastructural ActionFilterAttribute
class and provide entry points to inject logic during the execution of an action. Their
base class exposes four virtual methods, listed in Table 9.1, which are automatically
triggered by the ASP.NET MVC execution engine while processing a request.

If you override these methods from within a custom filter class, you can inject person-
alized logic into one or more of the well-defined phases highlighted in figure 9.8.
Then you can associate that filter with individual actions or with entire controllers—in
which case it will be bound to every action it holds. The end result is a reusable com-
ponent and no code duplication.

For our specific needs, our LoadTagCloudAttribute has to fetch the tag cloud data
from the database (as you saw in chapter 8) and store it in the model. Because we
want it to be applicable to many views, and, in turn, to the different models that those
views will refer to, the idea is to create the IHasTagCloud interface to mark the models
that provide a TagCloudItems property, as in the following listing.

C#:
internal interface IHasTagCloud

Table 9.1 Overridable methods of the ActionFilterAttribute class

Name Description

OnActionExecuting Runs before the controller action is triggered.

OnActionExecuted Runs just after the action concludes its execution, but before the
ActionResult it returned starts up.

OnResultExecuting This method is triggered just before the execution of the current
ActionResult.

OnResultExecuted The last method you can intercept. It runs after the result has been executed.

Listing 9.7 IHasTagCloud and its implementation in HomepageModel

Action Result

OnAction
Executing

OnResult
Executing

OnAction
Executed

OnResult
Executed

Figure 9.8 Entry points for
action filters to inject code
during the request flow
{

232 CHAPTER 9 Customizing and extending ASP.NET MVC

 List<TagCloudItem> TagCloudItems { get; set; }
}

public class HomepageModel : IHasTagCloud
{
 public List<Post> Posts { get; set; }
 public List<TagCloudItem> TagCloudItems { get; set; }
}

VB:
Friend Interface IHasTagCloud
 Property TagCloudItems As List(Of TagCloudItem)
End Interface

Public Class HomepageModel
 Implements IHasTagCloud

 Public Property Posts As List(Of Post)
 Public Property TagCloudItems As List(Of TagCloudItem)
 Implements IHasTagCloud.TagCloudItems

End Class

Now it’s time to turn our gaze to the actual action filter. We need to decide which of
the four provided entry points better suits our needs. We want to integrate the model
content, so we need a model instance that’s already created and a filter that runs after
the action executes. However, we have to do our job before the view is created; other-
wise, it wouldn’t have any data to render.

 Guess what? Both OnActionExecuted and OnResultExecuting will work. For our
needs, they’re almost equivalent, so we can pick either one. We’ll choose OnResult-
Executing (the reason will be unveiled shortly). The following listing shows the fil-
ter’s code.

C#:
public class LoadTagCloudAttribute : ActionFilterAttribute
{
 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 base.OnResultExecuting(filterContext);

 var view = filterContext.Result as ViewResult;
 if (view == null)
 return;

 var model = view.ViewData.Model as IHasTagCloud;
 if (model == null)
 return;

 using (var ctx = new BlogModelContainer())
 {
 var service = new TagCloudService(ctx);

Listing 9.8 Complete LoadTagCloudAttribute code

Fetch tag B

 model.TagCloudItems = service.GetTagCloudItems(); cloud data

233TECHNIQUE 54 Inject logic using action filters

 }
 }
}

VB:
Public Class LoadTagCloudAttribute
 Inherits ActionFilterAttribute

 Public Overrides Sub OnResultExecuting(
 ByVal filterContext As ResultExecutingContext)
 MyBase.OnResultExecuting(filterContext)

 Dim view = TryCast(filterContext.Result, ViewResult)
 If view Is Nothing Then
 Return
 End If

 Dim model = TryCast(view.ViewData, IHasTagCloud)
 If model Is Nothing Then
 Return
 End If

 Using ctx As New BlogModelContainer
 Dim service = New TagCloudService(ctx)
 model.TagCloudItems = service.GetTagCloudItems
 End Using

 End Sub

End Class

The code we just showed you is pretty easy to understand. Our override of the OnResult-
Executing method checks whether the result returned by the action is actually a view
and whether the model implements the IHasTagCloud interface. If both those checks
succeed, the service we built in chapter 8 loads the data from the database and then
stores it into the model B.

One key aspect we should point out is that we could’ve just stored the tag cloud items
in the ViewData dictionary, without worrying about building an additional interface.
But, with some negligible additional effort, we managed to keep our views and code
strongly typed, while still being able to easily support this functionality for every

Fetch tag
cloud data

B

Why didn’t we override OnActionExecuted instead?
One feature of our filter is that it runs only if the result is a view. Limiting the result
avoids unnecessary (and expensive, although we could probably cache all the stuff)
roundtrips to the database in cases when the action, for example, returns a Redi-
rectResult. The code we just wrote would have worked exactly the same way if we
placed it in the OnActionExecuted method. But what if another action filter hooked
that event and changed the result type? Doing our task after that phase keeps our
code up-to-date, with the ultimate result returned by the action pipeline.
model we need.

234 CHAPTER 9 Customizing and extending ASP.NET MVC

 With our new LoadTagCloudAttribute action filter ready, all we have to do now to
let an action load the tag cloud data is to decorate it. The code is shown in the follow-
ing listing.

C#:
[LoadTagCloud]
public ActionResult Index()
{
 using (var ctx = new BlogModelContainer())
 {
 var lastPosts = ctx
 .PostSet
 .OrderByDescending(p => p.DatePublished)
 .Take(3)
 .ToList();

 return View(new HomepageModel() { Posts = lastPosts });
 }
}

VB:
<LoadTagCloud()>
Public Function Index() As ActionResult
 Using ctx As New BlogModelContainer
 Dim lastPosts = ctx.PostSet.
 OrderBy(Function(p) p.DatePublished).
 Take(3).
 ToList()

 Return View(New HomepageModel With {.Posts = lastPosts})
 End Using
End Function

With the LoadTagCloud attribute in place, this new version of the action is a lot sim-
pler and strictly involves just the homepage-specific code. The code loads the last
three posts and assigns them to the model B; the custom filter takes care of every-
thing that concerns the tag cloud data.

DISCUSSION

Action filters are an extremely powerful tool, not just because they allow you to avoid
code duplication, but also because they contribute to keeping your action code simple
and maintainable. Ending up with simple code is a key factor of developing good
ASP.NET MVC applications. This outcome is so important that it’s worth more discus-
sion; let’s focus for a moment on the result we’ve been able to achieve with the previ-
ous example.

 We’ve built an action filter to fetch tag cloud data and used it to decorate the
homepage’s Index action. Doing that allowed us to have the code in the Index
method, doing the specific task it was built for—fetching the most recent three posts.

Listing 9.9 Homepage’s Index action leveraging LoadTagCloudAttribute

No reference
to tag cloud
logic

B

No reference
to tag cloud
logic

B

Displaying the tag cloud is a side requirement, potentially shared across multiple

235TECHNIQUE 54 User input handling made smart

actions, which we isolated in a dedicated class and activated in a declarative manner
when we decorated the action with an attribute. We did all that without polluting the
action code with any logic related to the tag cloud.

 Every time you’re building a controller and you find that you’re writing code that
isn’t specific to the particular request you’re handling, you should evaluate the possi-
bility of building an action filter for that situation. The same ASP.NET MVC framework
exposes a lot of logic via action filters, like the controller’s caching primitives you’ll
see in chapter 14.

 In conclusion, keeping your action code simple is one of the most effective ways to
write good applications. Besides what you just learned, ASP.NET MVC provides multi-
ple entry points that you can customize to reach this ultimate goal—model binders
are one of them. Let’s look at those next.

9.2 User input handling made smart
So far in this chapter, you’ve seen how
you can handle user input in an
ASP.NET MVC application. ASP.NET
MVC can translate everything that
comes with the HTTP request into .NET
objects, allowing you to work at a high
level of abstraction without having to
take care of the single items posted in
an HTML form or coming as query
string parameters.

 Let’s stay with our CoolMVCBlog
application and take a look at fig-
ure 9.9; it shows a page we can use to
edit blog posts.

 As our application stands now,
when it responds to a request for updat-
ing a blog post, it triggers an action similar to the one shown in the following listing.

C#:
[HttpPost]
public ActionResult Edit(Post post)
{
 if (this.ModelState.IsValid)
 {
 using (BlogModelContainer ctx = new BlogModelContainer())
 {
 var original = ctx.PostSet
 .Where(p => p.Id == post.Id)

Listing 9.10 Action updating a Post

Check for
valid input

B

Fetching
original Post

C

Figure 9.9 A screenshot from CoolMVCBlog’s
Backoffice. We can use this page to create and
edit a post.
 .Single();

236 CHAPTER 9 Customizing and extending ASP.NET MVC

 if (this.TryUpdateModel(original))
 {
 ctx.SaveChanges();
 return this.RedirectToAction("Index");
 }
 }
 }

 this.ViewData["Authors"] = AuthorsService.GetAuthors();
 this.ViewData["Categories"] = CategoriesService.GetCategories();

 return this.View(post);
}

VB:
<HttpPost()>
Public Function Edit(ByVal post As Post) As ActionResult
 If Me.ModelState.IsValid Then
 Using ctx As New BlogModelContainer
 Dim original = ctx.PostSet.
 Where(Function(p) p.Id = post.Id).
 Single

 If Me.TryUpdateModel(original) Then
 ctx.SaveChanges()
 Return Me.RedirectToAction("Index")
 End If
 End Using
 End If

 Me.ViewData("Authors") = AuthorsService.GetAuthors()
 Me.ViewData("Categories") = CategoriesService.GetCategories()

 Return Me.View(post)
End Function

The code is rather easy to understand. If the model is valid B, it fetches the post from
PostSet by using its Id C, and then applies the changes coming from the form using
the TryUpdateModel helper D. The last step is to save it to the database E.

 Although everything seems to be working in a straightforward way, the code in list-
ing 9.10 suffers from two main problems:

■ Every time we have an action that modifies an entity, we’re going to replicate
the same logic of loading the old version, updating it, and then saving it after
checking for its correctness.

■ Complex entities can’t be automatically handled by the default infrastructure.
The previous action, for example, can’t actually understand the categories edi-
tor as we implemented it, so the collection won’t be successfully populated.

In this section, you’re going to learn how you can customize the logic ASP.NET MVC
uses to handle the HTTP request to solve these two problems.

 Custom model binders for domain entities

When we wrote the Edit action in listing 9.10, we coded a method that accepts a Post

Updating
original Post
instanceD

Saving changes
to databaseE

Check for
valid input

B

Fetching
original Post

C

Updating
original Post
instanceD

Saving changes
to databaseE

TECHNIQUE 55
object as an argument:

237TECHNIQUE 55 Custom model binders for domain entities

C#:
public ActionResult Edit(Post post)

VB:
Public Function Edit(ByVal post As Post) As ActionResult

Unfortunately, that Post object isn’t an actual entity recognized by ADO.NET Entity
Framework, and it can’t be directly used to manage its lifecycle and persistence; it’s
just an instance of the same .NET type, which has never been part of an EntitySet
and is unknown to any ObjectContext. For this reason, we had to write some code to
refetch a post and update it.

 Wouldn’t it be awesome if we could put our hands onto a valid Entity Framework
object at the beginning, one that’s connected to an object context and already
updated with the user input? To do this, we must customize the way ASP.NET MVC
translates the HTTP form to a .NET object—more precisely, we must build our own
model binder. Let’s see how.

PROBLEM

Our application uses ADO.NET Entity Framework as a persistence layer. We want our
actions parameters to be directly usable with an object context in order to save them
to the database.

SOLUTION

When ASP.NET MVC transforms the HTTP request’s content into a .NET instance, it
leverages a particular object called a model binder. A model binder usually retrieves
input data from the form and interprets it to instantiate objects. Figure 9.10 schema-
tizes the whole process.

 Building a model binder is just a matter of creating a new class that implements
the IModelBinder interface and writing some code for its BindModel method:

C#:
public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)

VB:
Public Function BindModel(ByVal controllerContext As ControllerContext,
 ByVal bindingContext As ModelBindingContext) As Object

New post

Author

Text Lorem ipsum dolor
sit amet...

Marco De Sanctis

Model binder

c = New post();
c.Author = “Marco”;
c.Text = “Lorem...”;

Controller

Figure 9.10 The model binder acts as a mediator between the HTML form and the controller,
translating the input coming from the browser into a .NET object.

238 CHAPTER 9 Customizing and extending ASP.NET MVC

That method receives the following input parameters that represent the particular
request context it’s being executed into:

■ A ControllerContext holds information related to the current request, like the
HttpContext, the specific controller in charge of handling it or the routing
data

■ A ModelBindingContext is specific to the binding operation and allows access
to the model being built or to the request data

The BindModel method returns an instance of object—no type is specified—which is
forwarded to the executing action, in order to represent the input’s alter-ego in the
ASP.NET MVC world.

 The idea is to customize the process by which this instance is built, creating a new
model binder. The new model binder will be activated each time the action parameter
involves a Post type and will use the form content to retrieve a Post entity from the
database and update it before delivering it to the controller. Figure 9.11 shows the
whole process.

 The workflow in figure 9.11 is supposed to have both the model binder and
the action sharing the same ObjectContext instance; that’s the only way to let ADO.
NET Entity Framework track all the changes both actors make to the post entity
and to generate the correct UPDATE query when the action finally calls its Save-
Changes method.

 What we ultimately need is an object context to be active along the whole request.
We can achieve this by using the HTTP module shown in the following listing.

C#:
public class ObjectContextModule : IHttpModule
{
 public void Init(HttpApplication context)

Listing 9.11 ObjectContextModule takes care of creating an ObjectContext

New post

Author

Text Lorem ipsum....

Marco De Sanctis
Post model binder Controller

ObjectContext

Figure 9.11 When ASP.NET MVC receives a form with a Post, it uses a custom model
binder to get the original post from the database and update it with the data so the controller
can easily persist it.
 {

239TECHNIQUE 55 Custom model binders for domain entities

 context.PostAcquireRequestState += (s, e) =>
 {
 CurrentContext = new BlogModelContainer();
 };

 context.ReleaseRequestState += (s, e) =>
 {
 CurrentContext.Dispose();
 CurrentContext = null;
 };
 }

 public static BlogModelContainer CurrentContext
 {
 get
 {
 return (BlogModelContainer)
 HttpContext.Current.Session[sessionKey];
 }
 private set
 {
 HttpContext.Current.Session[sessionKey] = value;
 }
 }
}

VB:
Public Class ObjectContextModule
 Implements IHttpModule

 Public Sub Init(ByVal context As HttpApplication)
 Implements IHttpModule.Init
 AddHandler context.PostAcquireRequestState,
 Sub(s, e)
 If Not HttpContext.Current Is Nothing AndAlso
 Not HttpContext.Current.Session Is Nothing Then
 CurrentContext = New BlogModelContainer()
 End If
 End Sub

 AddHandler context.ReleaseRequestState,
 Sub(s, e)
 If Not HttpContext.Current Is Nothing AndAlso
 Not HttpContext.Current.Session Is Nothing Then
 CurrentContext.Dispose()
 CurrentContext = Nothing
 End If
 End Sub
 End Sub

 Public Shared Property CurrentContext As BlogModelContainer
 Get
 Return TryCast(HttpContext.Current.Session(sessionKey),
 BlogModelContainer)
 End Get
 Set(ByVal value As BlogModelContainer)

Creates
ObjectContext

B

Disposes
ObjectContext

C

Retrieves
current contextD

Creates
ObjectContext

B

Disposes
ObjectContext

C

Retrieves
current
contextD
 HttpContext.Current.Session(sessionKey) = value

240 CHAPTER 9 Customizing and extending ASP.NET MVC

 End Set
 End Property
End Class

ObjectContextModule’s goal is to create a new BlogModelContainer instance when
the request state is acquired and store it in a session variable B. Then, when the
request terminates, ObjectContextModule releases the BlogModelContainer instance
by calling its Dispose method C. With our HTTP module up and running, we don’t
have to worry anymore about building an object context when we’re accessing the
database: there’s always one associated with each request, and we can retrieve it using
the static CurrentContext property D:

C#:
var ctx = ObjectContextModule.CurrentContext;

VB:
Dim ctx = ObjectContextModule.CurrentContext

Now we have all we need to start building our custom model binder. ASP.NET MVC
already provides a DefaultModelBinder that is so versatile it can map many default
types:

■ Native types, like string, double or DateTime
■ .NET objects, including our Post class
■ Collections of objects

Rather than starting from scratch, it might be worth leveraging all those DefaultMod-
elBinder built-in features. What we’re going to do is build a PostModelBinder that
inherits from DefaultModelBinder and customizes its BindModel method, as in the
next listing.

C#:
public override object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
{
 if (bindingContext.Model == null)
 {
 var valueProviderResult =
 bindingContext.ValueProvider.GetValue("Id");

 if (!string.IsNullOrEmpty(
 valueProviderResult.AttemptedValue))
 {
 int id = (int)valueProviderResult.ConvertTo(typeof(int));

 var original =
 ObjectContextModule.CurrentContext
 .PostSet.Include("Categories").Include("Author")
 .Where(p => p.Id == id).Single();

Listing 9.12 PostModelBinder’s implementation of BindModel

Checks whether to create
new Post instanceB

Checks for Edit
operation

C

Associates Post with D

 bindingContext.ModelMetadata.Model = original; current context

241TECHNIQUE 55 Custom model binders for domain entities

 }
 }

 return base.BindModel(controllerContext, bindingContext);
}

VB:
Public Overrides Function BindModel(
 ByVal controllerContext As ControllerContext,
 ByVal bindingContext As ModelBindingContext) As Object

 If bindingContext.Model Is Nothing Then
 Dim valueProviderResult =
 bindingContext.ValueProvider.GetValue("Id")

 If Not String.IsNullOrEmpty(
 valueProviderResult.AttemptedValue) Then
 Dim id = DirectCast(
 valueProviderResult.ConvertTo(GetType(Integer)), Integer)

 Dim original =
 ObjectContextModule.CurrentContext.
 PostSet.Include("Categories").Include("Author").
 Where(Function(p) p.Id = id).Single

 bindingContext.ModelMetadata.Model = original

 End If
 End If

 Return MyBase.BindModel(controllerContext, bindingContext)
End Function

Let’s recall for a moment what we’re aiming to do: we have an Edit action that accepts
a Post object and we want that Post object to be retrieved from the database and pop-
ulated. In other words, our custom logic must start up when there’s a new Post
instance to build B and when a not null Id tells us we’re in an edit context C. When
that happens, we’re going to go to the database and fetch the entity, setting it as the
Model for the current BindingContext D. Then it’s DefaultModelBinder’s turn: in
the last step, we invoke the original BindModel implementation, grabbing the values
posted from the browser and putting them into the Post properties.

 Thanks to all this work, our controller won’t get a simple Post instance, but a real
entity, already attached to the current Entity Framework’s context. Our action will
become much simpler—almost trivial—like the one in the following listing.

C#:
[HttpPost]
public ActionResult Edit(Post post)
{
 if (this.ModelState.IsValid)
 {
 ObjectContextModule.CurrentContext.SaveChanges();

Listing 9.13 Edit action code after PostModelBinder

Checks whether to
create new Post
instanceB

Checks for Edit
operation

C

Associates Post with
current context

D

 return this.RedirectToAction("Index");

242 CHAPTER 9 Customizing and extending ASP.NET MVC

 }

 // ... more code here ...
}

VB:
<HttpPost()>
Public Function Edit(ByVal post As Post) As ActionResult
 If Me.ModelState.IsValid Then
 ObjectContextModule.CurrentContext.SaveChanges()
 Return Me.RedirectToAction("Index")
 End If

 ' more code here
End Function

To get everything to work, there’s one last step to do: register the new model binder
and instruct ASP.NET MVC to use it every time it has to build a Post instance. We’re
doing this in the global.asax file with the following code.

C#:
ModelBinders.Binders[typeof(Post)] = new PostModelBinder();

VB:
ModelBinders.Binders(GetType(Post)) = New PostModelBinder()

DISCUSSION

In the example we just went through, we customized the logic according to which
ASP.NET builds the parameters passed to our actions. Specifically, we provided a work-
around for a big limitation that was forcing us to write a lot of code in the controller
to persist changes with Entity Framework.

 Thanks to the new PostModelBinder, our action has become simpler or, better
said, it works at a higher level of abstraction. The infrastructure automatically takes
care of realizing when there’s an update in progress and a Post must be retrieved
from the database.

 The implementation we made is simple, and so suffers from some limitations:

■ It’s not wise to query the database so often. It would be better to cache the data,
temporarily storing it elsewhere.

■ The model binder is specific to the Post class, but with a little more effort, we
can build a more general version that can work with all entity types.

Building a universal EntityModelBinder
ASP.NET MVC applies object inheritance rules to determine which model binder must
execute. With this in mind, we could, for example, build an EntityModelBinder that
can retrieve any known entity type from the database. If we then registered it for the
EntityObject base class, the runtime would automatically execute it each time it
encountered a class generated by Entity Framework, easily extending the behavior we
discussed to all the entities in our application.

243TECHNIQUE 56 Building a new model binder from scratch

We didn’t worry about these weak points in this example because they would’ve made
the code pointlessly more complex, with the risk of losing sight of the main task: plug
our custom logic into the ASP.NET MVC runtime when it comes to parse user input
and translate it into .NET objects. We managed this superbly by reusing a lot of built-in
code, thanks to the DefaultModelBinder.

 Some cases are so specific that DefaultModelBinder can’t correctly interpret the
data, and we need to build a new model binder from scratch. The next section will
show how you can accomplish even more, using this kind of customization.

 Building a new model binder from scratch

DefaultModelBinder does its job pretty well if data is coming from a standard form that
includes only simple elements (like text boxes, drop-down lists, or check boxes) for edit-
ing the object properties. But if we move
to something slightly more complex, like
the category editor in figure 9.12, every-
thing comes to a grinding halt.

 Categories.ascx is a custom editor
template for the IEnumerable<Cate-

gory> type; it shows two list boxes and a
couple of buttons to move the catego-
ries from one list box to the other. Going into too much detail about how this tem-
plate works would be a bit off-topic—you can check it out on the included samples
and read its actual code. For our purposes, you just need to know that because list box
content isn’t posted with the HTML form, we wrote a bunch of JavaScript to populate a
hidden field called values with the IDs of the categories the user selected:

function updateHiddenField() {
 var string = '';
 $('.target option').each(function (index, item) {
 if (string != '')
 string += ';';
 string += item.value;
 });

 $('.hidden').attr('value', string);
}

Once the form gets posted to the server, the selected categories are represented by a
list of numbers separated by semicolons, which our application should interpret cor-
rectly:

1;2;5;7

ASP.NET MVC can’t do this on its own (remember, we implemented customized logic
for our categories editor), but we can once again leverage the model binders’ infra-
structure to hide all the details about how this kind of data travels back to the server
from the browser. Let’s see how.

TECHNIQUE 56

Figure 9.12 To modify the categories associated
with a post, we use a custom editor that ASP.NET
MVC cannot interpret with any built-in model binder.

244 CHAPTER 9 Customizing and extending ASP.NET MVC

PROBLEM

When we create or edit a Post, we want its Categories collection to be automatically
populated with true Entity Framework entities, based on a list of IDs we receive from
the request in a hidden field.

SOLUTION

For this kind of task, model binders will again be a great help in encapsulating the logic
needed to translate a specific kind of input in a .NET object. Unfortunately, this time we
can’t re-use any infrastructural code like we did in technique 55 because we’re using a
customized way to encode the selected categories (which DefaultModelBinder obvi-
ously can’t interpret). That means we have to build a new binder from scratch, with just
the IModelBinder interface as a starting point for our CategoriesModelBinder:

C#:
public class CategoriesModelBinder : IModelBinder
{
 ...
}

VB:
Public Class CategoriesModelBinder
 Implements IModelBinder

 ...
End Class

This time, the implementation of the BindModel method works differently than it did
in the previous example. As figure 9.13 shows, it works by taking an existing Category
collection (probably coming from a given Post instance, but this isn’t a requirement)
and modifying its content by removing or adding instances of Category objects,
according to a given list of IDs.
The next listing puts that logic into actual code.

C#:
public object BindModel(
 ControllerContext controllerContext,

Listing 9.14 Overview of BindModel code

Category
model binder1;2;5 Category5

Category1

Category2

Cate ory3

Figure 9.13 A custom category binder gathers the IDs coming from the request and
uses them to populate an existing collection of categories accordingly.

245TECHNIQUE 56 Building a new model binder from scratch

 ModelBindingContext bindingContext)
{
 EntityCollection<Category> source =
 bindingContext.Model as EntityCollection<Category>;

 if (source != null)
 {
 IEnumerable<Category> fromRequest =
 this.GetPostedCategories(bindingContext);

 if (fromRequest != null)
 {
 this.UpdateOriginalCategories(source, fromRequest);
 }
 }

 return null;
}

VB:
Public Function BindModel(
 ByVal controllerContext As ControllerContext,
 ByVal bindingContext As ModelBindingContext) As Object
 Implements IModelBinder.BindModel

 Dim source As EntityCollection(Of Category) =
 TryCast(bindingContext.Model, EntityCollection(Of Category))

 If Not source Is Nothing Then
 Dim fromRequest As IEnumerable(Of Category) =
 Me.GetPostedCategories(bindingContext)

 If Not fromRequest Is Nothing Then
 Me.UpdateOriginalCategories(source, fromRequest)
 End If
 End If

 Return Nothing
End Function

We start by acquiring a reference to the existing model that we want to update B. In
fact, CategoriesModelBinder can’t create a new collection on its own. This isn’t a lim-
itation, though, because we’re ultimately working on a Post instance, which always
provides a not-null categories list.

 Then we move our attention to the posted data, which we retrieve via a GetPosted-
Categories method (more on this shortly) and use them to update the original collec-
tion. At this point, we’ve already updated the content of the original collection, so there’s
no need of a result; the last step is to return a null (Nothing in Visual Basic) value.

 Now that you have an overall picture of how CategoriesModelBinder works, we
can take a closer look at how we manage to retrieve the categories from the request in
GetPostedCategories, whose code is shown in the following listing.

C#:
private IEnumerable<Category> GetPostedCategories(

Listing 9.15 Retrieving Categories from the Request

Gets
reference
to original
model

B

Gets
reference
to original
model

B

 ModelBindingContext bindingContext)

246 CHAPTER 9 Customizing and extending ASP.NET MVC

{
 var postedValue = bindingContext.ValueProvider.GetValue(
 bindingContext.ModelName + "." + "values");

 if (postedValue == null)
 return null;

 return GetCategoriesFromString(postedValue.AttemptedValue);
}

private IEnumerable<Category> GetCategoriesFromString(string stringValues)
{
 var values = stringValues.Split(';');

 foreach (var item in values)
 {
 int id = int.Parse(item);
 yield return ObjectContextModule.CurrentContext
 .CategorySet.Where(c => c.Id == id).Single();
 }
}

VB:
Private Function GetPostedCategories(
 ByVal bindingContext As ModelBindingContext)
 As IEnumerable(Of Category)
 Dim postedValue = bindingContext.ValueProvider.GetValue(
 bindingContext.ModelName + ".values")

 If postedValue Is Nothing Then
 Return Nothing
 End If

 Return GetCategoriesFromString(postedValue.AttemptedValue)
End Function

Private Function GetCategoriesFromString(
 ByVal stringValues As String) As IEnumerable(Of Category)
 Dim values = stringValues.Split(CChar(";"))

 Dim res As New List(Of Category)

 For Each item In values
 Dim id = Integer.Parse(item)
 res.Add(ObjectContextModule.CurrentContext.CategorySet.
 Where(Function(c) c.Id = id).Single)
 Next

 Return res
End Function

This code doesn’t contain much that’s strictly ASP.NET MVC; this framework comes up
just to read the string of IDs from the request B. In fact, once we have the string, it’s
just a matter of translating it into actual Category instances C. GetCategoriesFrom-
String accomplishes this task, splitting the sequence of IDs D and, in turn, retrieving
them using the current active Entity Framework context E.

 One last step is still separating us from our ultimate goal—updating the original

Gets string
of IDs from
Request

B

Translates list of IDs
in actual categories

C

Splits string
into singleD

Returns category
given its ID

E

Gets string
of IDs from
Request

B

Translates list of IDs
in actual categories

C

Splits string
into singleD

Returns
category
given its ID

E

collection with the code shown in the following listing.

247TECHNIQUE 56 Building a new model binder from scratch

C#:
private void UpdateOriginalCategories(EntityCollection<Category> source,
 IEnumerable<Category> fromRequest)
{
 var toRemove = source
 .Where(c => !fromRequest.Any(c1 => c1.Id == c.Id))
 .ToList();

 var toAdd = fromRequest
 .Where(c => !source.Any(c1 => c1.Id == c.Id))
 .ToList();

 toRemove.ForEach(c => source.Remove(c));
 toAdd.ForEach(c => source.Add(c));
}

VB:
Private Sub UpdateOriginalCategories(
 ByVal source As EntityCollection(Of Category),
 ByVal fromRequest As IEnumerable(Of Category))

 Dim toRemove = source.
 Where(Function(c) Not fromRequest.
 Any(Function(c1) c1.Id = c.Id)).
 ToList

 Dim toAdd = fromRequest.
 Where(Function(c) Not source.
 Any(Function(c1) c1.Id = c.Id)).
 ToList

 toRemove.ForEach(Sub(c) source.Remove(c))
 toAdd.ForEach(Sub(c) source.Add(c))
End Sub

Once again, no ASP.NET MVC here, but just some logic to find out which categories we
have to remove B and which ones we want to add C, and logic to apply the changes
we calculated to the original collection D.

 As in technique 55, for ASP.NET MVC to use our custom model binder when it
comes across a collection of categories, we must register it in global.asax, whose
Application_start method becomes like the one in the following listing.

Listing 9.16 Updating the original categories collection

Why not read directly from the Request?
Although it might be possible to manually inspect the request content using the
HttpContext.Request property, ASP.NET MVC value providers help to shield you
from that dependency. For example, value providers theoretically allow the same
code that’s in listing 9.15 to work in a different context, where values are not coming
from an HttpRequest.

Items in source
and not in
fromRequest

B

Items in
fromRequest and
not in source

C

Apply
changes

D

Items in source
and not in
fromRequest

B

Items in
fromRequest and
not in source

C

Apply
changes

D

248 CHAPTER 9 Customizing and extending ASP.NET MVC

C#:
protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);

 ModelBinders.Binders [typeof(Post)] =
 new PostModelBinder();

 ModelBinders.Binders[typeof(EntityCollection<Category>)] =
 new CategoriesModelBinder();
}

VB:
Sub Application_Start()
 AreaRegistration.RegisterAllAreas()

 RegisterRoutes(RouteTable.Routes)

 ModelBinders.Binders(GetType(Post)) =
 New PostModelBinder

 ModelBinders.Binders(GetType(EntityCollection(Of Category))) =
 New CategoriesModelBinder

End Sub

From the controller’s point of view, nothing changes and the code remains exactly the
same as we’ve seen before:

C#:
[HttpPost]
public ActionResult Edit(Post post)
{
 if (this.ModelState.IsValid)
 {
 ObjectContextModule.CurrentContext.SaveChanges();
 return this.RedirectToAction("Index");
 }

 // ..a bit of more code here..
}

VB:
<HttpPost()>
Public Function Edit(ByVal post As Post) As ActionResult
 If Me.ModelState.IsValid Then
 ObjectContextModule.CurrentContext.SaveChanges()
 Return Me.RedirectToAction("Index")
 End If

 ' more code here
End Function

ASP.NET MVC will take care of invoking our new model binders while it’s building the
Post instance and, thanks to the new CategoriesModelBinder, its Categories collec-

Listing 9.17 Model binders setup in global.asax
tion will automatically be modified according to the user input.

249TECHNIQUE 57 Routes with consistent URL termination

DISCUSSION

What we’ve built in this last example, together with the one in the previous section,
lets us handle the creation of a complex entity instance, plugging the whole logic into
the ASP.NET MVC infrastructure. We managed to create re-usable and independent
components. Thanks to them, we kept our actions code simple and focused on con-
trollers’ requirements (like checking whether the input is valid, redirecting to a par-
ticular view, or persisting changes to the database).

 When you’re working on a complex application, writing the logic in the correct
place is important. With editor templates, you can define how an editor for a certain
type looks, and with model binders you can bridge the gap between the request that
editor produces and the actual .NET objects your controllers will receive.

 Thanks to these notions, integrating an ASP.NET MVC application with ADO.NET
Entity Framework (or another persistence layer) should be easier. Now, though we’ll
remain in the field of ASP.NET MVC customizations, we’re definitely going to change
topics. We’ll explore how you can optimize the default routing infrastructure to
improve search engine indexing of your web sites.

9.3 Improving ASP.NET MVC routing
We introduced routing in ASP.NET MVC in chapter 8. In that chapter, you discovered
the central role it plays in this web development technology in mapping URLs to
actions and controllers.

 Routes are a great and effective way to improve URL readability, and ASP.NET MVC
natively sets up a routing scheme that avoids query string parameters where possible,
giving the application URLs a static look. Unfortunately, the standard functionality has
a weak point, but we can correct it to significantly improve the search engine ranking
of our pages. In this section, you’ll discover how.

 Routes with consistent URL termination

ASP.NET routing is robust when it’s parsing URLs to determine which controller will
handle the request and what parameters it will receive. For example, it doesn’t impose
any rule for how the address has to be terminated. If we’re using the default {control-
ler}/{action}/{id} schema, it will successfully tokenize URLs like the following as if they
were the same one:

■ Home/Post/3
■ Home/Post/3/

This feature makes it easy to avoid schema proliferation because both these URLs are
valid and both need to be supported, but it raises a problem when it comes time to
improve page rankings: they are different URLs, and this causes all the visits to be split
among the two.

PROBLEM

You want to raise your web site search engine rank, so you have to avoid link duplication.

TECHNIQUE 57
You’re going to add a trailing slash to your links and flag the ones that lack it as invalid.

250 CHAPTER 9 Customizing and extending ASP.NET MVC

SOLUTION

The first point we’re going to address is adding a trailing slash at the end of each URL.
When we create a link using the ActionLink or RouteLink HTML helpers, as we did in
the previous section, we generate links that don’t terminate with a slash. We could con-
sider building custom helpers to fix this, but it wouldn’t be a wise choice because it
would require manually modifying every view in our application to use our new helpers.

 These methods are there to build links starting from the parameters on the rout-
ing settings and internally delegate to application routes the task of calculating the
resulting path. Figure 9.14 shows this process.
The idea is to build a custom route that will be responsible for building the path with
the trailing slash. The next listing shows its code.

C#:
public class SEORoute : Route
{
 // ..some constructors here..

 public override VirtualPathData GetVirtualPath(
 RequestContext requestContext,
 RouteValueDictionary values)
 {
 VirtualPathData path = base.GetVirtualPath(requestContext, values);

 if (path != null)
 path.VirtualPath =
 path.VirtualPath.AppendTrailingSlash();

 return path;
 }
}

public static class RouteHelpers
{
 // ..more code here..

Listing 9.18 Custom SEO-friendly routing

Route1

Route2

Route2

Route3

<%:Html.ActionLink(...) %>

Queries

Returns

RouteCollection

URL

Route.GetVirtualPath

Figure 9.14 ActionLink queries the collection of all the application
routes to retrieve the proper one based on the data provided; then it uses
its GetVirtualPath method to generate the actual URL.

GetVirtualPath
override

B

Extension
method for s
trailing slash

C

Routing extension
methodsD

251TECHNIQUE 57 Routes with consistent URL termination

 public static string AppendTrailingSlash(this string url)
 {
 int indexOfQueryString = url.IndexOf("?");
 if (indexOfQueryString != -1)
 {
 url = string.Concat(
 VirtualPathUtility.AppendTrailingSlash(
 url.Substring(0, indexOfQueryString)),
 url.Substring(indexOfQueryString));
 }
 else
 {
 url = VirtualPathUtility.AppendTrailingSlash(url);
 }

 return url;
 }
}

VB:
Public Class SEORoute
 Inherits Route

 ' ..some constructors here..

 Public Overrides Function GetVirtualPath(
 ByVal requestContext As RequestContext,
 ByVal values As RouteValueDictionary) As VirtualPathData

 Dim path As VirtualPathData =
 MyBase.GetVirtualPath(requestContext, values)

 If Not path Is Nothing Then
 path.VirtualPath =
 path.VirtualPath.AppendTrailingSlash()
 End If

 Return path
 End Function
End Class

Public Module RouteHelpers

 <Extension()>
 Public Function AppendTrailingSlash(ByVal url As String) As String
 Dim indexOfQueryString As Integer = url.IndexOf("?")

 If indexOfQueryString <> -1 Then
 url = String.Concat(
 VirtualPathUtility.AppendTrailingSlash(
 url.Substring(0, indexOfQueryString)),
 url.Substring(indexOfQueryString))
 Else
 url = VirtualPathUtility.AppendTrailingSlash(url)
 End If

 Return url
 End Function

GetVirtualPath
override B

Extension
method for s
trailing slash

C

Routing extension
methodsD
End Module

252 CHAPTER 9 Customizing and extending ASP.NET MVC

The SEORoute class inherits from the default ASP.NET Route class and overrides its
GetVirtualPath method B. The new implementation is absolutely trivial and does
nothing more than retrieve the default path and add the trailing slash where needed
by using an extension method called AppendTrailingSlash C. This last method
belongs to a static RouteHelpers class D and leverages the VirtualPathUtility class
to do its job after splitting the actual path from the query string.

 We need to add this new route to the application’s route collection in place of the
default ASP.NET route. It can be useful to have a MapSEORoute extension method like
the one in the following listing to help us in that task.

C#:
public static class RouteHelpers
{
 // .. more code here ..

 public static Route MapSEORoute(this RouteCollection routes,
 string name, string url, object defaults, object constraints)
 {
 var route = new SEORoute(
 url, new RouteValueDictionary(defaults),
 new RouteValueDictionary(constraints),
 new MvcRouteHandler());

 routes.Add(name, route);

 return route;
 }
}

VB:
Public Module RouteHelpers
 '.. more code here..

 <Extension()>
 Public Function MapSEORoute(
 ByVal routes As RouteCollection, ByVal name As String,
 ByVal url As String, ByVal defaults As Object,
 ByVal constraints As Object) As Route

 Dim route = New SEORoute(
 url, New RouteValueDictionary(defaults),
 New RouteValueDictionary(constraints),
 New MvcRouteHandler())

 routes.Add(name, route)

 Return route
 End Function
End Module

The method is simple: it builds an instance of SEORoute based on the routing parame-
ter and then returns it. Even though it’s simple, this method is useful because it lets us

Listing 9.19 MapSEORoute extension method definition

253TECHNIQUE 57 Routes with consistent URL termination

keep the code in global.asax similar to the code we typically use to declare routes, as
you can see in the following listing.

C#:
public static void RegisterRoutes(RouteCollection routes)
{
 // .. more code here ..

 routes.MapSEORoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new
 {
 controller = "Home", action = "Index", id = UrlParameter.Optional
 } // Parameter defaults
);

}

VB:
Shared Sub RegisterRoutes(ByVal routes As RouteCollection)

 '.. more code here ..

 routes.MapSEORoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With
 {
 .controller = "Home",
 .action = "Index",
 .id = UrlParameter.Optional
 }
)

End Sub

What we’ve done up to now allows us to generate SEO-friendly URLs, but this solves
just half the problem. If we’re adding this optimization to a website that’s already live,
search engine bots might have already crawled our pages and stored the old URLs
without the trailing slash. To solve this problem, we must permanently redirect them
to the correct schema. If we want to do it transparently for every page, the right tool to
leverage is the HttpModule shown in the following listing.

C#:
public class SEORedirectModule : IHttpModule
{
 public void Dispose() {}

 public void Init(HttpApplication context)

Listing 9.20 Mapping the custom SEORoute

Listing 9.21 HttpModule that permanently redirects invalid URLs
 {

254 CHAPTER 9 Customizing and extending ASP.NET MVC

 context.BeginRequest +=
 new EventHandler(context_BeginRequest);
 }

 private void context_BeginRequest(object sender, EventArgs e)
 {
 var context = HttpContext.Current;
 var url = context.Request.Url.AbsoluteUri;

 if (!string.IsNullOrEmpty(url.GetExtension()))
 return;

 string newUrl = url.AppendTrailingSlash();

 if (newUrl != context.Request.Url.AbsoluteUri)
 context.Response.RedirectPermanent(newUrl);
 }
}

VB:
Public Class SEORedirectModule
 Implements IHttpModule

 Public Sub Dispose() Implements IHttpModule.Dispose

 End Sub

 Public Sub Init(
 ByVal context As HttpApplication) Implements IHttpModule.Init

 AddHandler context.BeginRequest, _
 AddressOf context_BeginRequest
 End Sub

 Private Sub context_BeginRequest(
 ByVal sender As Object, ByVal e As EventArgs)

 Dim context = HttpContext.Current
 Dim url = context.Request.Url.AbsoluteUri

 If Not String.IsNullOrEmpty(url.GetExtension()) Then
 Return
 End If

 Dim newUrl As String = url.AppendTrailingSlash()

 If newUrl <> context.Request.Url.AbsoluteUri Then
 context.Response.RedirectPermanent(newUrl)
 End If
 End Sub
End Class

This listing shows how SEORedirectModule is defined: it gets plugged into the run-
time pipeline during the BeginRequest phase B and acts as a filter, checking
whether a path is correctly terminated; if it’s not, SEORedirectModule uses Redirect-
Permanent D to return an HTTP 301 status code, which means Redirect Permanent.
This kind of response, besides sending the browser to the correct address, is also cor-
rectly interpreted by a search engine, which will accordingly (and hopefully!) update

Subscription of
BeginRequest event

B

Needed to exclude
actual files

C

Permanent
redirect to slash-
trailed URLD

Subscription of
BeginRequest event

B

Needed
to exclude
actual files

C

Permanent
redirect to slash-
trailed URLD
its stored indexes. Obviously this logic makes sense only when a URL has a folder-like

255Summary

structure; redirecting http://www.mysite.com/style.css to http://www.mysite.com/
style.css/ could be misinterpreted. SEORedirectModule does no processing at all if
the request URL has an extension C or contains a filename. Figure 9.15 summarizes
how all this works.

DISCUSSION

One key point for optimizing your pages for search engine indexers is to have consis-
tent URL terminations throughout the whole website. Having a trailing slash at the
end of each path ensures that links aren’t split between two equally valid addresses,
which could dramatically improve your page rank. To that end, we fixed a couple of
flaws in the default ASP.NET routing infrastructure.

 First of all, we created a custom route class, called SEORoute, which produces cor-
rectly terminated paths when invoked by ActionLink or RouteLink HTML helpers.
But this doesn’t prevent manually generated URLs or other websites from having the
wrong format. For this reason, we also built a custom HTTP module that catches these
invalid requests and permanently redirects them to the correct URLs by issuing a 301
HTTP Status Code, allowing search engines to update their indexes.

9.4 Summary
When you develop real-world applications in ASP.NET MVC, you often have to deal
with the same issues again and again. In this chapter, we tried to provide practical
solutions for some of them. Although they’re separate, distinct topics, they all high-
light an extremely important and powerful feature of this web development technol-
ogy: its expandability, thanks to which the framework can be customized to suit your
specific needs.

Figure 9.15 When a request comes from a URL that lacks the trailing slash, the SEO Redirect Module
component issues an HTTP 301 status code to permanently redirect it to the correct URL. This outcome
applies just to folders and not to filenames.

256 CHAPTER 9 Customizing and extending ASP.NET MVC

 Despite the fact that at a first sight ASP.NET MVC might seem more verbose than
Web Forms, we showed how you can leverage, with a little effort, data templates and
HTML helpers to minimize the amount of markup you manually write. You can build
batteries of reusable components that result in websites with a more consistent look
and feel.

 At the same time, you want to keep your actions as simple as possible so that you
have less code to maintain and debug. That means moving your own infrastructural or
repetitive logic outside the controller. Action filters and model binders are a great
help to meeting this requirement because they let you plug into the ASP.NET MVC
response flow and customize it to your own will.

 The last part of the chapter was about routing, which plays a key role in ASP.NET MVC.
We showed how you can improve its URL generation logic so that your website is indexed
more efficiently. Good indexing often results in a dramatically higher page rank.

 This chapter concludes the third part of this book, which was entirely dedicated to
ASP.NET MVC. The next chapters will change the topic, because we’re going to look
into security. Security is the main requirement your applications must meet to be
ready for a production environment.

Part 4

Security

Part 1 showed you how ASP.NET works; parts 2 and 3 took a look at what fea-
tures ASP.NET Web Forms and ASP.NET MVC give you when you’re building the
UI. Now in part 4, we’ll take a look at one of the most important parts of every
web application: how to protect your code and make it secure.

 In chapter 10, we’ll analyze the most common scenarios you’ll encounter
when you’re dealing with security: how to build stronger applications, how to
avoid common errors, and how to preserve the integrity of your applications.
You’ll find plenty of suggestions throughout the chapter.

 Chapter 11 covers authentication and authorization in ASP.NET. This chapter
will show you how to build a secure area, how to leverage ASP.NET’s infrastruc-
ture, and how to build a custom provider to extend the existing features pro-
vided by ASP.NET’s Membership and Roles APIs.

ASP.NET security
In previous chapters, we covered both ASP.NET Web Forms and MVC, and how
your application might benefit from new features available in version 4.0. Now it’s
time to take a look at security, which is a fundamental aspect of every well-realized
application.

 If you think that security is a secondary concern for your applications, you’re
wrong: an insecure application is an incomplete application. In fact, in a web appli-
cation, security is more important than anything else because of the global avail-
ability of this kind of application and the large attack surface. Security is a pillar,
and it has to be considered at every stage of the process, from the architectural
stage right up to and including development itself.

 Making an application secure is simple. You have to apply different techniques,

This chapter covers
■ Analyzing security threats
■ Handling untrusted user input
■ Techniques to prevent SQL injection
■ Cross-site scripting (XSS) in action
■ Path canonicalization issues
259

though none of them are difficult to master. It’s not black magic—it’s common sense.

260 CHAPTER 10 ASP.NET security

 Security is often addressed in ASP.NET applications from two different angles:

■ In code—You need to ensure that your applications are secure and protected
from common types of attacks

■ By regulating access to features—ASP.NET offers specific features to protect your
applications with authentication and authorization, and to rapidly implement
solutions. You can use these features to enable user access only to a specific set
of pages, protecting your data from unwanted use.

To begin our discussion, let’s try to create a picture of what security is and why you
should care about it. This chapter will cover the first part of the problem, addressing
specific scenarios related to writing more secure code and avoiding common pitfalls.
Chapter 11 will fill in more details about authentication and authorization.

 By implementing the techniques shown in this chapter, you’ll have better applica-
tions. Remember: a secured application is a winning situation for both you and your
customers. You can also apply these techniques to existing web applications to
increase their security as well.

 By the end of this chapter, you’ll be able to build secure applications and identify the
most common problems. Best of all, you’ll be able to provide the correct solutions.

10.1 What is security in ASP.NET applications?
We’re talking about security now because you understand the basics of ASP.NET and
data access. You’ve been through the introductions, and now you’re ready for the next
important topic. We strongly believe that security deserves a high ranking in the topics
chart every developer ideally uses.

 Security is about best practices used the right way and about taking care of details
in your application. Security is pervasive and affects every aspect of your software pro-
duction cycle, from initial planning to architecture, development, and deployment.
This book won’t cover hardware or operating-system security, but you have to remem-
ber that these are important elements in your security strategy, too.

 By not targeting security, you’re exposing your application to a wide number of
threats, the most likely of which are:

■ Data theft—This situation is probably the one you least want to encounter
because user data is like gold for every business

■ Server disk access—Letting malicious users access your server disk might result in
several problems, from data theft to code access or malicious file upload

■ Site defacement or alteration—By manipulating your own code routine to store
malicious markup and JavaScript in your database, someone can alter your site;
the result can be anything from a simple alteration of the visual result to a com-
plete defacement of your site.

An insecure web application is dangerous for both its developers and final users. As
you might know, the code behind some of the business activities related to your appli-

cation needs to be secret to avoid potential issues related to sensitive data; from the

261What is security in ASP.NET applications?

user’s point of view, malicious code running via your site might help spread worms
and viruses to their system.

 Security is also a matter of brand image and trust. How can your users trust your
business if you don’t care about their data and safety while they’re on your site?

 As we’ve discussed, security is made up of a series of technology-independent prin-
ciples that you must follow from the beginning to the end of your project to maximize
quality. In the following sections, we’ll discuss these principals in more detail. This dis-
cussion should help you remember your security goals every time you’re beginning a
new project.

SECURITY IS A FEATURE, NOT AN ADD-ON

It’s quite frustrating to discover a serious vulnerability in your code. Vulnerabilities
cost a lot, in terms of time, money, and developer respectability. Today, security is con-
sidered an inner feature of the application, and it’s uncommon to consider it sepa-
rately. As you plan usability, a nice UI, great performance, and scalability, you need to
also plan for your application to be intrinsically secure. The potential problems you
address in your applications might be the hardest part of your work toward making an
application secure, but you’ll save time and money in the long run.

FOLLOW THE PRINCIPAL OF LEAST PRIVILEGE

The fewer privileges you require for your application to run, the better. You need to
run your web application under the least privilege you can. Don’t run something
exposed on the web with high privilege; if vulnerabilities exist, the code that could
potentially be injected might run with unwanted consequences.

 If part of your application requires higher privilege, try to isolate that part; an SOA
is a great solution to this kind of problem.

DO NOT TRUST THE INPUT

Simply put, even if you’re building an intranet, the input you receive is not to be
trusted. In this case, the majority of attacks are going to come from the company
employees, so don’t think that because you’re just running an intranet you don’t need
to seriously address security.

 Generally speaking, don’t trust any input. The input is going to come from differ-
ent sources, most of which are beyond your control. Today it’s common to have spi-
ders trying to inject some code in your application or to bypass your protections.

 Remember that the only secure input is what you yourself have written statically in
your source code.

DO NOT DISCLOSE DETAILS

A personalized error page is way more professional than a default one, and it’ll help
you to protect sensitive data. Even though it’s useful to know as much as you can about
your environment while you’re developing or debugging, an attacker can use this
information to bypass your security check, to inspect your code, or, at worst, to arbi-
trarily execute some hidden functions.

262 CHAPTER 10 ASP.NET security

DO NOT THINK THAT YOUR CODE IS BETTER

Make no mistake: software is always bugged. No software on the market is bug-free.
The simple problem is that bugs do exist; the difficult part is to find them before
someone else with bad intentions does. You’ll have to deal with this problem, and the
best you can do is react as soon as you can to these situations; to wait is to risk disaster.

USE YOUR HEAD

All software production has to be done using your head, but security deserves special
treatment. The mantra of this chapter can’t be repeated enough: security is made of
small things grouped together. If you use your head and apply common sense principles—
like the ones in this chapter—your application will be more secure.

 Before we move on, we need to point out that a totally secure application doesn’t
exist, but you can aspire to the best, most secure application you can. This chapter is
built around the following most common kinds of attack and shows you the related
countermeasures you need to take:

■ Malicious requests to alter the page flow and gain access to protected features
of your application

■ SQL injection to alter your SQL queries and execute malicious code, with the
intent to delete data or to access protected information

■ XSS to inject JavaScript code in your users’ browsers to execute malicious code
■ Path canonicalization to access blocked parts of the server disk or to upload

unwanted files

We’ll analyze every problem and the associated solution in more detail in the rest of
this chapter. We’ll use a typical web application as an example, so we’ll include the
most common scenarios. These scenarios will be related specifically to parsing and
storing user input in a way that makes it as difficult as possible to present a threat to
your application.

10.2 Filtering and blocking incoming requests
You shouldn’t always trust user input. You have to filter every incoming request to
make sure it’s legitimate and that it doesn’t aim to alter your flow. A thing as simple as
using incorrect parameter values can force application behavior. By changing a
parameter value to one not in the acceptable range, for example, an attacker can dis-
close information, bypassing some security checks.

 Another attack type consists of passing an arbitrary value to gain access to pro-
tected information. Sometimes when designing an application, developers choose a
globally unique identifier (GUID) as the format for the content key. Part of the reason
for this choice is to protect themselves from this kind of attack: developers tend to
think that a GUID is less spoofable than an integer. The truth is that this isn’t a secure
feature; it’s like hiding your head in the sand.

 Filtering a request, and blocking it if necessary, is a different approach. First of all,

if the corresponding content is protected, you have to check that the current user

263TECHNIQUE 58 Handling improper parameter values

identity has the right to access it. This requirement might seem obvious, but security is
accomplished by carrying out relatively simple and obvious rules. In this section, we’ll
take a look at common attacks related to sending misleading information to a page
and how you can handle and filter them to maintain a secure application.

 Handling improper parameter values

Even if you think that the browser is secure enough to rely on its sandboxed environ-
ment, the reality is that HTTP, the protocol behind the web, is simple, so building a
tool to send specially crafted requests is not too difficult. By inspecting values coming
with the request, you can add more security to your applications with little effort.

PROBLEM

Improper values are dangerous because they can alter the application behavior, gen-
erate runtime exceptions, and expose the error details to an attacker. You need a uni-
fied approach to sanitize these values and protect your application.

SOLUTION

Rule number 1 of security is use common sense. With that in mind, it’s obvious that the
first action you should perform is to check for data type consistency. If you know that
a parameter can contain only integer values, it’s a good practice to check that the
passed value respects this requisite. Most primitive types (like System.Integer, System.
DataTime, and System.Boolean) offer a useful TryParse static method. This method
checks that the corresponding value is convertible to a given type. If the conversion
takes place, the value is saved in the variable and used in conjunction with the original
value. The following listing shows a simple example for parsing an Integer value from
the query string.

C#:
int id;
if (int.TryParse(Request.QueryString["ID"], out id))
{

}

VB:
Private Sub foo()
 Dim id As Integer
 If Integer.TryParse(Request.QueryString("ID"), id) Then

 End If
End Sub

This classic approach (not testing for a data type check) can lead to an error similar to
the one shown in figure 10.1.

 As you can see, the default error page when the app is in debug mode also shows a
fragment of the source code. Lazy developers frequently leave an application in debug

Listing 10.1 Example of parameter type check

TECHNIQUE 58
mode even when it’s deployed; these developers have to be lucky enough to have no

264 CHAPTER 10 ASP.NET security

sensitive information coming out with the default error message. (We’re going to
cover error page personalization and logging in more detail in chapter 15.)

DISCUSSION

This example is a basic one. When you’re dealing with user input, you have to check
for range consistency. For example, if you’re expecting a birth date, you should check
for a valid range; if you want an integer ID, you should check for that data type.

 Don’t trust your user input and always verify that the values are within the accept-
able range; if you do, your application will be better and more secure. By implement-
ing this technique proactively, you can also add a blocking mechanism to your
applications, logging unwanted requests.

 Monitoring and blocking bad requests

Now that you can filter incoming requests, you’re ready to build a blocking engine to
handle and improve parameter values. To avoid problems, it’s crucial to monitor bad
requests. HTTP has its own request statuses. By using them, we’re telling the browser
(or, generally speaking, the client) that the request had some trouble and didn’t exe-
cute correctly.

PROBLEM

We want to manage invalid requests and notify the client about any invalid parameters
that were passed in. We’ll leverage HTTP status codes to maintain great compatibility
with intelligent clients (which search engine spiders certainly are) and to enable a

Figure 10.1 By not correctly checking your parameters, you can disclose too many details about your
application.

TECHNIQUE 59
forensic log analysis if we need it.

265TECHNIQUE 59 Monitoring and blocking bad requests

SOLUTION

When someone sends an invalid parameter, you should reply to the request using one
of the specific error codes. For the common browser, this rule doesn’t make any differ-
ence, but it’ll help you when you have to deal with search engine spiders.

 Every request could, in fact, be logged (via IIS) in the corresponding log files, so
you can take further actions to analyze them and provide some kind of mechanism to
report strange situations. This topic is more specific to the system administrator, so
we’re not going to cover it here.

 Table 10.1 lists the principal HTTP error status codes. Each request produces a sta-
tus code; if there are no errors, the default value is 200 OK.

For example, when a parameter that’s outside the scope is used, it’s completely legiti-
mate to reply using the 400 bad request HTTP status code. You can get this result by
throwing a new exception of type HttpException, using code similar to this:

C#:
if (string.IsNullOrEmpty(Request["ID"]))
 throw new HttpException(400, "Bad request");

VB:
If (String.IsNullOrEmpty(Request("ID"))) Then
 Throw New HttpException(400, "Bad request")
End If

To send a detailed response to the client, we’re changing web.config settings to gener-

Table 10.1 Main HTTP status codes for errors

HTTP status code Description

400 Bad request: Used to notify the browser that the request isn’t considered valid.

404 Not found: The requested content isn’t available.

500 Error: The request caused an error.

Analyze log files with LogParser
Microsoft’s LogParser is a free tool that can analyze a lot of different log file formats,
including the Microsoft IIS one.

LogParser uses a special version of a SQL dialect to submit queries against log files,
retrieve the corresponding results, and put those results into different destinations,
such as CSV files or a database.

You can download LogParser from the Microsoft website at http://www.mng.bz/5KrO.
You can find more information about using LogParser in a Microsoft Knowledge Base
(KB) article at http://www.mng.bz/slJe.
ate the response from a specific page, as shown in the following listing.

http://www.mng.bz/5KrO
http://www.mng.bz/slJe

266 CHAPTER 10 ASP.NET security

<configuration>
 <system.web>
 <customErrors mode="On" defaultRedirect="GenericErrorPage.htm"
 redirectMode="ResponseRewrite">
 <error statusCode="400" redirect="BadRequest.htm" />
 <error statusCode="404" redirect="FileNotFound.htm" />
 </customErrors>
 </system.web>
</configuration>

You can check the corresponding dis-
play in figure 10.2.

 This technique is useful because
we’re achieving two results: we’re noti-
fying the client that there’s a problem
with the request, and we’re storing the
details in our log files so we can auto-
mate collecting and block unwanted IP
addresses from doing additional
requests if they exceed our threshold.

DISCUSSION

HTTP status codes are here to help both client and server better serve each other.
You definitely need to use them when you require non-ordinary responses; for exam-
ple, a 404 response code is useful to inform a search engine spider that a resource
doesn’t exist. Use them safely, and both you and your clients will reap huge benefits.

 The next part of this chapter is related to SQL injection. SQL injection is a specific
vulnerability caused by incorrectly parsing user input and letting the value arrive
directly to your SQL engine, without any block or filter.

10.3 Protecting applications from SQL injection
SQL injection is considered the worst attack for a web application. It’s widely used as a
way to gain control over an application by simply injecting some specially crafted SQL
query via a parameter. This kind of attack is primarily caused by improper handling of
string concatenation. Though the results can be devastating, the countermeasures are
quite simple.

 Given the availability of ORMs like Entity Framework, LINQ to SQL, and NHibernate,
SQL injection is less common in modern applications. If you have some code based on
ADO.NET Command, you’ll probably find this part of the chapter extremely useful.

 Figure 10.3 shows a typical problem related to SQL injection. Many variants of SQL
injection strings exist, but the one displayed in this figure is one of the most common.

 When the developer is using string concatenation, the special sequence -- can
compose the resulting query to ignore the rest of the string. The result, in this exam-
ple, is the ability to completely bypass a security login; a malicious user can authenti-

Listing 10.2 web.config configuration for a custom 400 error

Figure 10.2 A specific error page designed for bad
requests. You can personalize the look and feel of
the page and provide some guidelines for your users,
like specifying allowed and disallowed characters.
cate themselves as the username specified.

267TECHNIQUE 60 Handling SQL queries using parameters

 Handling SQL queries using parameters

SQL queries are potentially one of the biggest threats in a web application. So many
scenarios need your attention when you’re composing dynamically generated SQL
strings that it’s not easy to prevent them all if you’re not using the right approach.

 The most common scenario in which the danger can be high involves string values,
where you have to deal with routines that help you safely compose your query.

PROBLEM

You want to write SQL queries the right way. You want to stay secure and avoid SQL
injection, without losing functionalities.

SOLUTION

Let’s try to resolve this problem step-by-step.
 First of all, the simplest case is the one addressed in the introduction: dealing

with routines that let you compose your queries by concatenating strings. You can
rewrite the corresponding code by taking advantage of the SqlParameter class and
using a parameterized query instead of string concatenation, as shown in the follow-
ing listing.

SQL injection techniques
A malicious user can do literally dozens of things when a page is vulnerable to SQL
injections. What that user decides to do depends on the database server type and
your configuration. If a service isn’t properly configured, that can be used as a vehicle
for executing remote commands. For example, in SQL server an attacker could use
the xp_cmdshell system stored procedure to arbitrarily execute an arbitrary command.

You’ll find more information about these techniques at http://www.owasp.org/in-
dex.php/SQL_Injection.

a' OR 1=1--

SELECT * FROM
Users WHERE
username = ' ' AND
password = ' '

… username =
'admin' AND
password = 'a' OR 1
= 1--'

Figure 10.3 A simple problem related to SQL injection. String concatenation of user
input occurs and the resulting query is executed without other filters.

TECHNIQUE 60

http://www.owasp.org/index.php/SQL_Injection
http://www.owasp.org/index.php/SQL_Injection

268 CHAPTER 10 ASP.NET security

C#:
string sql = "SELECT * FROM Users WHERE Username = @Username" +
 " AND Password = @Password";

using (SqlConnection conn = new SqlConnection("..."))
{
 using (SqlCommand cmd = new SqlCommand(sql, conn))
 {
 SqlParameter p = new SqlParameter("@Username",
 SqlDbType.VarChar, 100);
 p.Value = Username.Text;
 cmd.Parameters.Add(p);

 SqlParameter p2 = new SqlParameter("@Password",
 SqlDbType.VarChar, 100);
 p2.Value = Password.Text;
 cmd.Parameters.Add(p2);

 using (SqlDataReader dr = cmd.ExecuteReader())
 {
 ...
 }
 }
}

VB:
Dim sql As String = "SELECT * FROM Users WHERE Username = @Username" &
 " AND Password = @Password"

Using conn As New SqlConnection("...")
 Using cmd As New SqlCommand (sql, conn)
 Dim p As New SqlParameter ("@Username",
 SqlDbType.VarChar, 100)
 p.Value = Username.Text
 cmd.Parameters.Add(p)

 Dim p2 As New SqlParameter("@Password", SqlDbType.VarChar, 100)
 P2.Value = Password.Text
 cmd.Parameters.Add(p2)

 Using dr As SqlDataReader = cmd.ExecuteReader()
 …
 End Using
 End Using
End Using

This code isn’t difficult to understand or to implement. If you’ve used a stored proce-
dure before, this approach is the same as that one. Parameterized queries are similar
in meaning to stored procedures: you pass the parameters explicitly, and their encod-
ing is the responsibility of the underlying data access technology, not yours.

Parameterized queries with Access, Oracle, and MySQL
Even though the examples provided in this chapter are specific to SQL Server, you can

Listing 10.3 The right way to compose a dynamic query

Parameter
value

Add to parameters
collection

Parameter
value

Add to parameters
collection
use the same techniques with Access, Oracle, and MySQL. The only difference is that

269TECHNIQUE 61 Dynamic queries with multiple values

SQL Server supports the format @param, known as named parameter. Access (and OLE-
db) uses the sequential order and a generic ? placeholder. Oracle uses the same
approach as SQL Server, but the format is :param. MySQL uses the ?param format.

 When you’re using a parameterized query, the conversion and escape of the value
is done by the engine itself; you’re safe, and you don’t need to take further action. You
should always check for data type consistency, as we discussed earlier in this chapter, to
avoid runtime errors and to execute only legitimate queries.

DISCUSSION

Simply escaping the apostrophe (or other potentially unsafe characters) is not
enough. So many variations on the theme exist that the only secure way to handle
these values is by using parameters. Just in case you’re wondering whether your code
is secure without parameters, the answer is simple: no, it’s not. The only effective way
of making a secure dynamic query is by using parameters. Again, don’t trust the input
and perform all the checks against the values, just like we’ve discussed previously.

 The next step is to analyze a specific kind of SQL injection that’s related to han-
dling multiple values in a query. If you need to parse only a single value, the problem
is much simpler than when you’re dealing with multiple values.

 Dynamic queries with multiple values

Multiple values are often used in dynamically generated queries, for example, in com-
bination with the IN SQL clause or when you need to filter by different words. This
issue is separate from the other issues we’re covering, and we need to address it specif-
ically by using the correct approach.

PROBLEM

We want to apply the same technique we used in the previous example to a query com-
posed of multiple values. We want to stay secure by continuing to use parameters, but
we need to pass multiple values to the query.

SOLUTION

If you need to get every product in a given list of categories, you’ll probably opt for a
piece of code similar to this snippet:

C#:
string sql = "SELECT * FROM Products WHERE Category IN ({0})";
sql = string.Format(sql, Request["categories"]);

VB:
Dim sql As String = "SELECT * FROM Products WHERE Category IN ({0})"
sql = string.Format(sql, Request("categories"))

If you’re using a <select /> HTML tag with multiple selection, the browser will auto-
matically send the values, separated by a comma, which is the exact syntax used in SQL.

 The problem is that if someone passes an evil string, like 0);DROP TABLE Prod-
ucts--, the result is the following query:

TECHNIQUE 61
SELECT * FROM Products WHERE Category IN (0);DROP TABLE Products--)

270 CHAPTER 10 ASP.NET security

The ; character is used to separate different queries, so this code can be used to arbi-
trarily execute a query. It’s not uncommon to have tables named Users, Products, Cat-
egories, and so on. A malicious user can employ special techniques that aim at retrieving
the database schema using a normal page created to visualize data. It’s only a matter of
time and attacker ability. For this reason, we need a mechanism to support these queries,
but one that uses parameters. An example is shown in the following listing.

C#:
StringBuilder sql =
 new StringBuilder("SELECT * FROM Products WHERE Category IN (");

string[] categories = Request["Categories"].Split(',');

SqlParameter[] parameters = new SqlParameter[categories.Length];

for (int i = 0; i < categories.Length; i++)
{
 sql.AppendFormat("@p{0}, ", i);
 parameters[i] = new SqlParameter(string.Format("@p{0}", i),
 categories[i]);
}
sql.Append("0)");

VB:
Dim sql As New StringBuilder("SELECT * FROM Products " &
 "WHERE Category IN (")
Dim categories As String() = Request("Categories").Split(",")

Dim parameters As SqlParameter() =
 New SqlParameter(categories.Length - 1)

For i As Integer = 0 To categories.Length - 1
 sql.AppendFormat("@p{0}, ", i)
 parameters (i) = New SqlParameter(String.Format("@p{0}", i),
 categories(i))Next
sql.Append("0)")

This listing shows you the solution to our problem. We can dynamically generate the
SQL string by safely adding the parameters, based on multiple values. It’s perfectly
possible to name parameters sequentially, so this is a good solution for our problem.
Our solution doesn’t rely on user input, and we can pass the values to the database
engine, which will sanitize them for us.

 The generated query will be similar to this one:

SELECT * FROM Products WHERE Category IN (@p0, @p1, @p2, 0)

The parameter is then added, using iteration, to the corresponding SqlCommand
instance. Our query will be secured.

DISCUSSION

This code is similar to what you need when you’re dealing with multiple LIKE clauses
or when you’re searching for many words. Using parameters provides more security to

Listing 10.4 Dynamically composing a query with multiple values

Compose
base

query

Set the
parameter
value

Compose
base query

Set the
parameter value
your queries even in more complex scenarios like the one we talked about here.

271TECHNIQUE 62 Handling and displaying user input

 At this point, you’ve learned how SQL injection can be dangerous for your data
and what the principal countermeasures to avoid potential data losses are. To com-
plete our journey on the road of the typical problems related to security, it’s time to
take a look at XSS. By implementing a protection against XSS, we’ll add more security
to our application, avoid JavaScript injection, and maximize our users’ security.

10.4 Dealing with XSS (cross-site scripting)
XSS is probably the most subtle kind of attack because it’s quite often invisible at first
glance. XSS is based on some code, usually markup or JavaScript, that’s injected into
your page. The most common problem is related to data that’s saved in a database
after user input and then loaded in a page. If not properly escaped, as in figure 10.4,
the problem is that the user input is appended to the resulting HTML and the results
are unexpected. For example, using JavaScript, it’s quite easy to perform nasty actions,
like identity theft and session spoofing.

With identity theft, for example, an attacker could gain access to a website by simply
cloning its identity cookie. For this reason, you have to avoid XSS in your applications.

 Handling and displaying user input

As we’ve stated previously, do not trust user input. This mantra applies to both SQL
injection and XSS. In our next scenario, the countermeasures might vary, depending
on how you need to treat (and store) user input.

PROBLEM

We want to avoid XSS and we want to let a user send different kinds of content: plain
text and markup. We need a method to sanitize the user input before saving it in a
database.

SOLUTION

ASP.NET, starting with version 1.1, is protected by default to malicious user input. If
you try to insert some markup or JavaScript code via a GET or POST field, the runtime

<script>alert('test');</script>

<p>…</p>

processing

<p><script>
alert('test');
</script></p>

Figure 10.4 XSS is similar to SQL injection, but the code is inserted in the markup
and isn’t executed in a database query.

TECHNIQUE 62
intercepts the input and produces an error similar to the one shown in figure 10.5.

272 CHAPTER 10 ASP.NET security

If you need basic protection against common kinds of attacks, this default behavior is
what will help you first. If you store your code to display it later in a page, it’s better to
encode it properly in the first place. Remember: do not trust user input!

 You can implement this solution by using the HtmlEncode method from the Http-
ServerUtility or HttpUtility class in the System.Web namespace. You can also
access it directly via the Server property on both HttpContext and Page.

 You need to write the following code in your markup:

C#:
string text = HttpUtility.HtmlEncode (SomeText.Text);

VB:
Dim text as String = HttUtility.HtmlEncode(SomeText.Text)

New in version 4.0, this protection is applied to all requests (not just .aspx pages)
because it’s fired in the BeginRequest event of HttpApplication. If you need to
revert to the old behavior, you can change it via web.config:

<httpRuntime requestValidationMode="2.0" />

In version 4.0, you can tweak the default validation mechanism by writing a new class
that inherits from System.Web.Util.RequestValidator and specifying its name in
web.config:

<httpRuntime

Figure 10.5 ASP.NET has a default validation mechanism that can intercept potentially dangerous
values and display a specific error page.
 requestValidationType="ASP4InPractice.MyValidator, ASP4InPractice" />

273TECHNIQUE 62 Handling and displaying user input

Another way to allow blocked characters (like < or >, for example) is to set the Vali-
dateRequest property on the @Page directive to false, which will help us in testing
our new solution:

<%@ Page ValidateRequest="false" %>

Figure 10.6 shows you the result of using the encoding and of not using it.
 Beginning in ASP.NET version 4.0, you can also use a handy shortcut and simply

embed a value in the markup. This same syntax is available with ASP.NET MVC 2.0,
shipped with ASP.NET 4.0.

C#:
<%: Request.Querystring["value"]%>
<%: new HtmlString("<i>Not encoded</i>")%>

VB:
<%: Request.Querystring("value")%>
<%: new HtmlString("<i>Not encoded</i>")%>

The syntax <%: is equivalent to <%=HttpUtility.HtmlEncode. A specific interface,
IHtmlString, is also present for when you don’t want to encode the value. The new
HtmlString is created to preserve markup in such a situation and to avoid encoding.

 If you need to support some markup, the only viable solution is to sanitize the text.
It’s not easy, so the best way to proceed is to allow only a subset of HTML tags or use some
metalanguage. The metalanguage you’ll find in most forum software out there is often
referred to as Bulletin Board Code (or BBCode). BBCode is composed of tags indicated
by [and], so you can remove the real HTML code and then convert the basic tag to the
corresponding BBCode markup. Some sample code is shown in the following listing.

C#:
public static class SecurityUtility
{
 public static string RemoveHtml(string text)
 {

Listing 10.5 A simple BBCode routine

Figure 10.6 Without (on the left), and with (on the right) input encoding. In the first example, the
markup is processed by the browser because it’s not escaped.

Remove
markup
 return Regex.Replace(text, "<[^>]*>", String.Empty);

274 CHAPTER 10 ASP.NET security

 public static string BBCode(string text)
 {
 text = text.Replace("[b]", "").Replace("[/b]", "");
 text = text.Replace("[i]", "<i>").Replace("[/i]", "</i>");
 text = text.Replace("[u]", "<u>").Replace("[/u]", "</u>");
 return text;
 }
}

VB:
Public Module SecurityUtility
 Public Function RemoveHtml(ByVal text As String) As String
 Return Regex.Replace(text, "<[^>]*>", [String].Empty)
 End Function

 Public Function BBCode(ByVal text As String) As String
 text = text.Replace("[b]", "").Replace("[/b]", "")
 text = text.Replace("[i]", "<i>").Replace("[/i]", "</i>")
 text = text.Replace("[u]", "<u>").Replace("[/u]", "</u>")
 Return text
 End Function
End Module

If you use BBCode, you’ll have more control over the kinds of input your users are
allowed to insert. Take a look at figure 10.7 to see the rendering produced by the text
specified in the input area.

DISCUSSION

Encoding user input is the right choice to make if you’re planning to store the infor-
mation in a database and display it later to other users. With the examples in this sec-
tion, you’re ready to protect yourself and your users from malicious code injection.

XSS techniques are quite often subtle, so keep in mind that it’s better to be aggres-
sive toward user input, rather than be permissive and compromise your application
security. You can always remove some restrictions later.

 To let you concentrate on your business needs, some libraries simplify develop-
ment by introducing a new set of ready-to-use libraries, such as the Microsoft Anti-
XSS Library.

Convert
metamarkup

Remove
markup

Convert
metamarkup

Figure 10.7 A BBCode-enabled page. This form will allow only a subset of markup and uses the [and]

characters to totally avoid the use of tags.

275TECHNIQUE 63 Using Microsoft’s Anti-XSS Library

 Using Microsoft’s Anti-XSS Library

Microsoft’s Anti-XSS Library is a combination of functionalities that protect web appli-
cations. You can freely download it at http://wpl.codeplex.com/. At the time of this
writing, Anti-XSS Library is available in version 4. Version 3 introduced new features,
and it’s been completely rewritten with performance in mind. A new Security Runtime
Engine (SRE) HTTP module protects the applications, using an approach that’s similar
to the default validation mechanism offered by ASP.NET, but with more features.

PROBLEM

When you’re dealing with XSS, the simple HtmlEncode won’t be enough. Sometimes
you’ll have to deal with user input that’s to be added to JavaScript code, tag attributes,
XML, or a URL. You want to stay secure in these scenarios.

SOLUTION

The Anti-XSS Library offers more methods that are specifically targeted to different
untrusted inputs. The methods used to encode the inputs are listed in table 10.2.

The SRE HTTP module will be useful when you want to add more security without
touching your existing application. Its intention is to add more security, not to replace
your current encoding strategies. SRE consists of a tool that analyzes an assembly and
produces the corresponding configuration. Take a look at figure 10.8 for a peek at
what it looks like.

 The tool will create a list of controls and methods to be automatically encoded, and
then it’ll do everything else, too. The tool is a good starting point when you don’t have
time to consolidate your code security, but it’s not a permanent security implementation.

 Look at the next two examples of using the Anti-XSS Library within each set of
code: the first one encodes a hypothetically unsafe value for HTML, and the second

Table 10.2 The main encoding methods of the Anti-XSS Library

Method Description

HtmlAttributeEncode The input is used as an HTML attribute (like <div class=
"(input)">).

HtmlEncode The input is used in HTML (but not on attributes).

JavaScriptEncode The input is used in JavaScript code (<script type="text/
javascript"> alert('(input)');</script>).

VisualBasicScriptEncode The input is used in VBS code (<script type="text/vbs">
somecode </script>).

UrlEncode The input is used in a URL parameter, such as a query string.

XmlAttributeEncode The input is used as an XML attribute.

XmlEncode The input is used in XML output, but not with attributes.

TECHNIQUE 63
one does it for JavaScript:

http://wpl.codeplex.com/

276 CHAPTER 10 ASP.NET security

C#:
Results.Text = AntiXss.HtmlEncode (SomeText.Text);
ClientScript.RegisterStartupScript(this.GetType(), "alert",
 string.Format("alert({0});",
 AntiXss.JavaScriptEncode (SomeText.Text)),
 true);

VB:
Results.Text = AntiXss.HtmlEncode(SomeText.Text
ClientScript.RegisterStartupScript(Me.GetType(), "alert",
 string.Format("alert({0});",
 AntiXss.JavaScriptEncode(SomeText.Text)),

 True

Generated code:
this is a test! '
 wow!
<script type="text/javascript">
//<![CDATA[
alert('this is a test\x21 \x27 \x3cbr \x2f\x3e wow\x21');//]]>
</script>

Figure 10.8 The SRE configuration tool. You can use this tool to perform a dynamic check
against your already compiled ASP.NET applications.

277TECHNIQUE 63 Using Microsoft’s Anti-XSS Library

As you can see, the generated code is properly escaped, so the untrusted user input
became safe as well. If you need to handle a different scenario, be sure you choose the
most appropriate method.

 Starting with ASP.NET 4.0, you can also write a custom encoder. By deriving from
HttpEncoder from System.Web.Util, you can change the default implementation
and use your own. This means that you can use the AntiXSS Library feature without
changing the reference to HttpUtility.HtmlEncode (or HtmlDecode). The following
code shows a basic implementation:

C#:
public class AntiXssHttpEncoder : HttpEncoder
{
 public AntiXssHttpEncoder() { }
 protected override void HtmlAttributeEncode(string value,
 TextWriter output)
 {
 output.Write(AntiXss.HtmlAttributeEncode(value));
 }
}

VB:
Public Class AntiXssHttpEncoder
 Inherits HttpEncoder
 Public Sub New()
 End Sub

 Protected Overloads Overrides Sub HtmlEncode(
 ByVal value As String, ByVal output As TextWriter)
 output.Write(AntiXss.HtmlEncode(value))
 End Sub
End Class

To make this encoder work, you have to register it in web.config:

<configuration>
 <system.web>
 <httpRuntime encoderType="AntiXssHttpEncoder, App_Code"/>
 </system.web>
</configuration>

You don’t need to change anything else, and even the new <%:%> syntax will automati-
cally use the new specified provider.

DISCUSSION

The Anti-XSS Library is considered a must among ASP.NET developers due to its fea-
tures. If you’re planning to include user input in your application, especially in
JavaScript fragments or to compose URLs, this library can save your life because it was
developed to ensure great security in these areas. Our recommendation is to use the
manual approach versus the SRE. When it comes to security, it’s always better to ana-
lyze and decide, rather than rely on automatic features.

Custom
implementation

Custom
implementation

278 CHAPTER 10 ASP.NET security

 The next section will address a problem that’s similar to two we’ve already
addressed: path canonicalization. This problem is subtle to catch, but it can produce
dangerous vulnerabilities. Let’s take a look at how to prevent them.

10.5 Controlling path composition: path canonicalization vulnerabilities
Path canonicalization is the corresponding threat for file access, as SQL injection is for
SQL queries. Canonicalization is, in general, a process for converting data into a
canonical (or standard) form. With respect to the path, it refers to the action that
builds a path in a safe form. This process is shown in figure 10.9.

As with previous threats, the problem is in how string concatenations are performed.
A web server is protected by default from this attack (also known as directory traversal
vulnerability). If you have your code inside a physical directory named c:\inetpub\
mysite\ and you’re requesting something like http://localhost/../../somefile.txt, the
corresponding physical request won’t be processed. The problem isn’t in how the web
server is processing these requests, but in how you dynamically compose a path. The
path canonicalization issue surfaces in these scenarios.

 Dynamically building a path

It’s common in web applications to compose a path using parameter values. This
method is necessary in various situations: from a downloading system to user-generated
files, dealing with dynamic path building is a common issue. The problem in these sce-
narios is that we can’t trust user input, anymore than we can in other situations. All user
input is potentially evil by default, so we need to take actions to sanitize it.

PROBLEM

Let’s suppose we need to get a parameter via a query string, and we want to use it to
access a file path composed by string concatenation. We want a safe system that com-
poses a path dynamically and avoids path canonicalization vulnerabilities.

..\..\..\..\windows\(...)\applicationHost.config

ReadFile(...)

processing

<configuration>
…
</configuration>

Figure 10.9 Path canonicalization in action. If a malicious user passes special
characters, such as ..\ or .\, that user can alter the routine path and access files
in other directories.

TECHNIQUE 64

279TECHNIQUE 64 Dynamically building a path

SOLUTION

In web applications, parameter values used to compose paths are important. If you need
to build a local file path by using some user input, you’ll probably end up with simple
string concatenation, or you’ll use the Combine() static method of the Path class from
the System.IO namespace. This method is useful because it can handle leading and
trailing slashes automatically, but unfortunately, it can’t deal with directory traversal.

 Let’s suppose a malicious user passes c:\inetpub\mysite as the first part of the path
and ..\..\windows\system32\cmd.exe as the second part. The result will be c:\win-
dow\system32\cmd.exe. This result isn’t the one we want, and, depending on your
application’s behavior, the vulnerability might become quite dangerous.

The best approach in this situation is to check for unwanted characters in the speci-
fied parameter. First, check for invalid characters in the parameter value by using the
GetInvalidFileNameChars() method of the Path class. After that check, you can use
the Combine method. Finally, you perform a last check on the results to make sure the
resulting path starts with the base path. The following listing has the corresponding
code to implement this check.

C#:
public static class PathExtensions
{
 public static string CanonicalCombine(string basePath, string path)
 {
 if (String.IsNullOrEmpty(basePath) || string.IsNullOrEmpty(path))
 throw new ArgumentNullException();

 basePath = HttpUtility.UrlDecode(basePath);
 path = HttpUtility.UrlDecode(path);

 if (path.IndexOfAny(Path.GetInvalidFileNameChars()) > -1)
 throw new FileNotFoundException("FileName not valid");

 string filePath = Path.Combine(basePath, path);
 if (!filePath.StartsWith(basePath))
 throw new FileNotFoundException("Path not valid");

Listing 10.6 An anti-directory traversal routine

Dynamically executing an external program
If you need to dynamically execute an external program originating from a web appli-
cation, the best approach is to instrument it via an external service. In this situation,
the service is responsible for creating the external program process that will run under
its own security mechanism and won’t be directly associated with the web application.

Layering a complex application by using external services is the best deal when
you’re trying to achieve maximum security.

Check for
invalid
chars

B

Use
Path.Combine

C

Check the
composed pathD

280 CHAPTER 10 ASP.NET security

 return filePath;
 }
}

string filPath = PathExtensions.CanonicalCombine(basePath, PathValue.Text);

VB:
Public Module PathExtensions
 Public Function CanonicalCombine(ByVal basePath As String,
 ByVal myPath As String) As String
 If String.IsNullOrEmpty(basePath)
 OrElse String.IsNullOrEmpty(myPath) Then
 Throw New ArgumentNullException()
 End If

 basePath = HttpUtility.UrlDecode(basePath)
 myPath = HttpUtility.UrlDecode(myPath)

 If myPath.IndexOfAny(Path.GetInvalidFileNameChars()) > -1 Then
 Throw New FileNotFoundException("FileName not valid")
 End If

 Dim filePath As String = Path.Combine(basePath, myPath)
 If Not filePath.StartsWith(basePath) Then
 Throw New FileNotFoundException("Path not valid")
 End If

 Return filePath
 End Function
End Module

Dim filePath as string =
 PathExtensions.CanonicalCombine(basePath, PathValue.Text)

This routine checks for invalid chars B and then creates the path using the Combine
method from the System.IO.Path class C. At the end, the composed path is
checked D to ensure that the generated path is still starting using the original path.

 Let’s build a new page to check this routine. We’ll add a simple text box and a but-
ton to submit the value. The results are shown in figure 10.10.

 Path canonicalization affects a lot of applications, and their developers likely don’t
understand the implications of such threats. Inadvertently giving users access to the
server disk is bad in terms of security because often, along with code, the server has
the configuration data. That data could be used to bypass other security defenses.

Check for
invalid chars

B

Use
Path.Combine

C

Check the
composed pathD

Figure 10.10 Path canonicalization is blocked by using our script in listing 10.6.

This protection will ensure that malicious input is always blocked.

281Summary

DISCUSSION

By using simple checks, you can ensure that dynamically built paths will be safe. When
you’re working with paths, you have to try to use, whenever possible, the minimum
privilege necessary to access the file. A read-only Windows access control list (ACL) is
ideal in this scenario to mitigate filesystem access issues. (You wouldn’t put the execu-
tion permission on IIS, and the directory should be located outside the normal web-
site path.)

 With path canonicalization, our stay in the land of ASP.NET code security is near its
end. This chapter hasn’t included any black magic, just simple advice and code.

10.6 Summary
Security is an important topic. It’s fundamental to every application, so this chapter
has been dense with content, tips, recommendations, and examples.

 Always keep in mind that security is especially key for web-based applications, so
don’t procrastinate on implementing it. It’s better to be proactive in this field than to
try to apply patches later. Security is one area of a web application where test-driven
development (TDD) might add a lot of benefits; by implementing a test battery, you
can automate critical scenarios that ensure that your code isn’t targeted by the most
common forms of security attacks.

 Threats like SQL injection, XSS, or directory traversal are difficult to catch when
your code is in production. It’s much better to concentrate on the potential problems
while you’re planning and developing your application than to wait until the prob-
lems surface—and they will surface eventually.

 Security isn’t about difficult magic tricks; it involves simple things, but ones that
you need to take care of. Keep your code simple, don’t worry about performing a
check, and never trust your user input. If you follow these simple rules, your applica-
tion will be more secure!

 Now that we’ve covered code security, it’s time to move on to ASP.NET-specific fea-
tures that address authentication and authorization in web applications. You need to
know how to grant access to specific features of your application to only authorized
users. Turn the page and find out how.

ASP.NET authentication
 and authorization
The previous chapter was about code security and common threats in web applica-
tions. At this point, you have a clear understanding of what security is and how to
avoid problems by analyzing user input. Now it’s time to talk about two important
and somewhat related topics—authentication and authorization.

ASP.NET has great flexibility in terms of authentication and authorization, which
let you control access to web resources based on a different matrix of permissions
by using usernames and roles. By protecting an application from unwanted access,
you can add special features that designated users can use to maximize the usability

This chapter covers
■ Authentication and authorization in ASP.NET
■ FormsAuthentication and WindowsAuthentication
■ UrlAuthorization

■ The Membership and Roles APIs
■ Building custom providers for the Membership and

Roles APIs
282

of the site. An administrator, for example, can just log in and perform tasks like

283Authentication and authorization basics

adding new content, modifying the site settings, or navigating the user list. On the
other hand, a user can log in and participate more actively in the life of the site, add-
ing comments, writing new posts in a forum, or giving feedback about the content. All
these scenarios are regulated by authentication and authorization, which are fully
integrated and supported by the ASP.NET infrastructure. Before moving on, you need
to fully understand how ASP.NET implements their support so that you can gain con-
trol of and customize the default behavior to reflect your needs.

 This chapter will focus on how to use authentication to perform common actions,
like user registration, prompting for a password, or logging in. The bulk of the chap-
ter is dedicated to authorization and authentication, which will help you protect spe-
cial features for normal or anonymous users. A smaller part of the chapter is devoted
to customizing the whole process, which involves replacing the default behavior with
your own business rules.

 The idea behind this chapter is to show you how to add a secure section to your
website by following a simple list of steps. You’ll be able to authorize the right users to
have access to a reserved part of your website. The topics included in this chapter are
valid for both Web Form- and MVC-based applications.

11.1 Authentication and authorization basics
ASP.NET has complete support for both authentication and authorization. We’re
going to start by clarifying what authentication and authorization are in the ASP.NET
infrastructure. A clear definition will help you understand how to change the default
mechanisms to better suite your needs.

The terms authentication and authorization do not represent the same concept. Authentica-
tion is the action associated with determining the identity of the user. Authorization is
the step necessary to grant a user (who could also be anonymous) access to a
requested resource. Both these features are implemented in ASP.NET with HTTP mod-
ules (described in chapter 1), using the events AuthenticateRequest and Authoriz-
eRequest from HttpApplication. ASP.NET provides great flexibility and allows you to
fully change the default behavior. You’ll find more information on extending ASP.NET
in chapter 14, where we look at some more advanced scenarios.

 Authentication and authorization are commonly associated with security because
their function is to protect resources from unwanted access. You can find the options
available in ASP.NET in tables 11.1 and 11.2.

Table 11.1 Authentication options in ASP.NET

Name Description

FormsAuthentication Authentication is performed using a form, and the identity is stored in
a cookie or in the URL. This authentication type is the most common.

WindowsAuthentication This option is used in intranets because it requires Windows. creden-
tials to be sent by the browser.

284 CHAPTER 11 ASP.NET authentication and authorization

You can use any combination of these options. Figure 11.1 shows how the options are
integrated in the ASP.NET pipeline.

In a public web site, the most common options that are used are FormsAuthentica-
tion and UrlAuthorization. FormsAuthentication has the advantage of being useful
when WindowsAuthentication is not. The latter can be used only in intranets, where
the Windows token can be sent by the browser and the need for another validation
mechanism doesn’t add anything to the application. The login is, in fact, performed
when the user is logging in to the operating system, using centralized authentication
storage like Active Directory (AD). WindowsAuthentication is useful only in an
extremely limited set of situations, when the site is internal only.

 On the other hand, FormsAuthentication is used when the authentication token
from the operating system can’t be sent across the boundaries, (which are what fire-
walls and the internet are). It’s also much more flexible because the user storage can
be changed, and you don’t need to create a user in AD.

 You don’t use FileAuthorization unless you want to grant access to resources by
simply using Windows ACLs (by setting permissions on users and groups on the disk).
In 100% of the situations you’ll encounter, you’ll end up using UrlAuthorization,
which lets you map users and roles to a URL inside the application.

 Our next step is to analyze how you can use FormsAuthentication and UrlAutho-
rization in a common scenario to protect the application from unwanted access.

 Using FormsAuthentication and UrlAuthorization

When you’re dealing with a secure section of your website, you need to authenticate

Table 11.2 Authorization options in ASP.NET.

Name Description

UrlAuthorization Authorization is performed using UrlAuthorizationModule, which
checks web.config for authorized users and checks roles against a spec-
ified set of URLs.

FileAuthorization Authorization is performed using the FileAuthorizationModule, by
checking the file ACLs of the requested file. The current thread identity is used.

ASP.NET pipeline HttpModules

Authentication

Authorization
AuthorizeRequest()

AuthenticateRequest()

Figure 11.1 Authentication and authorization modules are integrated in the ASP.NET
pipeline. This figure shows how they interact with the request and response flows.

TECHNIQUE 65
the user with a corresponding pair of username and password inserted in a Web Form.

285TECHNIQUE 65 Using FormsAuthentication and UrlAuthorization

As we previously noted, FormsAuthentication gives its name to the corresponding
class from the System.Web.Security namespace. This class has some helper methods
that you use to initialize the corresponding elements. The best way to learn how to use
FormsAuthentication is to set up a simple example. At the end of this section, you’ll
have mastered this kind of authentication.

PROBLEM

You want to build a system to let users authenticate themselves and access only a part
of your website when they’re logged in. This feature is a common one to implement
and is available in the majority of websites. You also want to let the user sign out to
complete the authentication flow.

SOLUTION

FormsAuthentication supports cookie-based authentication and cookieless authenti-
cation by embedding the token in the URL. The configuration is done via web.config,
under the configuration\system.web\formsAuthentication section.

 Before we move forward, we need to configure this section. The following listing
shows a common configuration.

<authentication mode="Forms">
 <forms
 cookieless="AutoDetect"
 defaultUrl="default.aspx"
 loginUrl="login.aspx"
 enableCrossAppRedirects="false"
 name="security"
 protection="All"
 timeout="60"
 slidingExpiration="true" />
</authentication>

When the cookieless attribute is set to AutoDetect, ASP.NET decides whether to use
cookie or cookieless support, based on the capabilities of the requesting client. The
name attribute contains the name of the corresponding cookie. defaultUrl and log-
inUrl are used to specify the default page after the login and the login page itself.
The timeout attribute, expressed in minutes, is used to control the timeout, and
slidingExpiration lets you renew the ticket every time it’s accessed if it’s set to true.

 When the authentication is performed, a security ticket is issued, using the FormsAu-
thenticationTicket class. In figure 11.2, you can see how the FormsAuthentica-
tion’s HttpModule works.

 The next step is to build a basic interface to collect the username and password.
For now, we won’t check for this combination in a database (which is a completely dif-
ferent topic that we’ll address later in this chapter); right now, we want to focus on
authentication, which is an architectural aspect of your application, not an implemen-
tation detail.

Listing 11.1 A common authorization configuration

Renewed at
every access

286 CHAPTER 11 ASP.NET authentication and authorization

To start granting access to a given resource, we have to call the RedirectFromLoginPage
method from the FormsAuthentication class. The configuration is read from web.con-
fig, so no other actions are required. The following snippet shows how to do this:

C#:
FormsAuthentication.RedirectFromLoginPage("username", false);

VB:
FormsAuthentication.RedirectFromLoginPage("username", False)

The first parameter represents the username, and the last one specifies whether the
ticket must be created as persistent. If this value is set to true, you’ll achieve the
“remember me” feature available in most applications.

 When a user is authenticated, ASP.NET associates an instance of the GenericPrin-
cipal class to the corresponding User property on HttpContext. This instance is of
type IPrincipal. IPrincipal is a special interface used to represent different identity
types inside ASP.NET. It holds an IIdentity that represents the user identity plus its
roles as an array of strings. In the case of FormsAuthentication, the identity is an
instance of FormsIdentity, specifically created for this kind of authentication.

ACCESSING THE CURRENT PRINCIPAL You can access the current principal,
holding both the identity and roles, via the User property of the HttpContext
singleton class (using the Current property), or directly via the User property
on the Page class.

To display the current username, all you have to do is use code like this:

C#:
string username = HttpContext.Current.User.Identity.Name;
bool isAuth = HttpContext.Current.User.Identity.IsAuthenticated;

VB:
Dim username as String = HttpContext.Current.User.Identity.Name
Dim isAuth as Boolean = HttpContext.Current.User.Identity.IsAuthenticated

Now it’s time to make our default page secure. To specify this rule, we have to add a
special configuration fragment to our web.config because URL authorization will
check the configuration\system.web\authorization section for the fragment. A sample

User credentials

FAModule

Ticket+Principal
User login

Figure 11.2 The FormsAuthenticationModule issues a new ticket, plus a new principal
with the correct user credentials. The ticket will be used for the rest of the requests.
configuration is available in the following listing.

287TECHNIQUE 65 Using FormsAuthentication and UrlAuthorization

<authorization>
 <allow users="daniele,stefano,marco" />
 <deny roles="normaluser" />
 <deny verbs="POST" />
</authorization>

URL authorization supports allow or deny policies, plus the type of resource to be
secured: users, roles, or HTTP verbs. By default, ASP.NET contains an allow policy for *
users, and if the authorization isn’t granted, a 401 HTTP status code is returned.

 For users, * means every user, and ? represents an anonymous one. Note that the
rules are applied using a short-circuiting mechanism: the first true rule will exit, and
the others will not be evaluated.

 To protect a single page or directory from anonymous user access, you have to use
a configuration like the one in the following listing.

<configuration>
 <location path="default.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
</configuration>

Local rules will always be evaluated before the general ones, so be careful when you
set them.

 When a user accesses the default.
aspx page as anonymous, the UrlAutho-
rizationModule intercepts the request
and automatically redirects the user to
the login page, passing the return URL
via the ReturnUrl query-string parame-
ter. After the login, the user is redirected
to the requested page; if the parameter
is empty, the defaultUrl attribute from
web.config is used. You can see this
mechanism in action in figure 11.3.

MORE FLEXIBILITY IN AUTHENTICATION AND SIGNOUT If you need more flexibility
(you don’t want to automatically redirect the user), you can use the SetAuth-
Cookie () method on the FormsAuthentication class. Despite its name, it
works with cookieless authentication, too.

To clear the authentication cookie and sign out the user, you can use the

Listing 11.2 The authorization configuration element

Listing 11.3 Configuration to prevent anonymous access from default.aspx

Figure 11.3 The login page displays username
as the current user after the user login. You can
customize this page so the user can find the most
relevant stuff when they’re logged in.
SignOut method.

http://openid.net/

288 CHAPTER 11 ASP.NET authentication and authorization

By using FormsAuthentication, you don’t need to take care of the code associated with
creating a ticket, validating it, or destroying it. With UrlAuthorization, the entire infra-
structure regulates access to available pages to designated groups of users only.

 You need to understand that in an ASP.NET application it doesn’t make sense to
write your own authentication and authorization mechanism; you can customize the
behavior of these building blocks for your own needs.

DISCUSSION

FormsAuthentication and UrlAuthorization are fundamental when you’re dealing
with application security in ASP.NET. The example shown in this section doesn’t con-
tain anything other than the core code necessary to handle authentication and autho-
rization. In a typical application, you’ll need to authenticate a user against a database,
but this task is repetitive and can lead to code duplications, or worse, bugs.

 When you need to authenticate against a database, the Membership API and Roles
API come to the rescue so that you can focus on the application features. In the next
section, you’re going to learn about these APIs, using FormsAuthentication and Url-
Authorization as the pillars for your implementation.

11.2 Handling user authentication: introducing the
Membership API
The Membership API is a set of programming APIs used to interact with membership
features inside an ASP.NET application. The Membership API is based on the Provider
Model design pattern.

 Provider Model is a variant of the Strategy pattern, whereby the implementation
details can be selected at runtime. As shown in figure 11.4, Strategy is an abstract type
declaring a common interface, used by the ConcreteStrategy (the algorithm imple-
mentation). Context uses the common interface to execute the algorithm implemen-
tation given by ConcreteStrategy and holds a reference to this concrete object.

Context

+ContextInterface()

Strategy

+AlgorithmInterface()

ConcreteStrategyA

+ContextInterface()

ConcreteStrategyB

+ContextInterface()

strategy

Figure 11.4 The Provider Model design pattern is based on the Strategy pattern, so their
diagrams are similar. For each Strategy, one or more ConcreteStrategies exist.

289TECHNIQUE 66 Implementing a user login using the Membership API

In the Membership API, the Membership class from System.Web.Security corre-
sponds to the Context, and the MembershipProvider class is the Strategy. Depending
on the concrete implementation (the storage you want to query for membership
information), you’ll have a specific class for the ConcreteStrategy; for SQL Server,
this class is SqlMembershipProvider.

 The advantage of this approach is that the API will never change and neither will
the provider-base class (the interface). You can swap concrete implementations (the
providers themselves) without changing anything else. This approach is especially use-
ful when you’re building your application from scratch because it lets you concentrate
on other aspects of your design. You’ll have a building block ready to be used to
implement a repetitive task.

 Under the hood, the Membership API is built on the ASP.NET pipeline, so it lever-
ages both FormsAuthentication and UrlAuthorization

 To move on with our step-by-step guide to building a secure section in our website,
we need to start implementing a simple application using the Membership API to
grant access to a user who’s logged in. We’re going to implement two of the most com-
mon features in an application: registration and login. At the end of this section, you
will have added a working, secure section to your website.

 Implementing a user login using the Membership API

The Membership API is what we need to use to add a login feature to our site. Because
we’re using the Provider Model design pattern, you just need to understand how to
leverage this model to use the providers already available with ASP.NET and build a
simple login system. The aim of the Membership API is to make you productive by let-
ting you change the inner logic using a simple provider mechanism.

PROBLEM

We want to build a secured section on our site, using the Membership API to grant
access to our reserved area to authenticated users only. We want to provide a complete
experience, so we’ll build user registration, password reminder/reset, and user login.

SOLUTION

Thanks to Provider Model, which was introduced in version 2.0, the login process in
ASP.NET is easy to implement. The Membership API uses a dependency injection to
read the configuration from the web.config configuration\system.web\member-
ship\providers section, so you can change the provider without changing the code. If
you need to change the implementation, all you need to do is change the default pro-
vider used in web.config. Neither the API nor the interface will change, and you don’t
need to alter any part of your code to reflect a different implementation.

 This feature is important when you’re building applications that target different
customers. You can change the provider that’s used from SQL Server to Oracle if your
customer needs it, and you’re done; you don’t have to change anything else to imple-
ment this particular feature.

TECHNIQUE 66

290 CHAPTER 11 ASP.NET authentication and authorization

The Membership API ships in ASP.NET with two providers:

■ SqlMembershipProvider supports SQL Server 7, 2000, 2005, and 2008 (even in
Express/MSDE flavors)

■ ActiveDirectoryMembershipProvider is specific for AD use in an intranet

For our example, we’ll use SqlMembershipProvider to store the users in a SQL Server
database because it’s more common than using AD. Either way, the approach is identi-
cal because they both share the same base.

 To start, you need to launch the aspnet_regsql.exe command-line tool under the
.NET Framework directory (C:\Windows\Microsoft.NET\Framework\v4.0.30319\). This
tool builds the database for you, so you can store the users in SQL Server. Figure 11.5
shows the wizard in action.

 The typical user configuration in web.config that enables the SQL Server provider
for the Membership API is shown in the following listing.

<membership defaultProvider="SqlServerMembership">
 <providers>
 <clear />
 <add name="SqlServerMembership"
 type="System.Web.Security.SqlMembershipProvider, System.Web,

Listing 11.4 The SqlMembershipProvider web.config configuration

Figure 11.5 The aspnet_regsql.exe tool, when launched without other parameters, has
a graphical wizard for configuring the database. You can also launch it programmatically
with parameters to create the schema in unattended mode.
 Version=4.0.0.0, Culture=neutral,

291TECHNIQUE 66 Implementing a user login using the Membership API

 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="SqlServer"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false"
 applicationName="/"
 requiresUniqueEmail="true"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="7"
 minRequiredNonalphanumericCharacters="1"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
</membership>

The default Membership provider for SQL Server uses a custom set of stored proce-
dures and tables. If you already have a database in place, you need to use a custom
provider, which is addressed later in this chapter.

 The applicationName attribute is important because the default provider for SQL
Server supports multiple applications in the same database; this attribute indicates the
name of the current application. If you omit this value, the default virtual directory
path is used. Table 11.3 lists the methods that are most often used with the Member-
ship class.

The class members in the Membership API are not directly called in your code;
because they’re part of the Framework, they’ll remain the same. They use the
defined Membership provider specified in web.config, so the code can be predeter-
mined. For that reason, ASP.NET contains a number of custom controls that automate
the corresponding scenarios, so you can take advantage of them without explicitly
writing any code.

 Let’s take a look at some common scenarios with corresponding solutions that use
ASP.NET controls and Membership API features.

Registering a new user
If you need to create a new user, you can use the CreateUserWizard control, as in the

Table 11.3 Methods most often used with the Membership class

Name Description

ChangePassword Changes the password of the specified user.

CreateUser Creates a new MembershipUser.

DeleteUser Deletes the specified user.

GetUser Gets the specified MembershipUser, given the username.

ValidateUser Validates the username and password with a Boolean response.

Provider to be used
Provider
connection
stringPassword is hashed

Application name
following listing.

292 CHAPTER 11 ASP.NET authentication and authorization

<asp:CreateUserWizard ID="CreateUserWizard1" runat="server">
 <WizardSteps>
 <asp:CreateUserWizardStep runat="server" />
 <asp:CompleteWizardStep runat="server" />
 </WizardSteps>
</asp:CreateUserWizard>

The CreateUserWizard control adds a simple
wizard to create the user, as shown in figure 11.6.

THE MEMBERSHIP API IS JUST FOR...
MEMBERSHIP! Membership information is
about collecting a username, an email
address, and a password. So the Membership
API (and providers) supports only this kind of
information. If you need to append more
properties to a user, you don’t need to extend
the Membership API; instead, you use a new
provider-based feature called the Profile API.
We’ll cover this API in detail in chapter 13.

You literally don’t need to write a single line of code to implement user registration;
the magic is performed by the CreateUserWizard control, which automatically
invokes the CreateUser method of the Membership class (that will use the correspond-
ing concrete provider specified in web.config).

Implementing user login
As in the previous example, the login is performed by a specific control: the Login
control. Behind the scenes, this control uses the authentication settings in web.config,
which in this case is FormsAuthentication. The following snippet contains the corre-
sponding markup used to display a login form:

<asp:Login ID="Login1" runat="server" />

This control is simple to use, and it’s powerful—
it automatically performs the associated action. A
screenshot of the control is shown in figure 11.7.

 In its simplicity and power, this control is
probably the most tangible sign of the force of
the Membership API: just write a single line of
markup in your page, and it automatically takes
care of tasks like validating user input, perform-
ing calls to the provider, and notifying the user.

Recovering or changing the user password
If you need to reset the user password, you use the

Listing 11.5 Using the CreateUserWizard to create a new user

Figure 11.6 The CreateUserWizard
control displays a list of fields that let the
user register in your application. You can
customize this control using a template.

Figure 11.7 The Login control
renders a simple pair of fields. The
user enters a username and
password; if they’re correct, the
PasswordRecovery control. To change the user user is logged in to the application.

293TECHNIQUE 66 Implementing a user login using the Membership API

password while the user is logged in, a ChangePassword control is available. The follow-
ing snippet contains the markup necessary to implement the password recovery feature:

<asp:PasswordRecovery ID="PasswordRecovery1" runat="server" />

PasswordRecovery control supports body and subject personalization for the gener-
ated email. You’ll find more information in the documentation on MSDN at http://
www.mng.bz/NK3v.

DISCUSSION

The Membership API lets you take advantage of the controls that ASP.NET provides.
The default providers will work in many situations, but even if you need to target dif-
ferent storage or a complex logic, the approach remains the same: thanks to Provider
Model, all you need to do is change the concrete implementation (the provider) and
not the rest of the code.

 If you’re comfortable with the default providers, you can insert this type of feature
in your applications with little effort, and with no code at all, in just a couple of min-
utes. Not only that, this code is tested and developed by Microsoft to be safe, robust,
and scalable. How cool is that?

 Next up, we’re going to look at some other controls to complete the picture we’re
making of ASP.NET security.

Other security controls
You can use other security controls to enhance the features related to authentica-
tion and authorization in ASP.NET, and increase your productivity at the same time.
Table 11.4 contains a list of the security controls you can use in ASP.NET. Using these
controls, you can write less code to implement the corresponding features.

The Membership API lets you quickly implement all you need to use security in your
application, but sometimes you just need to group users to simplify policy manage-

Table 11.4 ASP.NET security controls

Name Description

ChangePassword Changes the password of the user who is currently logged in.

CreateUserWizard Creates a new user.

Login Provides the login form and authenticates the user.

LoginName Displays the current username.

LoginStatus Shows a login link when the user is anonymous, or a logout link
when the user is logged in.

LoginView Provides an alternate view for anonymous and logged-in users.

PasswordRecovery Recovers a user password.
ment. If this is what you need to do, the Roles API was invented for you.

http://www.mng.bz/NK3v
http://www.mng.bz/NK3v

294 CHAPTER 11 ASP.NET authentication and authorization

11.3 Adding support to roles using the Roles API
In real-world applications, it’s often useful—and necessary—to divide users into
groups. By using groups, you specify a common set of rules to all users in the group
and assign the group to roles. In this way, you can assign an entire group of users who
perform similar actions to a particular role.

 Using groups of users lets you easily define your security policy. You can specify, for
example, that the Editor group is the one in which the users with editing permissions
on your application will reside. You can protect your resources using a specific role.
When someone needs to be added to this role, you don’t need to specifically map this
new user to the set of pages that implements this feature; instead, you simply add that
user to the corresponding role. This process can greatly simplify your work, especially
in large applications where it’s difficult (if not impossible) to work with explicit per-
missions on individual users, but it’s more pragmatic to work using groups.

 Roles are fully supported in ASP.NET by the Roles API and Roles providers. Let’s
take a look at how to implement role-based authentication and authorization to our
existing secured site section.

 Implementing a role-enabled login using Roles API

The Roles API is similar to the Membership API in terms of simplicity and power. To
implement a role-enabled login, you need to leverage the Membership API; the Roles
API is only about roles, not user management. This scenario is based on the login sys-
tem we worked on in section 11.2. After you’ve completed the code, the user can log
in, and you’ll be able to assign users to roles.

PROBLEM

You need to grant only administrative users access to a given directory (named
admin). You’re going to configure the Roles API to use the SQL Server provider and
specify the related authorization rules.

SOLUTION

Let’s take a step back to technique 65. Just like every authentication mechanism in
ASP.NET, FormsAuthentication is based on concrete IPrincipal and IIdentity
implementations. As we’ve already discussed, the security principal is composed of the
Identity and the user roles.

 The Roles API is composed of the providers and the API itself, plus a special Http-
Module: the RoleManagerModule in System.Web.Security. This module is responsible
for handling the PostAuthenticateRequest event on HttpApplication and for gen-
erating a new RolePrincipal instance that’s associated with the current thread princi-
pal. The result is the ability to use roles via the User property on HttpContext, which
you saw in technique 65. The current Identity is preserved, so you can use the Roles
API with all types of authentications, not just forms-based ones. Figure 11.8 shows how
the RoleManager’s HttpModule works.

 Roles API features are handled by the RoleManager, which is disabled by default.

TECHNIQUE 67
You have to enable it and register a corresponding provider in the web.config file.

295TECHNIQUE 67 Implementing a role-enabled login using Roles API

The Roles API uses the Provider Model design pattern, just like the Membership API
does (see section 11.2 for more information about this design pattern). A typical con-
figuration is shown in the following listing.

<roleManager enabled="true" defaultProvider="SqlServerRoles"
 cacheRolesInCookie="true" cookieProtection="All">
 <providers>
 <add name="SqlServerRoles"
 connectionStringName="SqlServer"
 applicationName="/"
 type="System.Web.Security.SqlRoleProvider, System.Web,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
</roleManager>

Similar to what we did to create a Membership provider, we need to declare a connec-
tion string. The attribute cacheRolesInCookie is useful here; when this attribute is set
to true, the roles are cached in a cookie and a query isn’t performed every time the
roles associated with the user are requested.

 Compared to the Membership API, the Roles API is quite invisible. No controls
take direct advantage of its features (except for LoginView, which can provide differ-
ent views based on roles).

 A Role provider is based on the abstract class RoleProvider, from System.
Web.Security. ASP.NET includes support for SQL Server via the SqlRoleProvider class
and via WindowsTokenRoleProvider for Windows-based authentication. In table 11.5,
you’ll find the methods in the RoleProvider class that are used most often.

Listing 11.6 Roles API configuration

Table 11.5 Roles API most-used methods

Name Description

AddUsersToRoles Adds the specified usernames to the passed roles.

CreateRole Creates a new role.

DeleteRole Deletes an existing role.

User credentials

RoleManModule

Principal+Roles
User login

Figure 11.8 The RoleManager module changes the current principal to inject the user
roles. The user ticket is renewed and the roles are added.

296 CHAPTER 11 ASP.NET authentication and authorization

Even though it’s legitimate to check for user roles using IPrincipal and its IsInRole
method (if you need to do that programmatically), it’s more common to use UrlAu-
thorization to grant access to selected pages only. You can do this by using the con-
figuration shown in the following listing.

<location path="admin">
 <system.web>
 <authorization>
 <allow roles="administrators" />
 <deny users="*" />
 <deny users="?" />
 </authorization>
 </system.web>
</location>

To programmatically add a user to a given role, we have to implement a series of
checks, as in the next listing.

C#:
string roleName = "administrators";
if (!Roles.RoleExists(roleName))
 Roles.CreateRole(roleName);

if (!Roles.IsUserInRole(roleName))
 Roles.AddUserToRole(User.Identity.Name, roleName);

VB:
Dim roleName As String = "administrators"
If Not Roles.RoleExists(roleName) Then
 Roles.CreateRole(roleName)
End If

If Not Roles.IsUserInRole(roleName) Then
 Roles.AddUserToRole(User.Identity.Name, roleName)

FindUsersInRole Finds all users in a given role.

GetAllRoles Retrieves the complete list of roles.

GetRolesForUser Gets the roles for the specified username.

IsUserInRole Determines whether the user is in the specified role.

RemoveUsersFromRoles Removes the users from the passed roles.

RoleExists Checks whether a role already exists.

Listing 11.7 Policy to allow only adminstrators to the admin directory

Listing 11.8 Create a role and add a user to it

Table 11.5 Roles API most-used methods (continued)

Name Description
End If

297TECHNIQUE 67 Implementing a role-enabled login using Roles API

You have to check whether a role exists before you create it; otherwise, you’ll get an
exception. This same consideration applies to mapping a user to a role.

 If a user without the requested role is accessing your protected page, that user will
be redirected to the login page. To ensure that the user understands why they’re
being redirected to the login page even though they’re logged in, you can show a spe-
cific message similar to that shown in figure 11.9 using the LoginView control, as in
the following listing.

 <asp:LoginView runat="server">
 <AnonymousTemplate>
 <asp:Login ID="Login1" runat="server" />
 </AnonymousTemplate>
 <LoggedInTemplate>
 We're sorry, the page you requested is not available to your role.
 </LoggedInTemplate>
 </asp:LoginView>

You’ve implemented roles support, so
your solution is ready. Contrary to
the Membership API example, you
had to write some code to accomplish
your task. Roles API features are
mostly used in administration pages,
so you don’t have to use any controls,
except the LoginView control. You’ve
added roles support to an existing
application with few modifications;
by doing so, you’ve gained more con-
trol over authorization.

DISCUSSION

With the Roles API in place, authentication is complete, and you can take full advan-
tage of ASP.NET security mechanisms to grant or deny access to your resources.

 A Roles provider doesn’t need to work with the corresponding Membership pro-
vider. You can combine different strategies, even if you’ll probably end up using the
same storage. The same considerations apply to both the Membership API and the
Roles API. The example we used in this section is based on the SQL Server provider,
but given the nature of the Provider Model pattern, you only need to change the pro-
vider to make these features work with other forms of storage (database, XML, or
whatever custom system you have).

 The next section is about custom providers for authentication and roles. We’ll
cover everything from building them from scratch to using third-party providers.
When you need to use a different database, or you simply want more control over the

Listing 11.9 Message for why access is denied to a protected area

Figure 11.9 You can display a personalized
message when a user is denied access because their
role doesn’t permit it. You can further personalize
this page to offer more instruction to your user.
provider’s inner data storage strategy, you need a custom provider.

298 CHAPTER 11 ASP.NET authentication and authorization

11.4 Custom providers for the Membership and Roles APIs
When you’re building an application from scratch, using the default schema provided
by ASP.NET isn’t a problem. If you need to take additional steps because you need to
control your database schema, you have specific logic behind your users, or you simply
want to target a different kind of storage, what you need is a custom provider.

 Both the Membership and Roles APIs are built with extensibility in mind, so devel-
oping a provider is not terribly difficult: you just need to overwrite a couple of meth-
ods in the respective abstract base classes. Because this scenario is based on the
example we used in the previous section, you can use the same code as before. And
the results you’ll get will be interesting.

 Other providers

ASP.NET doesn’t include providers other than the ones for SQL Server and AD. But in
most scenarios, you’ll want to provide the same functionalities using a different kind
of storage. You’ll be glad to hear that you can indeed have a provider ready for other
kinds of storage. You can find them easily and quickly start building your application.
In this section, you’ll learn the most common solutions to this issue.

PROBLEM

Different kinds of storage need different providers. Because they’re not distributed
with ASP.NET, the following sections present the best providers for the most widely
used authentication stores. You can freely download all of these from the internet.

SOLUTION 1: SQL SERVER

SQL Server providers are supported directly by the ASP.NET Class Library itself.
The SqlMembershipProvider and SqlRoleProvider classes are in the System.Web.
Security namespace. For more information, see technique 66.

 Source code is available under a permissive license (for both commercial and non-
commercial use) at http://www.mng.bz/uIY7. You’ll find the source code useful if you
need to alter the provider behavior but still want to use its database schema, or you
just want to start using SQL Server with different tables for the storage.

SOLUTION 2: ACTIVE DIRECTORY

Support for AD is offered by the ActiveDirectoryMembershipProvider class in the
System.Web.Security namespace. When developers use AD, they most often use Win-
dows authentication; the AspNetWindowsTokenRoleProvider class provides support
for the Roles API via the Windows authentication token, which is shown in the follow-
ing listing.

<connectionStrings>
 <add connectionString="LDAP://bochicchio.local/CN=Users,
 DC=bochicchio,DC=local" name="ActiveDirectory"/>
</connectionStrings>

Listing 11.10 Active Directory provider configuration

TECHNIQUE 68
...

http://www.mng.bz/uIY7

299TECHNIQUE 68 Other providers

<membership defaultProvider="ActiveDirectory">
 <providers>
 <add name="ActiveDirectory"
 type="System.Web.Security.ActiveDirectoryMembershipProvider,
 System.Web, Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 attributeMapUsername="SAMAccountName"
 connectionStringName="ActiveDirectory"
 connectionUsername="bochicchio.local\SAUser"
 connectionPassword="password" />
 </providers>
</membership>

<roleManager enabled="true"
 defaultProvider="AspNetWindowsTokenRoleProvider" />

You don’t need to modify anything else to use this provider; the configuration is done
via the web.config file.

SOLUTION 3: ACCESS

Access is quite popular, especially in applications deployed to shared hosting, where
SQL Server is not always available. You can download the Access provider from the
Microsoft website at http://www.mng.bz/mEW7.

 This provider is distributed with code (C# only), and needs to be compiled. Config-
uration information is provided in the download file. If you have a VB solution, you can
compile the C# source code and reference the compiled version directly in your project.

SOLUTION 4: ORACLE

Oracle providers are created by Oracle Corporation, and they’re available at http://
www.mng.bz/1OD6. They’re free and they support versions 9.2, 10.1, 10.2, and 11g.

SOLUTION 5: MYSQL

MySQL providers are available as part of MySQL Connector/Net 6.3.6 (or later) at
http://www.mng.bz/54k7 (under a GPL license).

 You need to add a reference to MySql.Web.dll, located under the installation path.
You also need to set the autogenerateschema attribute on the provider configuration
to true so that the provider builds the corresponding schema in your database the
first time you run it.

SOLUTION 6: A GENERIC ODBC IMPLEMENTATION

If you need a generic Open Database Connectivity (ODBC) solution (one that works with
any database that supports ODBC drivers), you can find one at http://www.mng.bz/
0APS. You’ll probably need to adapt the SQL queries to your engine dialect.

DISCUSSION

There are so many providers out there that you’re sure to find one that meets your
specific needs. The list we provided for you in this section includes the databases that
are used the most. You’ll probably find that one of these or one of the other ones that
exist will serve you well, but just in case you can’t find a provider ready for your

authentication (and role) needs, take a look at the next section to learn how to build

http://www.mng.bz/mEW7
http://www.mng.bz/1OD6
http://www.mng.bz/1OD6
http://www.mng.bz/54k7
http://www.mng.bz/0APS
http://www.mng.bz/0APS

300 CHAPTER 11 ASP.NET authentication and authorization

a custom provider. You’ll be able to adapt your own logic to use in the standard
ASP.NET flow for authentication and authorization. You’ll use the same features, but
you’ll perform a customized set of actions.

 Building custom Membership and Role providers

The default schema used by the Membership and Role providers for SQL Server is
flexible, but it’s not designed for a specific purpose. These providers have redundant
data to support globalization and a GUID key for the user table to support replication.
They also support multiple applications in a single database, but that isn’t necessarily
useful in our scenario.

 In everyday applications, you don’t need this much flexibility because you gener-
ally know what your constraints are. More likely, you’ll need a subset of the previous
features, and by realizing a custom strategy, you can achieve better performance and
totally control the database schema. Or, you might prefer to use something else to
store you user credentials and roles; you’re limited only by the code that you’ll write in
the providers.

 It’s easy to build a custom provider, so let’s get down to business. This solution will
better fit our needs, and you’ll have a customized experience. At the end of this sec-
tion, you’ll be able to completely customize the actions related to authenticating and
authorizing user access to your secure application.

PROBLEM

To gain flexibility and ease of use, we want to use the Entity Framework (see chap-
ters 2 and 3 for more details) and map our tables in an easy way; we already have the
users in a database table and we don’t want to change our database schema. To
accomplish this task, we need to build two custom providers: one for the Member-
ship API and one for the Roles API.

SOLUTION

When you’re building these kinds of custom providers, you’re trying to apply your
own rules to authenticate the users and load their roles. To start writing your own pro-
vider, you need to implement the base abstract classes MembershipProvider and
RoleProvider from the System.Web.Security namespace.

 Because both of these classes are abstract, you have to manually implement every
single method and property to fully compile them. That doesn’t mean that you have to
explicitly provide working code in every method; if you don’t need to perform a specific
action, all you have to do is throw an exception to notify a third-party developer working
on your project that the method they’re trying to use isn’t being implemented.

 To make things easy, in this example we’ll use a database similar to the one in fig-
ure 11.10.

 The schema is simple and is composed of the following tables:

■ Users—Contains the users
■ Roles—Contains the roles

TECHNIQUE 69
■ UsersInRoles—Maps the users to the roles

301TECHNIQUE 69 Building custom Membership and Role providers

To start, we can use the example from technique 66 and add two new classes:
one implements the Membership provider and the other implements the Roles
provider.

MembershipProvider has a lot of properties and methods. For our implementa-
tion, we’ll provide a constant value for properties and implement only the method
necessary to validate the user, create a new user, and get the user details. If you plan to
use this provider for your own database schema, you’ll need to read the configuration
from the web.config file, which is a more flexible way to do it. For our simple starting
example, we don’t need to do that.

 To speed up development, we’re
choosing the Entity Framework to map
our tables to objects and to realize our
object model. The results are shown in
figure 11.11.

 The Entity Framework is hiding the
UsersInRoles table used for the relation-
ships, so both the User and Role entities
have a relationship to provide the associ-
ated roles to a user, or the associated
users to a role, respectively.

The Membership provider
The schema we’ve used in this example is quite simple and lets us concentrate on the
implementation. In a working solution, you’ll probably need to add advanced fea-
tures, such as account lockout or user registration date. The Membership API does
support these features, but our provider doesn’t implement them so we can concen-
trate on the main problem. You can add them by simply extending the database
schema and writing the appropriate code.

Figure 11.10 The database schema we’ll use for our
custom providers. This schema is simpler than the one
used by the default providers.

Figure 11.11 The object model in the Entity
Framework is similar to the database schema,
except for the UsersInRoles table; that table is
used to map the many-to-many relationship.

302 CHAPTER 11 ASP.NET authentication and authorization

 With the schema in place and the mapping completed, the provider code will be
similar to that shown in the following listing. (The code we’ve included isn’t com-
plete; only the relevant parts are included.)

C#:
public class DBMembershipProvider: MembershipProvider
{
 public override string ApplicationName
 {
 get {return "/";}
 set {}
 }

 public override bool ValidateUser(string username, string password)
 {
 using (UsersEntities ctx = new UsersEntities())
 {
 return ctx.UserSet.Count(user =>
 user.Username.Equals(username) &&
 user.Password.Equals(password))==1;
 }
 }
...
}

VB:
Public Class DBMembershipProvider
 Inherits MembershipProvider
 Public Overloads Overrides Property ApplicationName() As String
 Get
 Return "/"
 End Get
 Set(ByVal value As String)
 End Set
 End Property

 Public Overloads Overrides Function ValidateUser(
 ByVal username As String, ByVal password As String) As Boolean
 Using ctx As New UsersEntities()
 Return ctx.UserSet.Count(Function(user)
 user.Username.Equals(username) AndAlso
 user.Password.Equals(password)
) = 1
 End Using
 End Function
...
End Class

The code in this listing performs a basic step in the provider by logging in the
user. The rest of the code is omitted, but you can appreciate how the custom pro-
vider will work. For example, if you need to control the user registration, you can

Listing 11.11 The custom Membership provider code

Login with
our model

Login with
our model
use this code:

303TECHNIQUE 69 Building custom Membership and Role providers

C#:
 public override MembershipUser CreateUser(string username,
 string password, string email, string passwordQuestion,
 string passwordAnswer, bool isApproved, object providerUserKey,
 out MembershipCreateStatus status)
 {
 using (UsersEntities ctx = new UsersEntities())
 {
 MembershipUser u = new MembershipUser(this.Name, username,
 username, email, passwordQuestion, string.Empty, true, false,
 DateTime.Now, DateTime.Now, DateTime.Now,
 DateTime.Now, DateTime.Now);

 User user = new User();
 user.Username = username;
 user.Password = password;
 user.Email = email;
 ctx.AddToUserSet(user);

 ...

 try
 {
 ctx.SaveChanges();
 }
 catch
 {
 status = MembershipCreateStatus.ProviderError; return null;
 }

 status = MembershipCreateStatus.Success;
 return u;
 }
 }

VB:
Public Overloads Overrides Function CreateUser(ByVal username As String,
 ByVal password As String, ByVal email As String,
 ByVal passwordQuestion As String,
 ByVal passwordAnswer As String,
 ByVal isApproved As Boolean,
 ByVal providerUserKey As Object,
 ByRef status As MembershipCreateStatus)
 As MembershipUser
 Using ctx As New UsersEntities()
 ' let's compose the user
 Dim u As New MembershipUser(Me.Name, username, username, email,
 passwordQuestion, String.Empty, True,
 False, DateTime.Now, DateTime.Now,
 DateTime.Now, DateTime.Now,
 DateTime.Now)

 Dim user As New User()
 user.Username = username
 user.Password = password
 user.Email = email

Create Membership-
User instance

Check for
conflicts

If the user
is created

Create Membership-
User instance
 ctx.AddToUserSet(user)

304 CHAPTER 11 ASP.NET authentication and authorization

 ...

 ' updating...
 Try
 ctx.SaveChanges()
 Catch
 ' there was an error
 status = MembershipCreateStatus.ProviderError
 Return Nothing
 End Try

 ' successfully created
 status = MembershipCreateStatus.Success
 Return u
 End Using
 End Function

Similarly, to retrieve the user information, you have to use the Entity Framework in
the GetUser method of your provider:

C#:
public override MembershipUser GetUser(string username, bool userIsOnline)
 {
 using (UsersEntities ctx = new UsersEntities())
 {
 User u = ctx.UserSet.FirstOrDefault(
 x => x.Username.Equals(username));
 if (u == null)
 return null;

 return new MembershipUser(this.Name, username, username, u.Email,
 string.Empty, string.Empty, true, false, DateTime.Now,
 DateTime.Now, DateTime.Now, DateTime.Now,
 DateTime.Now);
 }
 }

VB:
Public Overloads Overrides Function GetUser(ByVal username As String, ByVal

userIsOnline As Boolean) As MembershipUser
 Using ctx As New UsersEntities()
 Dim u As User = ctx.UserSet.FirstOrDefault(
 Function(x) x.Username.Equals(username)
)
 If u Is Nothing Then
 Return Nothing
 End If

 Return New MembershipUser(Me.Name, username, username, u.Email,
 String.Empty,
 String.Empty,
 True, False,
 DateTime.Now,
 DateTime.Now,
 DateTime.Now,
 DateTime.Now,
 DateTime.Now)
 End Using

Check for
conflicts

If the user
is created

Retrieved by Entity
Framework

Retrieved by Entity
Framework
 End Function

305TECHNIQUE 69 Building custom Membership and Role providers

The rest of the code will implement the mandatory properties and methods. If you
don’t want to use a specific method, you can throw a NotImplementException. Doing
so will notify the developer who will use the provider that only specific features are
implemented. The following snippet contains an example:

C#:
public override bool EnablePasswordReset
 {
 get { return false; }
 }

 ...

 public override bool RequiresUniqueEmail
 {
 get { return true; }
 }

 public override bool ChangePassword(string username,
 string oldPassword, string newPassword)
 {
 throw new NotImplementedException();
 }

VB:
 Public Overloads Overrides ReadOnly Property RequiresUniqueEmail()
 As Boolean
 Get
 Return True
 End Get
 nd Property

 Public Overloads Overrides Function ChangePassword(
 ByVal username As String, ByVal oldPassword As String,
 ByVal newPassword As String) As Boolean
 Throw New NotImplementedException()
End Function

We can now use our custom code to authenticate the user by just changing the pro-
vider in web.config, without modifying the rest of the application.

 To register the provider, you need to add this snippet to your web.config:

<membership defaultProvider="DBServerMembership">
 <providers>
 <clear />
 <add name="DBServerMembership" type="DBMembershipProvider, App_Code" />
 </providers>
</membership>

The Membership API is invoked by the controls, so you don’t need to do anything else
to change the implementation. This example highlights the true power of the Pro-
vider Model pattern in action!

The Role provider
To complete our task, we have to create the Role provider. The code is similar to the

Specific
exception

Specific
exception
code for the Membership provider, but we need to implement the method related to

306 CHAPTER 11 ASP.NET authentication and authorization

creating a role, check for role availability, assign a user to a role, and check for a user
in a given role. These features are the minimum requirements for experimenting with
the Roles API.

 The only difficult part to implement for the Role provider is the relation. To load the
roles for a particular user, you have to use the SelectMany extension method. This
method can generate a flat view from a relation like the one we used in our object model.

 The next listing contains the code for the Roles API custom provider.

C#:
public class DBRoleProvider: RoleProvider
{
 public override void AddUsersToRoles(string[] usernames, string[]

roleNames)
 {
 using (UsersEntities ctx = new UsersEntities())
 {
 string username, roleName;
 for (int i = 0; i < usernames.Length; i++)
 {
 username = usernames[i];
 User u = ctx.UserSet.FirstOrDefault(
 user => user.Username.Equals(username));

 if (u != null)
 {
 for (int j = 0; j < roleNames.Length; j++)
 {
 roleName = roleNames[i];
 Role r = ctx.RoleSet.FirstOrDefault(
 role => role.RoleName.Equals(roleName));
 u.Roles.Add(r);
 }
 }
 }

 ctx.SaveChanges();
 }
 }
...
}

VB:
Public Class DBRoleProvider
 Inherits RoleProvider

 Public Overloads Overrides Sub AddUsersToRoles(
 ByVal usernames As String(), ByVal roleNames As String())
 Using ctx As New UsersEntities()
 Dim username As String, roleName As String
 For i As Integer = 0 To usernames.Length - 1
 username = usernames(i)

Listing 11.12 The custom Role provider code

Check for
username
in array

Add user
to role
 Dim u As User = ctx.UserSet.FirstOrDefault(

307TECHNIQUE 69 Building custom Membership and Role providers

 Function(user) user.Username.Equals(username))

 If u IsNot Nothing Then
 For j As Integer = 0 To roleNames.Length - 1
 roleName = roleNames(i)
 Dim r As Role = ctx.RoleSet.FirstOrDefault(
 Function(role) role.RoleName.Equals(roleName))
 u.Roles.Add(r)
 Next
 End If
 Next

 ctx.SaveChanges()
 End Using
 End Sub
...
End Class

If you need to create a new role, the Entity Framework will come handy. You can use a
snippet similar to this:

C#:
 public override void CreateRole(string roleName)
 {
 using (UsersEntities ctx = new UsersEntities())
 {
 ctx.AddToRoleSet(new Role() {
 RoleName = roleName });
 ctx.SaveChanges();
 }
 }

VB:
 Public Overloads Overrides Sub CreateRole(ByVal roleName As String)
 Using ctx As New UsersEntities()
 Dim myRole as New Role
 myRole.RoleName = roleName
 ctx.AddToRoleSet(myRole)
 ctx.SaveChanges()
 End Using
 End Sub

Similarly, to check whether a user is in a given role, we have to use the Entity Frame-
work SelectMany extension method to make the resulting role list flat, starting with
the users:

C#:
public override bool IsUserInRole(string username, string roleName)
{
 using (UsersEntities ctx = new UsersEntities())
 {
 return ctx.RoleSet.Include("Users").Where(
 u => u.RoleName.Equals(roleName)
).SelectMany(x => x.Users).Count(
 x => x.Username.Equals(username)

Check for
username
in array

Add user
to role

Create
new role

Create
new role

Check for
) > 0;
user roles

308 CHAPTER 11 ASP.NET authentication and authorization

 }
}

VB:
Public Overloads Overrides Function IsUserInRole(
 ByVal username As String, ByVal roleName As String) As Boolean
 Using ctx As New UsersEntities()
 Return ctx.RoleSet.Include("Users").Where(
 Function(u) u.RoleName.Equals(roleName)
).SelectMany(Function(x) x.Users).Count(
 Function(x) x.Username.Equals(username)) > 0
 End Using
End Function

And, again, if you don’t want to implement a particular feature (in this case, the Del-
eteRole method), simply throw a new NotImplementException:

C#:
 public override bool DeleteRole(string roleName,
 bool throwOnPopulatedRole)
 {
 throw new NotImplementedException();
 }
...

VB:
Public Overloads Overrides Function DeleteRole(ByVal roleName As String,
 ByVal throwOnPopulatedRole As Boolean) As Boolean
 Throw New NotImplementedException()
End Function

To register the provider, you have to add the following code to your web.config:

<roleManager enabled="true" defaultProvider="DBServerRoles" ...>
 <providers>
 <add name="DBServerRoles" type="DBRoleProvider, App_Code" />
 </providers>
</roleManager>

In this example, you can find all you need to implement a custom strategy for both
membership and roles management, using the APIs from ASP.NET. To complete the
steps and start using these providers if you already have an application using the Mem-
bership and Roles APIs, all you have to do is configure them in web.config, like we’ve
shown you already.

 Now our secure website can use a custom strategy to store and retrieve both users
and roles.

DISCUSSION

A custom provider is useful when you want to preserve a cleaner database schema or
when you already have a database to start with. It’s not difficult to implement a pro-
vider, but you’ll probably have to write some code for it to be fully in place.

 By leveraging the Provider Model pattern, you can modify the inner details of your

Check for
user roles
application without changing the code or the web controls used in the UI. This situation

309TECHNIQUE 70 Integrating Windows Live ID with your application

is ideal because you can concentrate on the implementation of the rules and let the
ASP.NET infrastructure provide the support for the repetitive stuff.

 You can easily use custom providers to implement different kinds of storage for
your identities. In the next section, we’ll take a look at a custom set of providers based
on Windows Live ID, the popular authentication service from Microsoft. By imple-
menting a custom provider with Live ID support, you can integrate one of the most
popular systems with your application and attract more users.

 Integrating Windows Live ID with your application

Windows Live ID is the well-known, federated authentication service provided by Micro-
soft that’s used by millions of people. Live ID accounts are everywhere and the authen-
tication mechanism is well established. Best of all, you can use it in your applications
at no cost.

The average user tends to trust well-known brands, so Windows Live ID is a good
choice. By adding support for this federated authentication service to your applica-
tion, you can speed user authentication to your site, while continuing to keep your
security bar high. Because your users are probably familiar with Live ID, they’ll be able
to log in with less effort and enjoy using your website that much more.

PROBLEM

You want to include Live ID as an alternate way for your users to log in, so they can use
a well-known provider that they trust. Using Live ID will also simplify login for users.

SOLUTION

Windows Live ID authentication is based on token generation and a couple of redi-
rects between the external application and Windows Live ID servers. An SDK is avail-
able at http://dev.live.com/liveid/. Specific Membership and Role providers are
available, based on the SQL Server providers. You can find more technical informa-
tion about the system when you download the SDK.

TECHNIQUE 70

Alternatives to Live ID: OpenID, Facebook Connect, and more!
A couple of alternatives exist to Live ID, even though Live ID remains the most popu-
lar authentication service in the world.

If you prefer to leverage the Facebook website, you can use Facebook Connect, which
is still free. You can access information like the profile picture, data about friends,
and much more. Facebook Connect is primarily based on JavaScript, and you can find
more information at http://developers.facebook.com/

OpenID is an open alternative for providing a federated login. It’s not based on a single
vendor implementation, but everyone can be a provider, and the implementation details
are the same and use a common format. OpenID is supported by Google, Yahoo, AOL,
and others. You can find more information at http://openid.net/.
 In figure 11.12, you can see a simple architectural schema of using Live ID.

http://developers.facebook.com/
http://openid.net/
http://dev.live.com/liveid/

310 CHAPTER 11 ASP.NET authentication and authorization

Even though the SDK provides some custom controls and providers for you to start
with, the most common situation is the opposite one: you already have your custom
providers (or the default ones) in place and you want to add this new authentication
mechanism, not replace the ones you already have.

 First, you have to apply for an account ID via the Azure Services Developer Portal at
https://msm.live.com/app/manage.aspx. Like we said before, registration is free.
You have to enter an application name, the return URL, and a server name. In return,
you’ll receive an application ID and a secret key.

 Because Live ID uses redirects via the browser and not server-to-server requests,
you can use a temporary domain name. Or, if you prefer, you can map your host via
the hosts file in Windows.

 Our implementation assumes the following scenario:

■ The user is registered with a normal account on our site.
■ Our site is using the Membership API and we want minimum impact.
■ The user wants to log in without needing to remember another pair of creden-

tials, but by simply using Live ID.

Unfortunately, the Membership API cannot be extended, so we need a different
approach to include an alternate login mechanism. You can opt for a custom
system, based on, for example, Entity Framework, and just query the database; or
you can go for an alternative, trouble-free way and consider the Live ID account
association as a special role for the user. This role will be unique because Live ID
servers send a unique token for each registered user. Each option has its own pros
and cons, but the second one is more flexible for an existing application. (Although,
if you have a high-traffic website, a specific engine might work better and provide
better performance.)

 For more information about how to implement a Windows Live ID authentication,
you’ll find the correct token documentation at http://www.mng.bz/gToP. As noted in

Authentication
request

Local
authentication

Live ID
authentication

Token
generation

External
application

Live ID
server

Figure 11.12 Windows Live ID architecture for federated authentication is based
on a token exchange between Microsoft servers and the federating sites. Your
application needs to store the unique token that the Live ID server generates for
your user so that the user is recognized the next time they log in.
the documentation, the system supports the following actions:

http://www.mng.bz/gToP
https://msm.live.com/app/manage.aspx

311TECHNIQUE 70 Integrating Windows Live ID with your application

■ SignIn—When the user requests login
■ SignOut—When the user explicitly requests logout
■ ClearCookie—When the Live ID service is demanding transparent signout

(remember, you can be signed in at multiple websites at the same time)

SignIn and SignOut can reply with anything you want (a page or a redirect), but
ClearCookie has the mandatory reply of a 1x1 transparent GIF image.

 To start coding, we can use the WindowsLiveLogin class, which is available as part
of the SDK and is attached to this example. This class encapsulates the inner logic
and is useful for implementing the code. First of all, set the key in web.config, as in
this snippet:

<appSettings>
 <add key="wll_appid" value="your_key_here"/>
 <add key="wll_secret" value="01234567890123456789"/>
 <add key="wll_securityalgorithm" value="wsignin1.0"/>
</appSettings>

The login button presented on the login page is created by using an iframe and pass-
ing the corresponding application ID to it. Because the redirect is performed auto-
matically and the token is encrypted using the secret key, this system is secure and
cannot be used to illegally spoof a user account. The following listing shows the com-
mon markup that inserts the login/logout link using an iframe. When displayed in a
web browser, the results are similar to what’s shown in figure 11.13.

<iframe
 src="http://login.live.com/controls/WebAuth.htm?mkt=en-us&

➥ appid=<%=AppID%>&
context=<%=Server.UrlEncode(Request["ReturnUrl"])%>&

➥ style=font-size%3A+10pt%3B+
➥ font-family%3A+verdana%3B+background%3A+white%3B"
 width="80px"
 height="20px"
 marginwidth="0"
 marginheight="0"
 align="middle"
 frameborder="0"
 scrolling="no"
 style="border-style: hidden; border-width:

0">
</iframe>

We have to configure our application to reply to
Live ID servers on a page named live.aspx. This
page will receive the data from Windows Live ID,
use the WindowsLiveLogin class from the SDK to
decrypt the value, and populate a new instance of

Listing 11.13 Listing 11.13 Windows Live ID code that generates the login URL

Figure 11.13 The new login page
has a new link for performing the
login using Windows Live ID. Users
can continue to perform a classic
the WindowsLiveLogin.User class. login if they want to.

312 CHAPTER 11 ASP.NET authentication and authorization

 The action to be performed is specified in the parameters, so the important part is
in the association of the returned token to our database. As we mentioned before,
we’ll create a specific role if there’s a need for one, or simply authenticate the user if
the association is already performed. The code is shown in the following listing.

C#:
string action = Request["action"] ?? "login";

WindowsLiveLogin wll = new WindowsLiveLogin(true);
WindowsLiveLogin.User user = wll.ProcessLogin(Request.Form);

switch (action)
{
...
 default:
 if (user == null &&
 Request.Cookies["LiveID"] != null &&
 !string.IsNullOrEmpty(Request.Cookies["LiveID"]["token"]))
 {
 string token = Request.Cookies["LiveID"]["token"];
 user = wll.ProcessToken(token);
 }
 if (user == null) {
 FormsAuthentication.RedirectToLoginPage("LiveID=1");
 return;
 }
...
}

VB:
Dim action As String = If(Request("action"), "login")

Dim wll As New WindowsLiveLogin(True)
Dim user As WindowsLiveLogin.User = wll.ProcessLogin(Request.Form)

Select Case action
...
 Case Else
 If user Is Nothing AndAlso
 Request.Cookies("LiveID") IsNot Nothing AndAlso
 Not String.IsNullOrEmpty(Request.Cookies("LiveID")("token"))
 Then
 Dim token As String = Request.Cookies("LiveID")("token")
 user = wll.ProcessToken(token)
 End If

 If user Is Nothing Then
 FormsAuthentication.RedirectToLoginPage("LiveID=1")
 Return
 End If
...
End Select

At this point, we need to check whether the user is authenticated, and, if he is, associ-

Listing 11.14 The login and user association code

Remaining
logic

Remaining
logic
ate the Live ID with the account. The code is shown in the following listing.

313TECHNIQUE 70 Integrating Windows Live ID with your application

C#:
 string userID = user.Id;
 string returnUrl = user.Context;
 bool persistent = user.UsePersistentCookie;

 string roleName = string.Concat("Live-", userID);

 if (Request.IsAuthenticated)
 {
 if (!Roles.IsUserInRole(roleName))
 {
 if (!Roles.RoleExists(roleName))
 Roles.CreateRole(roleName);

 Roles.AddUserToRole(User.Identity.Name, roleName);
 }

 Response.Cookies.Remove("LiveID");
 Login(User.Identity.Name, persistent);
 }
 else...

VB:
Dim userID As String = user.Id
Dim returnUrl As String = user.Context
Dim persistent As Boolean = user.UsePersistentCookie

Dim roleName As String = String.Concat("Live-", userID)

If Request.IsAuthenticated Then
 If Not Roles.IsUserInRole(roleName) Then
 If Not Roles.RoleExists(roleName) Then
 Roles.CreateRole(roleName)
 End If

 Roles.AddUserToRole(User.Identity.Name, roleName)
 End If

 Response.Cookies.Remove("LiveID")
 Login(User.Identity.Name, persistent)
Else...

If the user isn’t authenticated, we need to check whether the role exists; if it does, we
grant access to the user:

C#:
else
{
 if (Roles.RoleExists(roleName))
 {
 string username = Roles.GetUsersInRole(roleName)[0];

 Login(username, persistent);
 }
 else
 {

Listing 11.15 The user is added to the specified role

UserID will compose
the rolename

More code
here

UserID will
compose the
rolename

More code
here

Save token
 Response.Cookies["LiveID"]["token"] = user.Token;
in cookie

314 CHAPTER 11 ASP.NET authentication and authorization

 FormsAuthentication.RedirectToLoginPage(
 string.Concat("LiveID=1&ReturnUrl=",
 Request.Url.ToString()));
 }
}

VB:
 Else
 ' retrieve the user via its role
 If Roles.RoleExists(roleName) Then
 Dim username As String = Roles.GetUsersInRole(roleName)(0)

 Login(username, persistent)
 Else
 Response.Cookies("LiveID")("token") = user.Token

 FormsAuthentication.RedirectToLoginPage(
 String.Concat("LiveID=1&ReturnUrl=", Request.Url.ToString()))

 End If
 End If

The SignOut and ClearCookie actions are omitted because both will perform the log-
out using the SignOut method on the FormsAuthentication class.

 The first time the user requests the login via Live ID, the page checks for the role
in the database. If the role isn’t found, a valid Live ID token is issued, the user is
authenticated, the new role is created, and the user is associated with it. If the user
isn’t logged in and a Live ID user ID is sent, the user that corresponds to the role cre-
ated by using the unique user ID is retrieved, and the FormsAuthentication class is
used to perform the login. The flow is explained in figure 11.14.

 Figure 11.14 shows the flow used to associate the Windows Live ID to your account.
First of all, the Live ID credentials are required. Then the user is asked to associate the
site user to the Live ID. Next time, the user can use Live ID to authenticate himself

Save token
in cookie

Figure 11.14 The authentication flow is modified when the user’s Windows Live ID is

associated for the first time. If the Live ID is associated, the user is automatically authenticated.

315Summary

because the two accounts are now linked. This process is simple to implement and
simple for the user to follow.

 From our point of view, we’re adding more features to our secure website without
changing the inner workings of our security strategy. This is another advantage over
using APIs instead of custom implementations.

DISCUSSION

Supporting Windows Live ID is advantageous, especially if you have a website with varied
traffic, because the service is well known in both consumer and professional audiences.

 Using the approach presented in this example, you can continue to use your own
Membership and Roles providers. This integration page uses only the Roles API (but
not the provider directly) and can be integrated with every application.

 This example shows the power of using APIs instead of direct code. You can simply
alter some behavior by adding code that leverages only the public face of that feature,
and, thanks to Provider Model, you can use it in many situations because it’s not
linked to a particular implementation.

11.5 Summary
Security in the UI is so important that developers tend to spend a lot of their time fully
implementing it. The effects of code security, as we discussed in this chapter, are invis-
ible, but dangerous. Authentication and authorization are important for you to gain
more control over application features. Often an application needs its user to be
authenticated to access advanced features. You can provide different levels of power to
different types of users, who are grouped together to simplify policy management.

ASP.NET implements support for authentication and authorization in its core. As
you’ll learn in the rest of this book with regard to other features, you can adapt these
features to your needs by simply changing the default implementation provider.

 The Membership and Roles APIs, on the other hand, use the Provider Model to
provide an extremely powerful approach to repetitive tasks, which is what user and
role management are. Thanks to the built-in security controls in ASP.NET, you can eas-
ily integrate this kind of solution in applications because all the work is performed
behind the scenes. If you want more control over every aspect of your application, you
can manually call Membership and Roles APIs methods, as we did in the last example
of this chapter, by implementing a custom mechanism for letting users authenticate.
The result is a secure and versatile website, built step-by-step by adding more features.

 In the next chapter, we’ll start to take a deeper look at ASP.NET, exploring
advanced scenarios like state, caching, customization, and performance tuning.

Part 5

Advanced topics

Part 1 was about how ASP.NET works, and parts 2 and 3 provided a peek at the
features that ASP.NET Web Forms and ASP.NET MVC have that you can use to
build the UI. Then in part 4, we analyzed the scenarios to build more secure
applications, and you learned how to protect them. This last part is dedicated to
more advanced scenarios, which will combine most of the topics we’ve previ-
ously talked about in this book. These chapters cover both ASP.NET Web Forms
and MVC.

 Chapter 12 explains how to integrate ASP.NET applications into Ajax-enabled
applications and Rich Internet Applications (RIAs). We’ll take a look at how to
leverage jQuery and ASP.NET Ajax.

 In chapter 13, you’ll learn how to handle state in ASP.NET: from cookies to
ViewState to new features introduced in version 4, like the ability to compress
the SessionState.

 Chapter 14 is dedicated to caching. You’ll find plenty of tips on how to
achieve better scalability by implementing a good caching strategy. This chapter
also covers how to build custom cache providers, and how Microsoft AppFabric
caching works.

 Chapter 15 contains miscellaneous topics related to fully extending ASP.NET,
from HttpRuntime, to logging, to building a virtual path provider.

 Finally, chapter 16 offers some tips on how to build applications that perform
better. We’ll talk about minifying content, multithreading, and ParallelFX.

Ajax and RIAs
 with ASP.NET 4.0
In chapter 11, you learned how to take full control over the markup generated by
your pages. Be sure you’re comfortable with the contents of that chapter because it
might affect the subjects in this chapter.

 In this chapter, we’re going to turn our attention to Ajax. Nowadays, everybody
knows about it. Ajax stands for Asynchronous JavaScript and XML. The term was
coined in 2005; since then, it’s become the de facto standard for the web. With
Ajax, also came new terms like RIA (Rich Internet Application) and the famous
Web 2.0.

 Though the term Web 2.0 is a marketing creation, Ajax and RIA are an
authentic revolution in terms of user interface and usability. Even though Ajax

This chapter covers
■ Understanding Ajax
■ Working with ASP.NET Ajax framework
■ Understanding jQuery
■ Understanding jQueryUI
319

320 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

doesn’t introduce any new technology, it has established a pattern to better reuse the
existing ones.

RIAs are a different beast. The term RIA identifies an application that enables a
rich interface with fluent interaction. Although with Ajax it’s perfectly possible to cre-
ate an RIA, it would require a huge amount of work. A lot of JavaScript has been born
to ease RIA development.

 In this chapter, we’ll start with a brief introduction to Ajax in general and then
we’ll move to the features embedded in ASP.NET Web Forms. Then we’ll talk about
jQuery, which is the JavaScript framework that Microsoft has embraced and integrated
into ASP.NET templates. By the end of this chapter, you’ll be able to combine the
power of ASP.NET, Ajax technique, and JavaScript frameworks to create more appeal-
ing interfaces using a minimum of code.

12.1 Understanding Ajax
Ajax is a pattern that combines JavaScript and XMLHTTP components to invoke the
server asynchronously without causing a reload of the page. Before delving into the
details of how this works in ASP.NET, let’s talk a bit about Ajax first.

12.1.1 How Ajax improves usability

Before the advent of Ajax, web applications had a simple flow:

1 The user requests a page.
2 The server replies with HTML interpreted by the browser.
3 The user performs an action on the page.
4 The page is posted back to the server.
5 The server processes user input and replies with a new HTML page, again inter-

preted by the browser.

Figure 12.1 visually explains these steps.

User Server

Requests a page

Returns HTML page

Performs an action on the page

Process request

Process request

Figure 12.1 The interaction
between the user and the server
without Ajax. The user requests
a page or performs an action on
Returns HTML page it, and the server replies with
another HTML page.

321Understanding Ajax

This interaction model works perfectly, but suffers from a big problem. Each time the
user needs data from the server, he needs to perform an action. This action causes the
entire page to be posted to the server; the user has to wait for the server to reply with
a brand new page.

 Suppose you’re using a page that shows a list of orders. For performance reasons,
the amount isn’t shown beside the order but must be requested using a link in the
order row. If you have to check several orders, you’ll click the link for the first one,
wait for the server to respond, and then see the entire page refreshed—just for a num-
ber. Come on, we can do better than that.

 With Ajax, the user-request/server-response model is still there. What’s changed is
the way requests and replies are sent. In Ajax, the request is sent in such a way that the
page isn’t halted during a request and a new page isn’t reloaded when the server
response arrives.

 At the base of Ajax is the XMLHTTP component. This component actually per-
forms the magic behind Ajax. It issues a call to the server and then asynchronously
waits for its response.

 Reprising the previous example, the server doesn’t need to reprocess the entire
page and resend HTML to the client just to see a number. You can simply send an invis-
ible command to the server, which then calculates only the amount of the order and
returns it to the client; the client then shows the amount beside the order. Figure 12.2
show this flow.

 You obtain several advantages from this communication style. These advantages
are described in table 12.1.

User Server

Requests a page

Returns HTML page

Returns only necessary data

Performs an action on the page

Process request

Process only needed data

Figure 12.2 The interaction between the user and the server in Ajax style.
The user requests a page and receives HTML. Then the user performs an
action, and the browser sends only necessary data to the server. The server
processes this data and then sends to the client only the information needed—

not the entire page. It’s the client’s duty to show this data to the user.

322 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

Ajax gives you a lot of advantages, doesn’t it? They’re the reason Ajax has rapidly
become so popular. Now that you know the benefits of working with Ajax, we can
move on and discover how Ajax works and the components that bring it to life.

12.1.2 How Ajax works

We’ve already mentioned that, technologically speaking, Ajax doesn’t introduce any-
thing new. It just introduces a new pattern to better reuse existing ones. Because Ajax
is a client pattern, it’s not surprising that the first technology it leverages is JavaScript.

 Unfortunately, JavaScript can’t communicate with the server; it can only post the page
to it. To overcome this shortcoming, you can use the XMLHTTP component of Ajax.
XMLHTTP enables invoking the server asynchronously without posting the page. It also
enables executing arbitrary code when the response from the server has been received.

 What’s interesting about Ajax communication is the data exchange protocol. The
x in the Ajax acronym might lead you to believe that XML is the protocol used.
Although technically feasible, XML is verbose and slow to process. A more optimized
protocol exists: JSON. JSON is a standard format for representing data and has the
great advantage of being extremely concise and integrated with the JavaScript engine.
Thanks to JSON, data going to and coming back from the server is highly optimized.

 There are hundreds of Ajax frameworks out there. All of them abstract the little
differences between browsers regarding XMLHTTP use. You’ll always use one of these

Table 12.1 Advantages of adopting Ajax in your applications

Advantage Description

Usability improvement The page isn’t reloaded at each user interaction. The user almost has the
impression of working with a Windows application.

Bandwidth optimization In an Ajax request pipeline, only necessary data goes over the wire. The cli-
ent sends the minimal data the server needs, and the server replies with
only the data needed by the client, rather than an entire page.

Faster server processing Because the server doesn’t have to process the whole page, it has less to
do; it responds faster and, consequently, can accept more requests.

History of the XMLHTTP Component
In long ago 1998, Microsoft introduced the XMLHTTP ActiveX control to improve Outlook
Web Access application usability. After 1998, other browser vendors, understanding
the immense power of XMLHTTP, began to introduce their version of this component
in their browser. After a while, XMLHTTP became the de facto standard for all browsers.

Despite its power, XMLHTTP went unnoticed until Google began to use it in 2005
to create the autosuggestion feature in its search page. After Google began to use
XMLHTTP, the component suddenly became popular; soon after that, the pattern Ajax
was coined.

323TECHNIQUE 71 Creating a classic page

frameworks (ASP.NET Ajax, jQuery, MooTools, Prototype, and so on); you’ll never use
XMLHTTP directly, which is why we won’t show it in action here. What we will show
you is how to use ASP.NET Ajax. We’ll also show you how to leverage Ajax using jQuery
later in the chapter.

 Now that you have an idea of what Ajax is and how it works, let’s start analyzing the
ASP.NET Ajax framework. This framework is the one realized by Microsoft to easily
enable Ajax in ASP.NET applications.

12.2 Working with ASP.NET Ajax
When Microsoft realized the impact of the Ajax pattern on web applications, they
started developing a framework that could easily add Ajax scenarios to new and exist-
ing applications. This framework is ASP.NET Ajax.

ASP.NET Ajax is separated into two main sections:

■ Server components—Contain components to simplify development of Ajax behav-
iors using server-side code. The most important components in this section are
the ScriptManager and UpdatePanel server controls, which you’ll soon see.

■ Client components—Contain a set of JavaScript classes that simplify Ajax calls and
that interact with the server controls.

Server components are all about simplicity. If you develop an application using server
controls, you can enable powerful Ajax interaction, without even writing a single line
of JavaScript code. If that seems too good to be true, you’re right. The drawback of
using server controls is that although you optimize a lot compared with non-Ajax
applications, you don’t take full advantage of Ajax in terms of control over data
and performance. When you need extreme performance and control, you can use the
client-side components.

 Now that you have an idea of how the ASP.NET Ajax framework is made, let’s look
more closely at its server part.

 Creating a classic page

Before we dig deep into the server components part, let’s take a look at the sample
we’re going to build. We’ll use this sample throughout the chapter.

PROBLEM

Suppose that you have a page where you have two drop-down lists. The first one con-
tains all the regions in the Northwind database, and the second one contains the terri-
tories in the selected region. We need to populate the second drop-down list with the
correct territories each time the item selected in the first one is changed.

SOLUTION

The following snippet shows the markup required to create the drop-down lists:

<asp:DropDownList runat="server"
 ID="Regions" AutoPostBack="true"
 OnSelectedIndexChanged="Regions_Changed"

TECHNIQUE 71
 AppendDataBoundItems="true"

http://www.jQuery.com
http://www.jQuery.com

324 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

 DataTextField="RegionDescription"
 DataValueField="RegionId">
 <asp:ListItem value="" Text="[Select a Territory]" />
</asp:DropDownList>
<asp:DropDownList ID="Territories" runat="server"
 DataTextField="TerritoryDescription"></asp:DropDownList>

The Regions list contains the vendors; the Models list is dynamically populated with
the model of the selected vendor. The AutoPostBack property of the Regions list is set
to true so that when the user changes the selected item, the page is automatically
posted to the server and the event SelectedIndexChanged is raised. In the event han-
dler (Regions_Changed), we retrieve the selected region and then load the territories.
The code is a breeze, as you can see in the following listing.

C#:
protected void Regions_Changed(object sender, EventArgs e)
{
 using (var ctx = new NorthwindEntities())
 {
 int id = Convert.ToInt32(Regions.SelectedValue);
 Territories.DataSource = ctx.Territories.Where(t => t.RegionID == id);
 Territories.DataBind();
 }
}

VB:
Protected Sub Regions_Changed(sender As Object, e As EventArgs)
 Using ctx = New NorthwindEntities()
 Dim id As Integer = Convert.ToInt32(Regions.SelectedValue)
 Territories.DataSource = _
 ctx.Territories.Where(Function(t) t.RegionID = id)
 Territories.DataBind()
 End Using
End Sub

That’s all you need to do. We didn’t show the code for populating the Regions drop-
down list because that’s not of real interest for our sample.

DISCUSSION

As you can see, creating such an interaction is quite simple. But now we need to intro-
duce Ajax, which is basically a client-side technology. How can we introduce Ajax
behavior without losing all that we’ve gained?

 Ajaxize a page using the update panel

One of the goals that drove the design of ASP.NET Ajax was the desire to be unobtru-
sive. The team didn’t want you to have to rewrite an existing application only to intro-
duce Ajax behaviors. They wanted you to be able to maintain the application and
make only slight modifications. They achieved this goal pretty well.

Listing 12.1 Code needed to populate the second drop-down list

TECHNIQUE 72

http://www.jqueryui.com
http://www.jqueryui.com
http://www.jqueryui.com

325TECHNIQUE 72 Ajaxize a page using the update panel

PROBLEM

For this scenario, we’re using the same page from the previous example. You need to
update the territories list in the second drop-down list without causing a full PostBack
of the page each time the region is changed.

SOLUTION

The solution to this problem is partial rendering. The idea behind partial rendering is
pretty simple: you divide your page into different parts that are independently
updated via Ajax. When a control inside a part causes page PostBack, JavaScript on
the client intercepts it and transforms it into an Ajax call. When the call hits the
server, it’s processed as a classic full PostBack; you don’t have to change a single line of
code. When the processing is finished and the server generates HTML for the page, it
sends to the client only the HTML code for the areas that have been updated.

 The JavaScript on the page receives HTML for each updated area and uses it to
update them. Because only some areas are refreshed, this technique is called partial
rendering. Figure 12.3 illustrates partial rendering.

 There’s one little caveat you must be aware of: in addition to sending the HTML for
an area, the server sends the ViewState to the client. This state of affairs explains why
the PostBacks are executed normally.

 At the base of partial rendering is the UpdatePanel control. It’s the server control
that delimits an area. UpdatePanel is pretty simple to use; it has a ContentTemplate
property that contains the HTML of the area. In our sample, the UpdatePanel includes
both drop-down lists, as shown in this snippet:

<asp:ScriptManager Id="sm" runat="server" />
<asp:UpdatePanel runat="server">
 <ContentTemplate>
 <asp:DropDownList runat="server" ID="Regions" ...> </asp:DropDownList>
 <asp:DropDownList ID="Territories" ...></asp:DropDownList>
 </ContentTemplate>
</asp:UpdatePanel>

We haven’t included the complete markup of the drop-down lists, but it’s the same as
you saw in the previous section. The ScriptManager control is the center of ASP.NET

Panel 1 Panel 2

Panel 4Panel 3

Panel 2 causes PostBack

Updates panel 1 and panel 2
with HTML from server

Sends HTML
for panel 1
and panel 2

Sends
asynchronous
PostBack

b

e

d

c

JS

Server

Figure 12.3 Panel 2 contains a button that causes a PostBack. The JavaScript on the page
intercepts the PostBack and invokes the server, simulating a PostBack with an Ajax call. The

server sends HTML for panels 1 and 2, and the JavaScript updates them.

326 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

Ajax. This control sends necessary JavaScript files to the page and enables the use of
UpdatePanel. It also enables downloading JavaScript files from the content delivery
network (CDN), and so on.

 The markup changes slightly, and the server code doesn’t change at all. With just
this small change in the markup, we’ve enabled Ajax behavior. Isn’t that awesome?

DISCUSSION

Using the update panel is a great choice when you need to do things fast and when
you have to add Ajax behavior to existing applications. But it does pose some prob-
lems, especially with performance. The update panel optimizes performance when
you compare it to the classic PostBack model, but you can optimize it even more. In
the next section, you’ll discover some additional tricks.

 Optimizing UpdatePanel using triggers

If you use an HTTP logger (for example, Fiddler2, Firebug for FireFox, Internet
Explorer 9, or WebKit developer tools) to trace data that goes over the wire, you see
that the server sends HTML for all controls in the UpdatePanel. This behavior is cor-
rect, but we need to update only the second drop-down list; sending HTML for both
lists is a waste of resources.

PROBLEM

We need to optimize the traffic between the client and server when UpdatePanel is
used. In particular, we need the server to send HTML to the client for only the first
drop-down list.

SOLUTION

By default, the ASP.NET Ajax JavaScript intercepts the submit triggered by the controls
inside the UpdatePanel. We can modify this behavior and cause an UpdatePanel to be
updated even when an external control triggers the PostBack. The PostBack will be
intercepted and transformed into an Ajax call, and everything works the same. Such a
workflow is shown in figure 12.4.

TECHNIQUE 73

Server

Panel 1

Panel 4Panel 3

Button1 causes PostBack
intercepted because of trigger

Updates panel 1 with HTML
from server

Sends HTML
for panel 1

Sends
asynchronous
PostBack

b

e

d

c

JSButton1 Trigger on
Button1

Figure 12.4 The button outside panel 1 causes a PostBack. The JavaScript on the page
intercepts the PostBack (because panel 1 has a trigger on the button) and invokes the server,
simulating a PostBack with an Ajax call. The server sends HTML for panel 1 (because of the

trigger), and the JavaScript updates it.

327TECHNIQUE 74 Optimizing a page with multiple UpdatePanels

We can strip the first drop-down list off the UpdatePanel, leaving only the second
one. We can then instruct the UpdatePanel to refresh when the first list value is
changed. This instruction is known as a trigger and is shown in the next snippet.

<asp:DropDownList runat="server" ID="Regions" ...> </asp:DropDownList>
<asp:UpdatePanel runat="server">
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Regions"
 EventName="SelectedIndexChanged" />
 </Triggers>
 <ContentTemplate>
 <asp:DropDownList ID="Territories" ...></asp:DropDownList>
 </ContentTemplate>
</asp:UpdatePanel>

The Triggers property of the UpdatePanel contains the external controls that cause
the panel to be updated. A trigger can be one of two types:

■ AsyncPostBackTrigger—Causes the Ajax PostBack
■ PostBackTrigger—Causes the classic PostBack

Each class has two properties:

■ ControlId—Represents the name of the control that triggers PostBack
■ EventName—The control event that triggers PostBack

After you’ve made this modification, run the page and look at the logger result. Now
each time the Regions drop-down list is changed, the page is submitted asynchro-
nously, and only the Territories drop-down list is sent to the client (along with
ViewState and other minor information).

DISCUSSION

This modification is a little tweak that makes no difference in a demo. But, if you
think about a real-world application, you’ll understand that triggers can spare you a
lot of vital resources, especially for a web application.

 Using triggers isn’t the only way to optimize performance. When you have multiple
UpdatePanels in a page, you can granularly choose which panels you want to be
updated after an asynchronous PostBack.

 Optimizing a page with multiple UpdatePanels

Let’s do a little experiment: let’s duplicate all controls so that now we have two
UpdatePanels in the page. Then run the sample and change the drop-down list that
causes the first panel to be updated. Now if you take a look at the HTTP logger, you’ll
notice that even if only the first UpdatePanel is changed, the server sends the HTML
for the second panel to the client, too. This result is a useless waste of resources.

PROBLEM

Suppose that you have a page with multiple update panels. You need to figure out how
to optimize it. When the server is invoked and only one UpdatePanel is updated, the

TECHNIQUE 74
server has to send to the client only the HTML for the modified panel, not for all of them.

328 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

SOLUTION

By default, the server sends the HTML for the all UpdatePanels in the page to the cli-
ent. Why is this the outcome? Suppose that you have two UpdatePanels. When a but-
ton is clicked in the first one, a value in the second one is updated. If the server sent
HTML for the first panel only, the second one would never be updated and you would
end up showing stale data.

 Sometimes this behavior is unnecessary and causes a significant performance slow-
down. For those cases, you can set the UpdateMode property to Conditional. This set-
ting instructs the UpdatePanel to be updated only when a control inside it or one
specified in the Triggers collection causes a PostBack.

<asp:UpdatePanel runat="server" UpdateMode="Conditional">

Now, when a control in an UpdatePanel issues a PostBack, the server sends to the cli-
ent the HTML code for that UpdatePanel only, and you get a big performance boost.

 Depending on the runtime condition, you might need to update another panel. In
these cases, you can programmatically cause the other panel to be updated by invok-
ing the Update method of the UpdatePanel class:

C#:
otherPanelField.Text = "Value";
otherPanel.Update();

VB:
otherPanelField.Text = "Value"
otherPanel.Update()

The result of this code is that the first panel is updated because a control inside it
caused the PostBack, and the second one is updated because it was explicitly marked
via code.

DISCUSSION

When you’re working with multiple UpdatePanels in a page, you have several options
for increasing optimization. Doing nothing is the best way to do the worst thing.
Always keep in mind the tricks you’ve learned in this section; they can make a big dif-
ference, especially if the page gets a lot of traffic.

 So far we’ve been talking only about the server code. The ASP.NET Ajax JavaScript
enables you to intercept the Ajax call pipeline and perform any arbitrary code before
and after the call to the server. Let’s look at that more closely.

 Intercepting client-side pipeline

The ASP.NET Ajax framework has a server control named UpdateProgress. This con-
trol lets you define an HTML template that shows a wait message while the Ajax Post-
Back is being processed on the server. To do that, the control injects JavaScript code
on the page that shows the HTML template before the call to the server and hides the
HTML template after the response from server has been received. The pipeline isn’t a

TECHNIQUE 75
black box; we can use it to inject our logic.

329TECHNIQUE 75 Intercepting client-side pipeline

PROBLEM

Suppose you’re working on orders. Each time you perform an action that causes a
PostBack, you also have to check whether a new order has been added. If one has
been added, you have to show a message to the user.

SOLUTION

You used the UpdatePanel to send HTML to modify the panels on the page. Now
you’re going to use the ScriptManager to send additional custom information that
can be processed on the client. When a PostBack occurs, you can perform a query on
the database to check for new orders and then send a boolean to the client. The client
receives the data and shows a message if new orders have come in. Figure 12.5 shows
the flow.

 The method of the ScriptManager class that lets you add custom information is
RegisterDataItem. This method accepts a Control instance and the value associ-
ated with it. The value can even be a class. The value will be serialized on the client
in JSON format.

C#:
 sm.RegisterDataItem(this, "true");

VB:
 sm.RegisterDataItem(Me, "true")

When data returns on the client, you intercept it the moment the PostBack result is
processed and inject your code. Intercepting the result of the client-side PostBack pro-
cessing is pretty easy. When the page is initially loaded, you retrieve the PageRequest-
Manager object through its static getInstance method, which is the component that
intercepts the page PostBack and transforms them into Ajax calls. Then you use the
add_endRequest method to pass a method that’s invoked when the client has finished
processing the server data:

Server

Panel
Panel causes PostBack

Updates panel and shows or
hides message based on
boolean value Sends HTML

for panel and
boolean to
show message

Sends
asynchronous
PostBack

b

e

d

c

JS

Message

Figure 12.5 The panel contains a button that causes a PostBack. The JavaScript on the page
intercepts the PostBack and invokes the server, simulating a PostBack with an Ajax call. The
server sends HTML for the panel and a boolean that specifies whether the message should be
shown. The JavaScript updates the panel and either shows or hides the message, depending on
the value from the server.

330 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

<script type="text/javascript">
 Sys.Application.add_init(function () {
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 prm.add_endRequest(function (form, handler) {
 (handler._dataItems.__Page);
 });
 });
</script>

The Sys.Application gives you access to page events. By using the add_init method,
you can be sure that the function inside it is invoked as soon as the page is loaded.
The main thing to notice is that you have to put this method at the bottom of the page
and not in the Head section of the HTML.

DISCUSSION

By using this approach wisely, you can reduce UpdatePanel controls in your pages and
highly optimize performance because only data, and not HTML, goes over the wire.
Even if this approach is somewhat complicated because it requires you to write more
JavaScript code, it’s flexible and offers the best possible performance.

 If you take this client-centric approach to the extreme, you can completely elimi-
nate the UpdatePanel. The server just returns data and doesn’t care about its HTML
representation—that’s client-side business. To remove the UpdatePanel, you have to
radically change your approach and deal with tons of JavaScript code. But there is a
better way.

ASP.NET Ajax has a rich client-side framework that enables you to simplify
JavaScript coding. But jQuery is even more powerful and easier to use. Now you’re
going to discover how to follow the client-centric pattern to enable Ajax behavior in
ASP.NET applications using jQuery instead of ASP.NET Ajax.

12.3 Focusing on the client: jQuery
Let’s face it: developing JavaScript code is one of the most annoying things in the
programming world. There’s no compile-time checking, different browsers are sub-
tly different, and editors offer limited features compared with what they offer for
server-side code.

 jQuery isn’t a magic wand. It won’t solve all your problems, but it can surely miti-
gate them. It abstracts differences between browsers, has great support for autocom-
plete in Visual Studio, and lets you write very little code (sometimes just one line) to
create powerful features. It also has other advantages: it lets you query the page Docu-
ment Object Model (DOM) using a correctly formatted string, has fluent APIs and,
maybe most important, it’s free!

 Thanks to all these great features, Microsoft has made an agreement with the
jQuery team, and now jQuery is integrated into Visual Studio templates. When you
create a web application using Visual Studio, jQuery files are already in your applica-
tion (this is true for both Web Forms and MVC applications)—you don’t need any
external files. Let’s find out how to use jQuery.

331TECHNIQUE 75 Focusing on the client: jQuery

12.3.1 jQuery Basics

Before delving into specific features of jQuery, let’s cover the basics of this powerful
framework. At the base of jQuery is the magic $ character. If you’re not an experienced
JavaScript developer, you might be surprised to know that this character is a method. The
$ method is the entry point for all jQuery features. In this section, we’re going to
explore the most important features so that next sections will be easier to understand.

QUERYING THE DOM

When the browser receives HTML, the browser parses it and renders it on screen. Dur-
ing parsing, it also creates an internal representation of the controls and organizes
them hierarchically. This internal representation is called the DOM.

 When you have to refer to a control in JavaScript, you have to use the GetElement-
ById method of the Document class. Doing this isn’t hard, but it requires a long state-
ment. jQuery makes things much faster. Take a look at the next snippet to get an idea
of the power of jQuery:

Classic JavaScript:
document.getElementById("objId");

jQuery:
$("#objId");

In this case, the $ method accepts a string representing the object to retrieve. The fan-
tastic part is that although getElementById lets you find only one object, jQuery offers
a pattern to retrieve as many objects as you need in many ways. Here we used the #
character to specify that we’re searching for an object by its ID. If you’re familiar with
CSS, you know that the # character is used to identify an object by its ID. jQuery lever-
ages CSS syntax to enable you to query the DOM by using just a string. In classic
JavaScript, you would need tons of lines of code to do the same thing.

 Now you can retrieve all objects of a given type using the next snippet:

$("span");

You can also apply additional filters. For example, if you have to search all span tags
that have the red CSS class, you have to write the following snippet:

$("span.red");

Once again, if you’re familiar with CSS, this syntax is clear to
you; if you’re not, this syntax is simple to understand, so
fear not.

 The searches we’ve performed so far have looked for an
object in the whole DOM. Sometimes you need to start from
a known object and then traverse the DOM to look for its
immediate children, its indirect children, or its siblings.
Let’s see how that works.

 Suppose that you have a form with a set of options. Each
option is represented by a check box and a span, like in fig-

Figure 12.6 A form
with several options. Each
check box is followed by a
ure 12.6. span with the option label.

332 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

 The following HTML renders the result shown in figure 12.6:

<div id="checkContainer">
 <input type="checkbox" />Option 1

 <input type="checkbox" />Option 2

 <input type="checkbox" />Option 3

 <input type="checkbox" />Option 4

 <input type="checkbox" />Option 5

 <input type="checkbox" />Option 6

 <input type="checkbox" />Option 7

 <input type="button" value="check" onclick="checkOptions()" />
</div>

If you want to retrieve the options that the user selects, issue the following query:

$(":checkbox:checked");

The :checkbox command is a shortcut to retrieve check boxes; :checked is another
shortcut to retrieve only the checked items.

 If you want to show a message to the user with selected options, you need to
retrieve the span next to the check box; in other words, you need the siblings of the
selected check boxes:

$(":checkbox:checked + span");

The + character instructs jQuery to retrieve span tags that are next to the check box.
As before, you would have to write a lot of code to do this in classic JavaScript.

 Now suppose that you have a treeview built using ul and li tags. The HTML of the
treeview is represented by the code in the next snippet.

<ul id="tree">
 Node1

 Subnode1
 Subnode2

 Node2

 Subnode1
 Subnode2

If you want to extract all nodes of the treeview, you need to issue this query:

$("#tree li");

The query simply retrieves the element with id tree and then takes all its direct and
indirect children li tags. If you need only the direct children, you need to modify the
query slightly:

$("#tree > li");

333TECHNIQUE 75 Focusing on the client: jQuery

The > char does the trick of taking only the direct children. This query returns only
the Node1 and Node2 elements of the HTML shown in previous snippet.

 You can retrieve objects in other ways using jQuery. Discussing all of them is
outside the scope of this book. If you’re interested in deepening your knowledge,
read jQuery in Action by Manning Publications or browse the online docs at
www.jQuery.com.

 Besides using a formatted string to query the DOM, jQuery lets you use methods,
too. Read on.

QUERYING THE DOM USING METHODS

Many times you already have an instance of an object and you need to use it to find
others. Revisiting the previous example about the treeview, you might have a method
that receives the tree object and then needs to retrieve all its children. To do this, you
need methods that work with the object you’ve received. Using strings is still feasible,
but harder to work out; for that reason, we don’t recommend that solution. jQuery
methods are pretty easy to use and have a one-to-one mapping with characters in the
string syntax.

 Suppose that you receive an object and need to find all the spans inside it. The
best way to find them is to wrap the object inside a jQuery object and then use the
find method to pass in a string query:

$(obj).find("span");

If obj is the JavaScript document object, this statement retrieves all the spans in the
page. Pretty easy, isn’t it? If you need to find all the check boxes that have been
selected in a list, you’ll probably have to search inside their container element. In this
case, nothing changes because you encapsulate the container element in a jQuery
object and then use the same query we’ve used previously:

$(obj).$(":checkbox:checked");

If you need to find all the children of the treeview starting from the tree element, you
can use the find method once again:

$(tree).find("li");

The find method searches recursively between the children; if you need only direct
children, you have to use the children method:

$(tree).children("li");

jQuery has plenty of methods to traverse the DOM; showing all of them isn’t possible
for the sake of brevity. It’s our experience that the find and children methods are
the most used, along with the parent method (which returns the parent element of
the object).

 So far you’ve seen that if you pass a string to the $ method, you perform a query; if
you pass an object, it’s included in a jQuery object that you can then query using

methods. Now let’s discover what happens if you pass a method.

www.jQuery.com

334 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

HANDLING THE PAGE LOADED EVENT

In ASP.NET Ajax, you use the Application object to execute some code when the page
is loaded. In jQuery, you can write a method and then pass it to the $ method:

$(function () {
 alert("Page loaded");
});

You can put any logic you need inside the method. If you compare this code with the
code required by ASP.NET Ajax, you’ll realize that jQuery requires much less code to
get the same result.

 So far we’ve been querying the DOM. The last basic task we’re going to face is mod-
ifying DOM objects that were retrieved using jQuery.

MANIPULATING THE DOM

When you manipulate the DOM, you’re modifying an object of the page. You can mod-
ify objects in several ways. For instance, you can add or remove an element; add, mod-
ify, or remove an attribute; and so on.

 Working with attributes is probably the easiest thing to do. Building on the previ-
ous example about check boxes, suppose that you have a button that checks or
unchecks all of them. To select all check boxes, you can use the attr method:

$(":checkbox").attr("checked", "checked");

This method retrieves all check boxes and, for each of them, invokes the attr
method. attr adds an attribute to the DOM element using the first parameter as the
name and the second as the value. The result is that all check boxes will have the fol-
lowing HTML:

<input type="checkbox" checked="checked" />

What’s great about this method is that if the attribute already exists, it doesn’t write it
again, but modifies the existing one. The result is that a single method can be used for
both adding and modifying attributes.

 Coming back to the example, to unselect all check boxes, we have to remove the
checked attribute. You can do this by using the removeAttr method:

$(":checkbox").removeAttr("checked");

The removeAttr method is pretty simple because it accepts only the name of the attri-
bute to remove.

 Let’s change the subject a bit and talk about adding elements. Again, going back to
the treeview example, sometimes you need to add a new element to a node. To do
that, you have to create a new element and then append it to the node. You’ll be
amazed by the simplicity of the jQuery code that does seemingly complicated stuff like
this. Take a look:

$("#tree li:first > ul").append($("").html("last node"));

335TECHNIQUE 75 Focusing on the client: jQuery

The initial query retrieves the element to which the new element must be added. First,
the query gets the tree element; then it takes the first li children and goes to the ul
direct child. This example gives you a great idea of jQuery potential.

 After retrieving the treeview node, we use the append method to add a DOM ele-
ment. The append method accepts a parameter that contains a jQuery object contain-
ing one or more DOM elements. We build a new jQuery object with an li tag and set
the inner HTML coding to last node.

NOTE The <tag> syntax is special syntax that tells the $ method that although
we’re passing a string, we don’t need to issue a query; rather, we’re just creat-
ing an object with that tag.

To solve this problem, we could have taken the opposite approach: create the new
object and append it to the treeview element. In this case, we would use the
appendTo method:

$("").html("last node").appendTo($("#tree li:first > ul"));

Both methods work in the same way, so choosing one way or the other is just a matter
of personal taste.

 Suppose that now you want to remove the element you just added. You have to
retrieve the element through a query and then invoke the remove element:

$("#tree li:first > ul > li:last").remove();

The query is similar to the one in the previous example. We’ve just added navigation
to the node we added (:last is a query predicate that instructs jQuery to take only the
last element). We then invoke remove to delete the item from the DOM.

 Knowledge of DOM manipulation is vital when you’re going the Ajax way. With
jQuery, you don’t use ASP.NET built-in behaviors. Instead, you manually fetch only
data from the server and then update the interface using the jQuery manipulation
methods we’ve talked about in this section.

 Now we can move on to the last jQuery building block: event management.

MANAGING AN OBJECT’S EVENTS

With jQuery, you can dynamically add a handler to the events of a control on a page.
You can add a handler that’s triggered when a button is clicked, when a drop-down
item is changed, or when the value of a text box is changed. You can also remove a
handler in the same way and even trigger a specific event. The end result is that you
can fully manage events.

 Let’s take a super-easy example. Suppose that you want to show a message when
the user clicks a button. You generally write code like this:

HTML:
<input type="button" onclick="action();" />

JS:

function action(){ alert("you clicked the button"); }

336 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

The bad thing about this code is that you mix up JavaScript in the HTML code. HTML
should contain only representational data, leaving to JavaScript the task of adding
behavior. jQuery lets you strip out that ugly onclick from the HTML and lets you eas-
ily add a handler to the onclick event:

HTML:
<input type="button" id="btn"/>

JS:
$(function(){
 $("#btn").click(function(){
 alert("you ckicked the button");
 });
});

When the page is loaded, you retrieve the button and add the event handler through
the click method. The code you need to write has increased, but the benefits are
enormous because the clean separation of tasks you’ve gained between the HTML and
JavaScript makes things easier to maintain.

 jQuery has a method for each event type. For example, you can use the change
method to attach a handler when a drop-down item is changed or when a text box
value changes. focus and blur are used to attach an event when a control is in and
out of focus, respectively. Other methods are also available; because we’re not going
to cover all of them here, you should take a look at jQuery in Action or use the online
documentation to get a full reference to them.

 Sometimes you might want to trigger an event programmatically. To do this, you
just need to invoke the same methods you’ve already seen, without passing any param-
eters. For example, to trigger the click event of the button, you can write the follow-
ing statement:

$("#btn").click();

Congratulations! You just went through a fast-paced introduction to the world of
jQuery. We haven’t told you everything you can do with jQuery, but now you have a
clear idea of how jQuery simplifies development by making it easier to do and cutting
out tons of lines of code. Now we can move on and explore how to use jQuery to
enable Ajax in ASP.NET applications.

 Invoking REST web services with jQuery

jQuery lets you invoke the server in different ways. It has a low-level method named
ajax that you can use to specify all call parameters; a set of specific high-level methods
are built on it. You have a method to perform POST, another one for GET, and other
ones for retrieving JSON data or a JavaScript file. You have a lot of choices, but the
ajax method is the best way to go.

PROBLEM

Suppose you have a page that shows customer details. The user might want to know

TECHNIQUE 76
the total cost of the orders placed by a particular customer. Because the query might

337TECHNIQUE 76 Invoking REST web services with jQuery

be heavy, it’s performed only when the user explicitly requests it by clicking a button.
You need to intercept the click, call the server to get the total amount of the orders for
that customer, and then show it on the page.

SOLUTION

Creating this solution is pretty simple. First, you have to create a web service on the
server that exposes the function via a REST call. To do that, add an item of type Ajax-
enabled WCF Service to the project and name it RestService. Visual Studio automatically
creates the plumbing to expose the web service via a REST. More precisely, it inserts in
the web.config file all necessary WCF configurations, as shown in the following listing.

<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="RestServiceAspNetAjaxBehavior">
 <enableWebScript />
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <serviceHostingEnvironment
 aspNetCompatibilityEnabled="true"
 multipleSiteBindingsEnabled="true" />
 <services>
 <service name="RestService">
 <endpoint address=""
 behaviorConfiguration=
 "RestServiceAspNetAjaxBehavior"
 binding="webHttpBinding"
 contract="RestService" />
 </service>
 </services>
</system.serviceModel>

When web.config is ready, you need to create the method that exposes the total orders
amount for the client. You have to put this method in the RestService class that’s in
the RestService.cs|vb file inside the App_Code directory. The code for the whole
class is shown in the next listing.

C#:
[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class RestService
{
 [OperationContract]
 public decimal GetOrdersAmount(string CustomerId)
 {

Listing 12.2 The web.config code needed to configure the REST service

Listing 12.3 The service class that exposes the total orders amount

Expose service
to JavaScript

Make service compatible
with ASP.NET

Expose
service
 using (var ctx = new NorthwindEntities())

338 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

 {
 return ctx.Orders.Where(o => o.CustomerID == CustomerId).
 Sum(o => o.Order_Details.Sum(d => d.UnitPrice * d.Quantity));
 }
 }
}

VB:
<ServiceContract> _
<AspNetCompatibilityRequirements(_
 RequirementsMode := AspNetCompatibilityRequirementsMode.Allowed)> _
Public Class RestService
 <OperationContract> _
 Public Function GetOrdersAmount(CustomerId As String) As Decimal
 Using ctx = New NorthwindEntities()
 Return ctx.Orders.Where(Function(o) _
 o.CustomerID = CustomerId).Sum(Function(o) _
 o.Order_Details.Sum(Function(d) d.UnitPrice * d.Quantity))
 End Using
 End Function
End Class

The web service class is pretty simple. You just mark it with the ServiceContract (Sys-
tem.ServiceModel namespace) and AspNetCompatibilityRequirements (System.
ServiceModel.Activation namespace) attributes. The methods to be exposed must
be marked with the OperationContract attribute (System.ServiceModel namespace).
The method itself just calculates the total amount for the input customer.

 Now that the web service is created, we need to write the JavaScript code to invoke
it. The method to use is ajax. It’s a low-level method that lets us specify all the param-
eters of the call. Let’s take a look at the code in the following listing.

$.ajax({
 url: "RestService.svc/GetOrdersAmount",
 data: '{ "CustomerId": "ALFKI" }',
 type: "POST",
 contentType: "application/json",
 dataType: "json",
 success: function (result) {
 //code
 }
});

We’ve got a lot to talk about in this listing. First of all, the ajax method accepts
just one parameter, which is a class containing all the real parameters. The first
parameter of the class is url, which specifies the web service URL. The URL is made of
the web service name (RestService.svc), plus the / character and the method name
(GetOrdersAmount).

 Next, the data parameter contains the method parameters. This class must be a
stringified JSON class. This point is important; if this class isn’t rendered correctly, the

Listing 12.4 Invoking the server using the jQuery API for Ajax
server won’t be able to process the information.

339TECHNIQUE 77 Invoking page methods with jQuery

 The type parameter specifies how the request is submitted to the server. WCF
REST services allow only POST calls (unless manually configured to accept GET), so
you should force a POST. The contentType and dataType parameters inform the
server about how data is serialized when they’re sent from client to server and from
server to client, respectively. In this case, data is both sent and received using the
JSON format.

 Finally, the success parameter specifies the callback to invoke when data is
returned. Notice that the result is a class that contains several properties and the
server result is exposed via the d property. Other than success, you can use error to
specify the callback to execute when the server call generates an error.

 Now that we have data from the server, we have to update the interface to show the
orders amount. This process is almost trivial, thanks to the manipulation methods of
jQuery. All you need to do is write the following statement in the success handler:

$("#amount").html(result.d);

This code retrieves the span tag, which shows the amount (the span tag that has the ID
amount) and sets its content to the value returned by the server.

DISCUSSION

As you’ve learned in this section, manipulating the interface using server data isn’t
that difficult. In this example, the interaction has been overly simple because only one
field had to be updated. When you have to update more complex widgets (a grid, for
instance), then things get complicated. No matter what though, it’s just a matter of
retrieving the objects and setting their values—nothing more than that. More code
might be necessary, but the technique doesn’t change.

 Sometimes you need a method only in a page. For these situations, placing it in a
web service might be useless. What you can do instead is create a method in the page
that requires it and then expose it to the client.

 Invoking page methods with jQuery

It’s quite likely that you need the total orders amount calculation only in the page that
shows the customer. Placing the method that calculates this amount in a web service is
perfectly valid, but placing it only in the page that requires it might be a good idea,
too. In ASP.NET terminology, such a method is called a page method.

PROBLEM

We need to create a method that calculates the total orders amount. Such a method
must not live in a web service, but only in the page that uses it. This method must be
available to the client.

SOLUTION

A page method is a method, just like all the others. It lives in the page class, and it must
be static and marked with the WebMethod attribute (System.Web.Services
namespace). The following listing shows the code for this method.

TECHNIQUE 77

340 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

C#:
[WebMethod]
public static decimal GetOrdersAmount(string CustomerId)
{
 using (var ctx = new NorthwindEntities())
 {
 return ctx.Orders.Where(o => o.CustomerID == CustomerId)
 .Sum(o => o.Order_Details.Sum(d => d.UnitPrice * d.Quantity));
 }
}

VB:
<WebMethod> _
Public Function GetOrdersAmount(CustomerId As String) As Decimal
 Using ctx = New NorthwindEntities()
 Return ctx.Orders.Where(Function(o) _
 o.CustomerID = CustomerId).Sum(Function(o) _
 o.Order_Details.Sum(Function(d) d.UnitPrice * d.Quantity))
 End Using
End Function

As you can see, the code in this method is identical to what you saw in the previous
section. The only change is that the method is marked with the proper attribute and is
static. The method is now available to the client and can be invoked using the same
JavaScript code of the previous section; only the url parameter changes, as you can
see in the next snippet:

$.ajax({
 url: "page.aspx/GetOrdersAmount",
 data: '{ "CustomerId": "ALFKI" }',
 type: "POST",
 contentType: "application/json",
 dataType: "json",
 success: function (result) {
 //code
 }
});

The url parameter consists of the page name, plus the / character and the method
name (it’s similar to the web service URL); the rest remains identical. This code wasn’t
difficult at all!

DISCUSSION

The decision to place spare methods only where they belong is a good one. The prob-
lems occur when such a method must be used in other pages, too. The method can be
duplicated in each page class, the client code for all pages can invoke the method in
the original page, or you can move the method into a web service. The last choice is
definitely our favorite because each time you have a common method, it’s best to place
it in a common place.

Listing 12.5 Invoking the server using jQuery API for Ajax

341TECHNIQUE 78 Invoking MVC actions with jQuery

 So far we’ve talked about how to use jQuery and the Web Form technique. Let’s
take a quick look at how to make jQuery query the server when you’re using MVC.

 Invoking MVC actions with jQuery

In MVC, each action has a specific URL. Invoking a URL and passing parameters is
what we’ve been doing so far with jQuery, so using it to call MVC actions should be
pretty easy.

PROBLEM

We need to create an MVC action that retrieves the total orders amount and returns it
to the client. We then need to invoke the action the Ajax way using jQuery.

SOLUTION

Creating the action is unbelievably simple. We just need to return the amount using
the Content method, which is shown in the following listing.

C#:
public ActionResult GetOrdersAmount(string CustomerId)
{
 using (var ctx = new NorthwindEntities())
 {
 return Content(
 ctx.Orders.Where(o => o.CustomerID == CustomerId)
 .Sum(o => o.Order_Details.Sum(d => d.UnitPrice * d.Quantity));
 }

}

VB:
Public Function GetOrdersAmount(CustomerId As String) As ActionResult
 Using ctx = New NorthwindEntities()
 Return Content(
 ctx.Orders.Where(Function(o) _
 o.CustomerID = CustomerId).Sum(Function(o) _
 o.Order_Details.Sum(Function(d) d.UnitPrice * d.Quantity))
 End Using

End Function

When we have the action, we can invoke it using the get method:

$.get(
 "/home/GetOrdersAmount",
 { CustomerId: "ALFKI" },
 function (data) {
 //code
 }
);

The first parameter of the get method is the URL of the action, the second one
accepts the parameters of the action, and the last one represents the callback to be
invoked when data is returned.

Listing 12.6 The action that returns the total orders amount

TECHNIQUE 78

342 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

 Using the get method is convenient because it requires less code. You can always
use the ajax method if the get method doesn’t fit your situation. If, instead of a sim-
ple number, you have more complex data, you can return it in JSON format. In that
case, you’ll have to use the getJSON method instead of get.

DISCUSSION

We’ve covered all of the ways ASP.NET exposes methods to the client and how to con-
sume them using jQuery. Although you can use other ways to invoke the methods
using jQuery, the ajax, get, and getJSON methods are, in our experience, the ones
used the most.

 We’ve been discussing some basic behavior of jQuery. Now it’s time to talk about
the library that made jQuery a real success: jQueryUI. jQueryUI is a set of ready-to-use
jQuery plugins that enable you to enrich your interface with so little code that you
won’t believe it.

 Enriching the interface via jQueryUI

jQuery has a stable and robust core. When it was completed, jQuery was used to
develop a set of widgets that have been included in a library named jQueryUI. This
library includes widgets like a datepicker, an accordion, a tab control, a slider, an auto-
complete, and others. These widgets are not included in ASP.NET templates, so you
have to download them as a separate package. The package is small, and, believe me,
you’ll never regret the time it took to get it.

 The library is freely downloadable from the http://www.jqueryui.com web site.
You should also download the jQuery themes because they contain a ready-to-use CSS
classes and images.

PROBLEM

Suppose that you’re building a page to submit a new order. In this page, the user must
enter the customer, the required shipping date, the shipping address, and the order
details. The requirements state that the user must enter the customer name in a text
box where autocomplete is enabled. Filling in the date must be eased by a calendar
control, and customer and order details must be entered in a separate section. Finally,
before the data is submitted to the server, a modal dialog box must be shown to the
user for data confirmation.

SOLUTION

Wow, that’s a lot of requirements. Even so, they’re pretty common in many applica-
tions, so facing them now is going to help you in your everyday work. We’re going to
go over each of these requirements; let’s start with the autocomplete requirement.

 To attach autocomplete behavior to a text box, you simply have to retrieve it using
a query and then invoke the autocomplete method. The best place to put such code is
in the event JavaScript fires when the browser loads the page:

$(function(){
 $("#CustomerName").autocomplete();

TECHNIQUE 79
});

http://www.jqueryui.com

343TECHNIQUE 79 Enriching the interface via jQueryUI

By default, the autocomplete method takes the autocomplete items from a list that
you can pass as a parameter. In this case, we want the behavior to go to the server.
What we can do is add a method to the REST service we created in the previous sec-
tion. This method returns the customer names that contain the value entered in the
text box. This method takes a string parameter whose name must be term and that
contains the value entered in the text box.

NOTE We’re not showing the code for this method because it’s WCF related.
You’ll find it in the source code for the book.

When that’s done, we can pass the source parameter to the autocomplete method,
specifying the REST service method URL. The next snippet shows an example of this
parameter:

$("#CustomerName").autocomplete({
 source: "RestService.svc/GetCustomers",
});

In addition to the source parameter, we can also set
the number of characters that is necessary to issue a
call to the server. By default, that value is 3, but we
can modify it using the minLength parameter. The
final result is visible in figure 12.7.

 Now that we have the autocomplete, it’s time to
add datepicker behavior to the text box that holds
the required shipping date. To add a datepicker, you
have to retrieve the text boxes using a query and then
use the datepicker method:

$("#CustomerName").datepicker();

The datepicker method enables you to easily select a date, but naturally you don’t
want the user to select a date before today. To avoid such an error, we have to restrict
the range of available dates from today to forever. Passing the minDate parameter to
the datePicker method does just that. You can set this parameter to several values,
but the best way to go is to pass a date. The datepicker method disables all days
before that date. Because we don’t want the user to select a date before today, we’ll
pass the current date:

$("#CustomerName").datepicker({ minDate: new Date() });

To make things complete, we also have a maxDate parameter, which works exactly like
the minDate with the only difference being that it disables all days after the date you
pass to it. If you want to prevent the user from selecting a date farther in the future
than a certain number of days after the current date, you can create a new date
instance, add the number of days (we’re using 10 days), and then set the maxDate
parameter. This solution will work, but there’s a simpler way. You can simply set the
maxDate parameter to the string +10D (10 days):

Figure 12.7 The autocomplete
options are shown below the text
box. By typing the letters “al”, you
can obtain a list of all customers
whose name contains these letters.
$("#CustomerName").datepicker({ minDate: new Date(), maxDate: "+10D" });

344 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

The result is that when the text box
accepts the focus, a calendar is shown, like
in figure 12.8.

 You can also limit the years (Y) and
months (M) that are shown by using the
same syntax.

 We can also set other properties like
numberOfMonths, which specifies how many
months are visible in the calendar; day-
Names and dayNamesShort, to customize
the names of the days (useful for localiza-
tion); monthNames and monthNamesShort,
to customize the name of the months (also
useful for localization); and dateFormat, to
specify the format of the date in the text
box. These parameters are shown in the
next snippet:

$("#CustomerName").datepicker({ minDate: new Date(), maxDate: "+10D",
 monthNames: ["Jan", "Feb", "Mar", "Apr", "May", "June", "July", "Aug",
 "Sept", "Oct", "Nov", "Dec"],
 dayNames: ["Sun", "Mon", "Tue", "Wed", "Thurs", "Fri", "Sat"],
 dateFormat: "mm/dd/yy"
});

Okay, we have the autocomplete for the customer name and the calendar for the
required shipping date. Now it’s time to separate the order information from the
details. The best way to separate content in the same page is to group data into tabs.
jQueryUI has a component that lets you do that easily. You produce the HTML code in
a convenient way and jQuery takes care of the rest. The HTML is shown in the follow-
ing listing.

<div id="tabs">

 order
 details

 <div id="orderData">
 <!—Order data-->
 </div>
 <div id="details">
 <!—-Order details -->
 </div>
</div>

The HTML code is pretty simple. First, you need a container for the tabs (the div with

Listing 12.7 Organizing a page using tabs

Figure 12.8 By using the jQueryUI library, you
can set the maxDate parameter so that only
the current date and the next 10 days are
available on the calendar.
ID tabs). After that, you use li tags to create a list of tab headings. Inside each

345TECHNIQUE 79 Enriching the interface via jQueryUI

header, you place the a tag and set its href property to the ID of the tab it refers to
(prefixed by the # character). Finally, you create a div for each tab and place the con-
tent inside them.

 When you’ve got your HTML and it’s correctly produced, use jQuery to show it as a
tabbed structure. You can do this easily by retrieving the main container and invoking
the tabs method:

$("#tabs").tabs();

If you don’t believe it’s that easy, take a look at figure 12.9, which shows the result of
this code.

 The last requirement we need to meet is to show a confirmation dialog box where
the user confirms the data submission. The first step toward achieving this goal is to
create a div tag containing the confirmation message:

<div id="dialog">Are you sure you want to save?</div>

Now we need to use jQuery to transform this div into a modal dialog box and show it
when the user clicks the Save button. Retrieve the div and use the dialog method:

$("#dialog").dialog({ title: "confirmation", modal: true, autoOpen: false,
 buttons: { Yes: Yes_Click, No: No_Click} });

The dialog method has several parameters, but the ones used in this snippet are the
most important for our purposes. Let’s see them in detail in table 12.2.

Now that we have the confirmation dialog box ready, we have to open it when the user
clicks the Save button. To do that, we retrieve the button and, in its click event,
retrieve the div of the dialog box and invoke once again the dialog method, passing

Table 12.2 Main properties of the dialog method

Property Description

autoOpen Specifies whether the dialog is shown immediately or only when the code explicitly
requests it

buttons Specifies the button in the bottom part of the dialog and the code to be invoked when
it’s clicked

modal Instructs jQuery to create a modal dialog

title The message that’s shown in the header of the dialog message

Figure 12.9 The figure shows
the result of the HTML in listing
12.7, after we invoke the tabs
method. A little bit of code for a
big gain in the user-friendliness
of your page.
in the open string:

346 CHAPTER 12 Ajax and RIAs with ASP.NET 4.0

$("#Save").click(function () {
 $("#dialog").dialog("open");
});

You can see the result of this method in figure 12.10.
 As you probably know, at this point all we need to do is intercept the user answer

and take the appropriate action. If the user clicks the Yes button, we close the dialog
box and submit the page; if they click No, we simply close the dialog box. Closing the
dialog box is pretty simple. We retrieve the dialog div and call the dialog method,
passing the close string:

function Yes_Click(ev){
 //submitForm
 $("#dialog").dialog("close");
}

function No_Click(ev) {
 $("#dialog").dialog("close");
}

That’s it! It took a while, but now you know how to use jQueryUI to add user-friendly
behaviors to your page without writing a lot of extra code.

DISCUSSION

jQuery and jQueryUI are a must have in your toolbox. It’s hard to imagine a mod-
ern web application that doesn’t make use of these JavaScript frameworks. You prob-
ably feel the same way now, and we hope that you’ll begin to use them in your
everyday work.

 Now that you’re at the end of the chapter, you know how to create faster and
more appealing applications using the Ajax technique. You know how to use
UpdatePanel to easily introduce Ajax behaviors without even touching existing code
and without writing a single line of JavaScript code. You also know how to take the
opposite path, creating and exposing services on the server and consuming them the
Ajax way, from JavaScript.

Figure 12.10
The confirmation dialog box is
shown when the user clicks
the Save button. The buttons
specified in the buttons
property are placed at the
bottom of the page and the
title property is shown at
the top of the dialog box.

347Summary

12.4 Summary
Ajax is a key technology for creating user-friendly web applications. Reducing full
PostBacks to the server makes applications easier to use and more appealing to the
user. This feature alone often transforms an adequate application into a real success.

 Using update panels to transform the application into a success story is the fastest
and easiest way because they let you add Ajax behavior using server-side code. In many
cases, you don’t need to write a single line of JavaScript code, which is why your pro-
ductivity can be improved so much.

 Although UpdatePanel control enables several optimizations, in scenarios where
performance is critical, the best way to go is to invoke the server to retrieve only data
and then use JavaScript code to update the interface. jQuery makes this pattern sim-
ple to follow. What’s more, jQueryUI further simplifies building user-friendly inter-
faces, making it easier than ever to develop better applications.

 You know enough about Ajax, so we can move on to another subject that in the
stateless world of the web is vital: state management.

State
Web applications are stateless by nature, which means that you don’t have a native
way to handle state. If you’re familiar with desktop applications, you know that state
plays a central role in a typical application. For example, you can save your users’
preferences and let them find their preferences again next time they use the appli-
cation. Even though no native way exists to handle state as per the HTTP protocol,
modern application frameworks (like ASP.NET) provide a lot of features in this
area. Depending on your needs, you can manage state at different levels—on the
client or on the server. Generally, state handling is performed server side, where
the data is stored.

 The objectives of handling state are disparate: you can store user settings or save
frequently requested objects to avoid the cost associated with fetching them every
time. The objects can be stored with a lifetime that varies, depending on the

This chapter covers
■ ViewState and new features in ASP.NET 4.0
■ Session state
■ Profile API
■ Building a custom provider for the Profile API
348

approach that you choose, but typically, you have a lot of possibilities.

349TECHNIQUE 80 Per-request state

 This chapter contains an overview of the most frequent scenarios, and the next
one analyzes caching strategies, which are often treated as a special kind of state. We
decided to separate these topics so that we can cover all these techniques in depth.

13.1 Handling state
The typical ASP.NET application contains different state management techniques that
are related to different scopes. Some data needs to be volatile but available for the
entire request lifecycle, on a single-user basis; other kinds of information need to be
available to all users.

13.1.1 What is state?

To make things clear and to ensure that we approach the problems presented in this
chapter with the right background, you need to understand some basic concepts. First
of all, state is the ability to manage the lifetime of an object in a given interval. When
we manage an object’s state, we can make it persistent to gain speed. In fact, most of
the time this object needs to be retrieved from a source (like a database); retrieving
the data is the most expensive part of the process. On the other hand, modern hard-
ware has a lot of memory, so it’s possible to store these objects in memory, ready to be
used. Storing objects in memory is the preferred way to store them, but they can also
be stored on disk. Disk access has a more negative impact on performance than mem-
ory access does, but disk storage is useful in situations where the object materialization
is expensive and an adequate amount of free memory isn’t available.

 Generally, we’ll approach this problem by splitting state handling into three main
scenarios, depending on how we want to span the object’s lifetime. In this chapter,
we’re going to analyze the following kinds of state:

■ Per-request
■ Per-session
■ Per-application

ASP.NET provides different answers to the questions related to these scenarios. We’re
going to take a look at each of them, but per-application state is analyzed in chapter 14,
in the context of caching.

 Per-request state

Per-request state is the simplest form of state handling. The state of an object is saved
across the entire request for a given page. You can share the instance of an object for
the request and re-create it on subsequent requests.

 Typically, you handle per-request state using ViewState, which we introduced in
chapter 1. ViewState is important in ASP.NET Web Forms and acts as a bag in which to
store information across the same group of requests performed on a page. It’s not a
true per-request state bag because it’s available after the request itself, but neither is it
a per-session bag because its scope is limited to a given page. If you need to store val-
ues that can be accessed in the same request, other options are available. Eventually,

TECHNIQUE 80
we’ll talk about all of them.

http://msdn.microsoft.com/en-us/library/ewfkf772.aspx

350 CHAPTER 13 State

PROBLEM

ViewState is both a joy and a pain for ASP.NET developers. You can use it to maintain
the status across the different requests on a given page, but because it’s saved in a hid-
den field, it consumes bandwidth if it’s not used correctly. In this scenario, we’ll take a
look at how to save an object’s state using ViewState and avoid re-creating the object.

SOLUTION

ASP.NET 4.0 introduces a new ViewState feature that minimizes the impact ViewState
has. Before ASP.NET 4.0, the best practice in terms of ViewState was simple: disable it
on every control that doesn’t need it. Figure 13.1 shows the ViewState behavior.

 The reality is that this best practice is quite often ignored, and a lot of bandwidth is
wasted because developers don’t follow it. Before ASP.NET 4.0, ViewState couldn’t be
disabled on a parent control because doing so would impact the children controls.
This behavior wasn’t flexible enough because each container control has to be han-
dled carefully.

ViewState in ASP.NET 4.0
ASP.NET 4.0 introduces a new property called ViewStateMode that’s defined in Sys-
tem.Web.UI.Control. The ViewStateMode property requires that the ViewState attri-
bute be set to true to work; otherwise, its content is ignored. You can set this property
to the following values:

■ Inherit

■ Enabled

■ Disabled

The first option is the default and inherits the container setting, but the last two are
more interesting. When the value is set to Disabled, the control stops using the
ViewState, but its children can override this behavior and explicitly set it to Enabled.
By doing so, the nested controls can have their own state, even if the container has it

HTTP
Handler

Init

LoadViewState

LoadPostbackData

Load

RaisePostBackEvent

SaveViewState

Render

Only on
PostBack

Figure 13.1 How ViewState works. LoadViewState and SaveViewState events
are raised between Init, Load, and Render states. This process is repeated by every

control on the page (and by the page itself).

351TECHNIQUE 81 Per-session state

disabled. Because the property is defined by Control, the page itself has this ability. You
can define this property on the page and enable it only when it’s used. Enabling the
property only when you need it is a much better practice than having it on all the time.

 As in previous versions, you can use a lot of controls without ViewState if you can
get their value directly after a PostBack. Such controls include TextBox, DropDown-
List, and similar controls, when their value is accessed after the initial load of the
page. The following snippet shows an example of this scenario:

<%@ Page ViewStateMode="Disabled" ... %>
<asp:Label runat="server" ID="DisabledText" />
<asp:Label runat="server" ID="EnabledText" ViewStateMode="Enabled" / >
<asp:Button runat="server" ID="SubmitButton" Text="Submit" />

If you want to optimize your application, remember that ViewState can be your best
friend if you use it correctly and your worst enemy if you abuse it.

Context.Items
Another useful container in per-request scenarios is Context.Items. This container is
especially useful when you want to store information that can be accessed by all the
actors in a typical request: HttpHandlers, HttpModules, the page, and its controls. It
acts as a state bag that can be shared easily, by simply accessing HttpContext:

C#:
HttpContext.Current.Items["siteName"] = "My Site";

VB:
HttpContext.Current.Items("siteName") = "My Site"

Context.Items is often used to instantiate—and handle—an object per-request, like it
does for the Entity Framework’s object context, which we talked about in chapters 2
and 3. But it’s also useful when you simply want to share a value along the entire
request pipeline.

DISCUSSION

Per-request state has the limitation of being useful only in simpler scenarios where you
need to store a value for the request (or a group of requests to the same page, as with
ViewState and PostBack). This approach works for the typical flow of a data entry
page, to save the objects’ state across different requests.

 In other cases, you’ll find it more useful to save the state across a group of requests
that are not linked to each other. In this kind of situation, per-session state is the
answer to your questions.

 Per-session state

As its name suggests, per-session state can save the state across a session. Depending
on what technique you use, the notion of session might vary. To be generic, a session
starts with the first request made by a user and ends with his last one. Because we’re in
a stateless environment (HTTP as a protocol is, in fact, stateless), the last request can’t

TECHNIQUE 81
be estimated so a timeout from the current request is used. If, after that amount of

352 CHAPTER 13 State

time, no other requests are made, the session is considered closed. In other situations,
however, closing the browser has the same effect. Let’s take a look at how ASP.NET sup-
ports these scenarios.

PROBLEM

Per-session state can be handled in different ways; your strategy will vary, depending
on the data type used and its sensitivity. Per-session state can also be impacted by your
application architecture. By handling per-session state, you’ll be able to span the
object’s lifetime across multiple requests made by the same user.

SOLUTION

The most common form of per-session state is called session state. If you’re not familiar
with ASP.NET, the concept is simple: the state bag is available only to the same user,
during that user’s session. After the session closes, the state bag is automatically
destroyed. The data in the state bag can’t be stored automatically, but you can write
code to perform this action if you need to. Figure 13.2 contains a schema that shows
how this mechanism works.

 Session can be accessed via Page or HttpContext, depending on the location of
your code. By default, when the session starts, the SessionStart event is fired; at the
end, the SessionEnd event is invoked. You can intercept them using a custom Http-
Module or with the global.asax.

 Session state implements the Provider Model design pattern, so you can write a
custom provider to save it to a location other than memory. ASP.NET includes support
for SQL Server and State Server.

SESSIONEND WITH OUT-OF-PROCESS PROVIDERS SQL Server, State Server, and
custom out-of-process providers are designed to work in distributed scenarios
where a cluster of two or more servers exist. In this kind of situation, the Ses-
sionEnd event won’t fire because different requests can be executed by differ-
ent servers, and a synchronization mechanism doesn’t exist. To avoid
multiple execution of this event, the event is simply not fired at all.

IIS

Session

Session1

Session2

Session3

User 1

User 2

User 3
Figure 13.2 Session state works by saving different users’ data into separated
storage. The data is available for the user’s entire session.

353TECHNIQUE 81 Per-session state

Generally, session state is maintained using a cookie that contains a special key called
ASP.NET_SessionID. This cookie is sent between all the requests made by a given user.
ASP.NET also supports a cookieless mode, in which browsers without cookie support
receive the ID in the URL. If you configure your site using the AutoDetect option,
ASP.NET tries to generate a cookie on the first request and, if that’s not supported, it
automatically switches to the cookieless mode. To take advantage of this feature, you
need to enter this configuration in your web.config:

<configuration>
 <system.web>
 <sessionState cookieless="AutoDetect" />
 </system.web>
</configuration>

More generally, you can set additional properties in your web.config, like the cookie
name, a custom timeout, and the providers (via the mode and customProvider
attributes).

 Values saved in session consume memory (if you use the default InProc provider, it
consumes the server’s memory). For this reason, you must use session state carefully.
Because there’s virtually no limit to object size, session state is often used in complex
scenarios to make an object available across multiple requests. Session state can con-
tain any serializable object and its content is secure because only the SessionID is sent
to the client.

Session compression in ASP.NET 4.0
ASP.NET 4.0 has a new feature that minimizes the amount of space that the session
state bag occupies. When you’re dealing with a complex application and out-of-pro-
cess providers, session state’s global dimension can grow quickly and slow down your
application. When you’re using the two out-of-process providers (for SQL Server and
State Server), you can enable the compression by setting the compressionEnable attri-
bute in web.config to true.

 Enabling compression will serialize (and deserialize) objects from session state and
will compress (and decompress) them using the System.IO.Compression.GZip-
Stream class, which applies a gzip algorithm. This feature will add a little overhead in
terms of CPU cycles, but it will minimize the amount of space that the session state
takes up, in terms of memory consumed. If you’re using a custom provider, you can
add the same behavior by using a similar approach.

Using Windows Server AppFabric session provider
When we were writing this book, Windows Server AppFabric was released in version 1.
AppFabric is a distributed caching engine that consists of a set of features that can
support cache sharing across multiple, different servers. Because session state is a
form of cache, you can use AppFabric in this scenario, too. You can use it so that the
same session state is synchronized across different web servers in the same cluster
(even geographically, if you need to go that far).

 You can download a provider for session state from http://www.mng.bz/oD7O.
You can also use AppFabric Caching APIs directly if you need to (this provider is an

implementation of these APIs).

http://www.mng.bz/oD7O

354 CHAPTER 13 State

 We’ll cover this aspect of Windows Server AppFabric, as well as the configuration
needed to start, in the next chapter. For now, we’re going to turn to cookies.

The alternative: cookies
If you don’t want to impact your server’s memory, or if you prefer to support a cluster,
the only real alternative that you have is to store your data in cookies. A cookie can be
made persistent by adding an explicit expire date or made valid until the browser is
closed if the expire date is omitted.

 Generally, using a cookie is a good idea if you just need to represent simple data:
strings, objects, date, and so on. But, when you’re dealing with complex objects, its
size limitation (4096 bytes) can be an issue. Don’t use cookies to store sensitive infor-
mation unless you’re encrypting them. Cookies can be accessed using the Cookies
properties on the HttpRequest class. More information is available on MSDN at
http://www.mng.bz/3Q0T.

 Cookies represent a feasible alternative when the data can be represented in
strings and you don’t need to handle complex scenarios.

DISCUSSION

Per-session state is important because it lets you easily share the same state across dif-
ferent requests. You can use it to handle different needs: from storing user informa-
tion to spanning the lifetime of an object instance. You can implement different
techniques to support these different scenarios, each with pros and cons over the oth-
ers. When you’re dealing with session state, for example, the memory impact on the
server and the need for synchronization over a cluster are important issues that you
need to target specifically. ASP.NET supports different options for implementing per-
session state, but most of them can’t span across multiple sessions. In these scenarios,
you’ve got to use a specific feature: the Profile API.

13.2 Advanced user state
Session state is considered the simplest form of per-session state handling. In
advanced scenarios, you’ll need more features, like the ability to store the state and
have it available for different sessions performed by the same user. Session state is lim-
ited in this area, but ASP.NET has a specific feature that addresses this problem.

 The Profile API was first introduced with ASP.NET version 2.0, as part of the Pro-
vider Model, which brings more extensibility to the platform. We took a look at the
Provider Model in chapter 5, when we discussed the Membership and Roles APIs. The
same concepts apply to the Profile API. This API is composed of two pieces:

■ The API itself, which is called by the user
■ A base class, used to implement the provider

Because all the providers share the same base class, the API can be safely used as a
façade to access the real implementation.

 The idea behind the Profile API is simple: it’s a user-defined storage, which can

be persisted across different sessions. Depending on the provider implementation,

http://www.mng.bz/3Q0T

355TECHNIQUE 82 Using the Profile API

the storage might be a system-defined SQL Server database or a different container.
By implementing a custom provider, you can decide how to store information in
the database.

 To use the Profile API, you need to first set up the environment. Let’s do that now.

 Using the Profile API

The Profile API is easy to use because, as for the Membership and Roles APIs, a default
provider exists. This provider will work against a system-defined SQL Server schema,
which you can’t extend. Before we talk about customer providers, we’re going to
introduce the API itself and show you how to use it.

PROBLEM

You need to save information across multiple sessions, in complex forms, with less
effort. We’re talking about user properties, like full name, preferences, and so on. You
also want to be able to change the provider easily, in order to have new storage ready
to use, by leveraging the Provider Model.

SOLUTION

The Profile API is your best bet in this situation. To start with, the default provider, as
outlined in chapter 5, you need to launch the aspnet_regsql.exe from C:\Windows\
Microsoft.NET\Framework\v4.0.30319\. The wizard will create all the tables and stored
procedures used by the Membership, Roles, and Profile APIs; if you’ve previously exe-
cuted it (maybe you’ve already configured the Membership API), you’re ready to start.

 The next step is to configure the provider in web.config, as shown in the following
listing (the node is located under configuration\system.web).

<profile defaultProvider="SqlServerProfile"
 enabled="true" automaticSaveEnabled="false">
 <providers>
 <clear />
 <add
 name="SqlServerProfile"
 type="System.Web.Profile.SqlProfileProvider,
 System.Web, Version= 4.0.0.0,
 Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="SqlServer"
 applicationName="/" />
 </providers>
</profile>

Now that the provider is configured, you need to define the Profile properties.

Adding properties
The Profile API, in a nutshell, is a strongly typed interface where the properties must
be specified before they can be used. You have two options for accomplishing this

Listing 13.1 Profile API configuration is made in web.config

TECHNIQUE 82

Provider
name

Provider
class

Connection
string
task:

356 CHAPTER 13 State

■ Define your properties in the web.config
■ Create a class that inherits from ProfileBase, in the System.Web.Profile

namespace

THE PROFILE API FOR ANONYMOUS USER The Profile API can also be used with
an anonymous user. This feature, called anonymous identification, is covered
on MSDN at http://www.mng.bz/YD2e.

If you opt for the first option, you need to define the properties in web.config, using
the syntax contained in the following listing.

<profile>
 <properties>
 <add name="FavoriteSkin" type="string" serializeAs="String" />

<group name="UserProfile">
 <add name="FirstName"/>
 <add name="LastName"/>
 <add name="BirthDate" type="DateTime"/>
 </group>
 </properties>
</profile>

You can also use a custom type for your properties, but keep in mind that the types need
to be serializable. You can control the serialization mechanism used by defining the
serializeAs attribute, which you can set to Binary, String, Xml, or ProviderSpecific.

THE PROFILE API AND WEB PROJECTS The definition of the properties in
web.config can’t be used with a web project, but only with a website. If you
need to use the Profile API in a web project, you need to opt for the definition
on a class that inherits from ProfileBase.

After you’ve configured the provider, Visual Studio will automatically let you access the
properties, using the Profile class, while you’re in Page or UserControl. If you take a
look at Page properties, you might notice that a Profile property doesn’t exist. It is, in
fact, what is often referred to as syntactic sugar: the compiler (and Visual Studio) knows
that, at runtime, a special class will be created, using the options defined in web.config.

 If you opt for the base class, you need to define a class (as already noted) and reg-
ister it with the inherits attribute under configuration\system.web\profile:

<profile ... inherits="ProfileAPI.MyProfile">

Now that you’ve added your properties, you need to learn how to access the user pro-
file and save the related properties.

Retrieving and saving the properties
If you take a look at Visual Studio, the result at this point is quite interesting because
IntelliSense shows the property, mapped with its defined type. You can take a look at

Listing 13.2 Defining the profile’s properties in web.config
figure 13.3 to understand what we’re talking about.

http://www.mng.bz/YD2e

357TECHNIQUE 82 Using the Profile API

You’ll be able to see the properties, whether you define your properties in web.config
or create a class that inherits from ProfileBase.

 To retrieve a value, you just need to write this simple and straightforward code:

C#:
string skin = Profile.FavoriteSkin;
string firstName = Profile.UserProfile.FirstName;

VB:
Dim skin as String = Profile.FavoriteSkin
Dim firstName as String = Profile.UserProfile.FirstName

If you previously defined a group property in your configuration, a complex type is
automatically generated for you; the inner properties must be accessed using the spe-
cific syntax shown in the previous snippet.

 If you need to save a value, the code isn’t much different:

C#:
Profile.FavoriteSkin = "ocean";
Profile.UserProfile.FirstName = "Daniele";
Profile.Save();

VB:
Profile.FavoriteSkin = "ocean"
Profile.UserProfile.FirstName = "Daniele"
Profile.Save()

The result for a similar page, in which the user can
enter the values, and then the Profile API saves
them, is shown in figure 13.4.

Figure 13.3 The Profile API’s properties are visible via IntelliSense. Because they’re strongly typed,
IntelliSense will show this information, too.

Figure 13.4 Profile properties can
be read and saved easily. They’re
persisted across future requests,
so the user will find the properties
when they return to the website.

358 CHAPTER 13 State

 By default, a property is saved when its value is assigned. You would do better to
disable this behavior (as we did) by setting the automaticSaveEnabled property to
false; you’ll improve performance if you do. If you go this route, you need to manu-
ally call the Save method to ensure that all the properties are saved correctly. Be sure
you remember to do so; otherwise, you won’t save the data that’s in the user profile.

Working with the Profile API and web projects
If you’re using a web project instead of a website, or if you’re outside a page, the previ-
ous code snippets won’t work. In these scenarios, you need to directly reference the
Profile property on HttpContext.Current. If you’re using a custom class, you need
to cast to that; otherwise, you can cast to ProfileCommon, which is a special type built
for you by ASP.NET that also inherits from ProfileBase.

 Let’s imagine that we built a custom type for our profile, like the one in the next
listing.

C#:
public class MyProfile : ProfileBase
{
 [SettingsAllowAnonymous(true)]
 public String FirstName
 {
 get
 {
 return base["FirstName"] as String;
 }
 set
 {
 base["FirstName"] = value;
 }
 }
}

VB:
Public Class MyProfile
 Inherits ProfileBase
 <SettingsAllowAnonymous(True)>
 Public Property FirstName() As String
 Get
 Return TryCast(MyBase.Item("FirstName"), [String])
 End Get
 Set
 MyBase.Item("FirstName") = value
 End Set
 End Property
End Class

To access its values, you just need to use this code:

C#:

Listing 13.3 A custom profile implemented in code

Anonymous
support is enabled

Anonymous
support is enabled
string firstName = ((MyProfile)HttpContext.Current.Profile).FirstName;

359TECHNIQUE 83 A custom provider for the Profile API

VB:
Dim firstName as string = DirectCast(HttpContext.Current.Profile,
 MyProfile).FirstName

Except for the type we’re using, this code is the same as what you need to use when
you’re using a website.

DISCUSSION

The Profile API is simple to use, but it’s powerful. You can map the properties in
web.config if you’re using a website, or you can define a custom class (which is manda-
tory if you’re using a web project). The power behind the Profile API makes using this
approach interesting because you can easily integrate it into existing applications. A
user profile takes a membership profile to the next level: it contains additional infor-
mation about the user. This information isn’t vital to the identification of the user, but
it completes the user’s navigation experience.

 Although the default provider is configured to support any type of profile proper-
ties, it’s of limited use in real-world scenarios. Because it uses a single column to con-
tain all the properties, you’ll run into problems if you need to perform statistics or use
this information outside the web application. In such a situation, a custom provider is
a better idea.

 A custom provider for the Profile API

We’ve already analyzed the implications of building a custom provider in chapter 5,
when we introduced the Membership and Roles API. Because the Profile API is also
implemented using the Provider Model pattern, you can easily change the implemen-
tation, without touching the rest of the code. In this scenario, we’ll show you how to
do that.

PROBLEM

The Profile API’s default provider (called SqlProfileProvider), included in ASP.NET,
has a table structure that isn’t normalized. In fact, it uses two fields: one containing
the property names and another with the corresponding values. This structure is flexi-
ble enough to be used in virtually any project without changing the database schema,
but it has a major limitation: it mixes different properties together. This limitation
makes it virtually impossible to query the data from outside the provider. We need to
implement a provider that lets you do that.

SOLUTION

The Provider Model is useful because you can write all the code and then replace the
implementation. When your site grows and you want to change the inner implementa-
tion, you’ll find your life is a lot simpler. In the previous scenario, you learned how to
use the API; this time, the scope is to change the storage implementation and save the
information in a custom table, in which each property is mapped to a table column.

 The table schema from the built-in provider and our custom table schema are
shown in figure 13.5.

TECHNIQUE 83

360 CHAPTER 13 State

This provider, in contrast with our custom Membership and Roles providers, will use
ADO.NET directly because the query will be generated dynamically. For brevity, the pro-
vider will use the SQL Server managed provider directly, often referred to as SqlClient
(because its namespace is System.Data.SqlCient). If you need to target another data-
base or write a generic implementation, you’ll need to rewrite some parts of it.

 The idea behind this provider is quite simple: given the properties specified by the
profile, it will generate the best query to get the result from the database and then
load it into the profile itself. When it’s saved, the provider will check for modified
properties via the IsDirty property exposed by the property itself and save only
what’s needed. To make everything ultra-secure, as you learned in chapter 10, we’ll
compose the query using a parametric query, avoiding SQL injection.

Loading a profile
To load a profile, you need to override the GetPropertyValues method from Pro-
fileProvider, which is the base class used by the Profile API providers. This method
gets the data from the database and loads it into an instance of the SettingsProper-
tyValueCollection class. This class represents a generic property container; the
properties are represented by a string key and a generic object value. To ensure that
the load is performed only one time per page, we’ll implement the per-request pat-
tern, which we’ve already described, using the Context.Items collection to cache the
results. You can find the code in the following listing

C#:
public sealed class SqlProfileProvider : ProfileProvider
{
 public override SettingsPropertyValueCollection GetPropertyValues(
 SettingsContext context,
 SettingsPropertyCollection collection)
 {
 if (collection == null || collection.Count < 1 || context == null)
 return null;

Listing 13.4 Code for loading a user profile

Figure 13.5 On the left is the default database schema. On the right is our custom one. Our provider
is based on one column per property that’s defined in the user profile. With this setup, we can query
the data directly because it’s normalized.
 string username = GetUsername(context);

361TECHNIQUE 83 A custom provider for the Profile API

 string itemKey = string.Concat("profile-", username);

 if (HttpContext.Current.Items[itemKey] == null)
 {
 HttpContext.Current.Items[itemKey] =
 GetProfileData(collection, username);
 }

 return HttpContext.Current.Items[itemKey] as
 SettingsPropertyValueCollection;
 }
}

VB:
Public NotInheritable Class SqlProfileProvider
 Inherits ProfileProvider
 Public Overrides Function GetPropertyValues(
 context As SettingsContext,
 collection As SettingsPropertyCollection)
 As SettingsPropertyValueCollection
 If collection Is Nothing OrElse
 collection.Count < 1 OrElse
 context Is Nothing Then
 Return Nothing
 End If

 Dim username As String = GetUsername(context)

 Dim itemKey As String = String.Concat("profile-",
 username)

 If HttpContext.Current.Items(itemKey) Is Nothing Then
 HttpContext.Current.Items(itemKey) =
 GetProfileData(collection, username)
 End If

 Return TryCast(HttpContext.Current.Items(itemKey),
 SettingsPropertyValueCollection)
 End Function
End Class

The magic is performed by the GetProfileData method, which gets the information
from the profile and dynamically composes the query. You can find the most impor-
tant piece of code in the following listing.

C#:
private SettingsPropertyValueCollection
 GetProfileData(SettingsPropertyCollection properties,
 string username)
{
 SettingsPropertyValueCollection values =
 new SettingsPropertyValueCollection();

 StringBuilder commandText = new StringBuilder("SELECT t.Username");
 List<SettingsPropertyValue> columns = new List<SettingsPropertyValue>();

Listing 13.5 The query that gets the user profile is composed dynamically

Save in context from
the database

Get from
context

Save in context
from the database

Get from
context
 int columnCount = 0;

362 CHAPTER 13 State

 foreach (SettingsProperty prop in properties)
 {
 SettingsPropertyValue value = new SettingsPropertyValue(prop);
 values.Add(value);
 columns.Add(value);

 commandText.Append(", ");
 commandText.Append("t." + prop.Name);

 ++columnCount;
 }

 commandText.Append(" FROM " + _tableName + " t WHERE ");
 commandText.Append("t.UserName = @Username");

 SqlParameter param = new SqlParameter("@Username", username);

...

 return values;
}

VB:
Private Function GetProfileData(properties As SettingsPropertyCollection,
 username As String) As SettingsPropertyValueCollection
 Dim values As New SettingsPropertyValueCollection()

 Dim commandText As New StringBuilder("SELECT t.Username")
 Dim columns As New List(Of SettingsPropertyValue)()
 Dim columnCount As Integer = 0

 For Each prop As SettingsProperty In properties
 Dim value As New SettingsPropertyValue(prop)
 values.Add(value)
 columns.Add(value)

 commandText.Append(", ")
 commandText.Append("t." + prop.Name)

 columnCount += 1
 Next

 commandText.Append(" FROM " & _tableName & " t WHERE ")
 commandText.Append("t.UserName = @Username")

 Dim param As New SqlParameter("@Username", username)

...

 Return values
End Function

The result is that the profile will be loaded from the specified table, and the gener-
ated query will fetch only the mapped properties, maximizing performance.

Saving a profile
If you understood how to load a profile, then saving it will be a piece of cake. The
code is long because you have to check for null values and modified or read-only
properties, but it’s simple to analyze. We’re basically cycling all the properties and

Include
each
property

Filter by
username

Query execution
omitted

Include each
property

Filter by
username

Query execution
omitted
assigning their values from the database.

363TECHNIQUE 83 A custom provider for the Profile API

 The next listing contains the part where the single property is loaded, which is
included in a foreach cycle. This snippet is similar to what’s included in listing 13.5.

C#:
SqlDbType dbType = Utilities.ConvertFromCLRTypeToSqlDbType(
 pp.Property.PropertyType);

object value = null;

if (pp.Deserialized && pp.PropertyValue == null)
 value = DBNull.Value;
else
 value = pp.PropertyValue;

columnsQuery.Append(", ");
valuesQuery.Append(", ");
columnsQuery.Append(columnName);
string valueParam = "@Value" + count;
valuesQuery.Append(valueParam);

param = new SqlParameter(valueParam, dbType);

if (param.DbType == DbType.DateTime)
 if (DateTime.TryParse(value.ToString(), out dtParam))
 param.Value = Utilities.FormatDateTimeForDbType(dtParam);
 else
 param.Value = DBNull.Value;
else
 param.Value = value;

parameters.Add(param);

if (count > 0)
 setQuery.Append(",");

setQuery.Append(columnName);
setQuery.Append("=");
setQuery.Append(valueParam);

VB:
Dim dbType As SqlDbType =
 Utilities.ConvertFromCLRTypeToSqlDbType(

➥ pp.Property.PropertyType)

Dim value As Object = Nothing

If pp.Deserialized AndAlso pp.PropertyValue Is Nothing Then
 value = DBNull.Value
Else
 value = pp.PropertyValue
End If

columnsQuery.Append(", ")
valuesQuery.Append(", ")
columnsQuery.Append(columnName)
Dim valueParam As String = "@Value" & count

Listing 13.6 The most important part when saving a user profile

Convert from
CRL to DBType

Check
for null

Create
parameter

Handle
DateTimes

Create
query

Convert from
CRL to DBType

Check
for null

Create
parameter
valuesQuery.Append(valueParam)

364 CHAPTER 13 State

param = New SqlParameter(valueParam, dbType)

If param.DbType = DbType.DateTime Then
 If DateTime.TryParse(value.ToString(), dtParam) Then
 param.Value = Utilities.FormatDateTimeForDbType(dtParam)
 Else
 param.Value = DBNull.Value
 End If
Else
 param.Value = value
End If

parameters.Add(param)

If count > 0 Then
 setQuery.Append(",")
End If

setQuery.Append(columnName)
setQuery.Append("=")
setQuery.Append(valueParam)

The query will be executed, checking for the profile’s existence. Depending on
whether the profile exists, the query will issue an UPDATE or INSERT command. We’re
using a helper function (which is available in the downloadable samples) to convert
from the CLR type to a SqlDbType enum value. This conversion will ensure that the
database receives the correct data type and adds another layer of type safety check
before the correct query executes.

Making it all work
Now that the provider is ready, we have to register it in our web.config (under config-
uration\system.web):

<profile … defaultProvider="SqlProfileProvider">
 <providers>
 <clear />
 <add name="SqlProfileProvider"
 type="ProfileAPI.CustomerProviders.SqlProfileProvider"
 tableName="Profiles"
 connectionStringName="Profiles" />
 </providers>
</profile>

The profile can be used from any page, just like the one we prepared with the default
provider (see figure 13.3). The capability to use any page is one of the fundamental
aspects of the Provider Model that lets you be more productive and re-use more code
between projects.

DISCUSSION

The Profile API is the best way to implement your solution when you need to store
user preferences. It’s easy to use, simple to extend using the Provider Model, and can
grow with your application’s needs.

 Even though it might seem difficult to create a custom provider, in reality it’s not ter-

Handle
DateTimes

Create
query
ribly complex, as we’ve shown you with this scenario. Keep in mind that, if you prefer,

365Summary

you can implement the same approach using a stored procedure. If you have different
information stored in different tables, a stored procedure can encapsulate the logic to
retrieve—and save—different properties to different tables, without working with mul-
tiple providers or implementing complex logic. The custom provider you built in this
section is a first step in the right direction, though it will probably need a couple of addi-
tional features to be usable in every situation.

13.3 Summary
In this chapter, we analyzed different aspects of the most common patterns you’ll use
to handle state. First we presented the per-request solutions, then we moved on to per-
session ones. We also took a look at common techniques: we analyzed how cookies
and session state work and how to use them in different scenarios.

 We looked closely at the Profile API, which is specifically designed to simplify
actions related to a user profile. Creating and accessing a profile’s information is eas-
ier, thanks to a common infrastructure and the Provider Model pattern. Each
approach has its own pros and cons; you’ll need to choose one based on what your
application needs. The good news is that ASP.NET offers you a wide range of possibili-
ties in this particular area.

 Now that we’ve covered the most common techniques, you’re ready to take a look
at the most effective way to boost application performance: caching. You can easily use
caching to save data for all the requests. Read on to find out how.

Caching in ASP.NET
In chapter 13, you learned how state management in ASP.NET dramatically eases the
process of building applications for a stateless context such as the World Wide Web.
Now you’re going to find out that state management is useful in other situations.

 When your web application needs to serve a large number of concurrent
requests per second, you need to scale. Scalability is the ability of your application
to easily handle a growing amount of work, without needing to take drastic mea-
sures. If you need to handle more traffic in your web application, scalability means
that you won’t need to rewrite (or adapt) your application.

 Scalability is an interesting point of debate, and lots of developers have different
opinions about it. When you need to deal with scalability, you’ll typically end up add-
ing more hardware and adapting your application to work correctly. You’ll find this
task to be difficult to handle if you didn’t design your application in the right way to

This chapter covers
■ Output caching techniques in ASP.NET Web

Forms and ASP.NET MVC
■ Leveraging ASP.NET Cache for storing data
■ Integrating Windows Server AppFabric into your

application
366

begin with. By leveraging ASP.NET Cache, you can increase your application’s

367Per-application state: Cache

scalability and serve multiple requests without needing to add more hardware. In
ASP.NET applications, you can achieve scalability by adopting a special set of features,
which we’ll cover in this chapter.

 Caching is something real applications can’t live without: it’s essential for getting
around bottlenecks such as querying databases multiple times for the same data, or to
keep in memory entire pages and let the server return them without any additional
processing. In this chapter, we’ll take a look at how you can plug ASP.NET 4.0 Cache
into your code, and you’ll learn how to build more scalable and responsive web sites.

14.1 Per-application state: Cache
When you need more scalability, per-application state is the way to go. By implement-
ing this kind of state, you can boost performance because the objects are shared by all
the requests to your pages.

 You can handle per-application state in ASP.NET in two ways:

■ Output caching—Caching the output (the HTML)
■ Data caching—Caching objects

Both techniques have pros and cons. Because you’re caching objects, data caching is
more versatile, and you can display them in different forms using the same copy in
memory. On the other hand, output caching removes the need to transform the data
because the markup itself is cached; output caching is indicated whenever you need to
increase performance by preventing the page from being instantiated. Figure 14.1
shows how each of these techniques work.

 .NET Framework 4.0 introduces these new caching features:

■ Data caching is now available in a separate assembly (System.Runtime.Cach-
ing) and can be safely used by any kind of application, not just ASP.NET ones

■ ASP.NET Cache now has an object model that makes it easy to implement cus-
tom providers

■ Distributed caching is now fully supported

Page

OutputCache
saves HTML

Memory

Page

Data Cache
saves objects

IIS

Figure 14.1 Data caching differs from output caching in terms of impact. The first

caches an object, and the latter automatically saves the resulting HTML.

368 CHAPTER 14 Caching in ASP.NET

Because ASP.NET 4.0 is part of .NET Framework 4.0, you can benefit from these new
features in your ASP.NET applications. Let’s take a look at output caching to begin.

14.2 Using OutputCache
OutputCache is the simplest form of caching, in which the HTML produced by pages
or controls can be automatically saved in memory. This kind of caching will help you
save the cost of extracting the data and formatting the results.

 Leveraging OutputCache to speed up your pages

You can benefit from this technique in a lot of situations, but it isn’t applicable to data
that’s specific to a user or that’s needed in real-time. If, on the other hand, your data
changes infrequently and can be cached already formatted, this technique can boost
your application’s performance.

PROBLEM

The scenario presented here is simple: we want to store the result of a page in mem-
ory and set it to expire after a given timeout. We’ll explore how you can use all the fea-
tures that ASP.NET 4.0 offers you for these situations.

SOLUTION

OutputCache works deep inside the ASP.NET runtime and is implemented as an Http-
Module that intercepts the requests and caches them. You can see how it works in fig-
ure 14.2.

 When the page is requested for the first time (or, in general, when a cached ver-
sion doesn’t exist), the page itself is executed normally. The OuputCacheModule,
which is the HttpModule implementing this behavior, looks for the page to be cached
and saves its results in the cache. Generally, the cache is in memory and works with a
timeout-based expiration, but you can write a custom provider (in ASP.NET 4.0) and
manage different dependencies (this feature already existed in previous versions of
ASP.NET). On subsequent requests, the page class isn’t instantiated at all, but the saved
markup is instead sent directly.

 To cache a page, you need to add the following specific directive at the top:

<%@OutputCache Location="server" Duration="60" VaryByParam="none" %>

TECHNIQUE 84

Page

OutputCache

Memory

1st request

other requests

Figure 14.2 OutputCache is implemented as an HttpModule that intercepts the
request, saves a copy of the resulting markup in memory, and, on subsequent
requests, uses it instead of instantiating the page again.

369TECHNIQUE 84 Leveraging OutputCache to speed up your pages

This directive saves the output generated by the page for 60 seconds in the server’s
memory and doesn’t vary, regardless of the parameter values. This configuration is the
most simplified version and all the attributes are mandatory.

VaryByParam lets you save a different version for any of the different values speci-
fied in your parameters (via query string, form, or cookies). You can specify an asterisk
(*) to support any combination of them, or you can specify a list of values separated
by ; and that contains the parameters to watch. The last option is the best one because
the first one can potentially be used as a security threat: any combination of the
parameters will increase the memory consumed by your application, and you won’t be
able to control it.

OutputCache in a user control
OutputCache in a user control doesn’t look much different from the page one. The
directive you use is the same: you can’t specify the Location attribute (it’s implicit)
and you can add an optional Shared attribute:

<%@OutputCache Shared="true" Duration="60" VaryByParam="none" %>

Specify the Shared attribute to use the same instance (in the cache) across multiple
pages that reference the same control. If, on the other hand, you need different out-
puts for the same control to be stored in the cache depending on the page where it’s
declared, just set it to false. Other than this difference, pages and user controls work
the same way. Remember that when using OutputCache in a user control, you can’t
reference it in your page because an instance of it effectively doesn’t exist.

OutputCache dependencies
OutputCache can be linked to different types of dependencies that support different
kinds of expiration notifications. These dependencies are grouped in table 14.1,
which also contains a brief description of their features.

Table 14.1 OutputCache dependencies

Property Description

VaryByContentEncoding="encodings" You can specify a list of encodings, and a version
per encoding will be created.

VaryByControl="controlID" The OutputCache will be linked to a control and
will expire when the control changes.

VaryByCustom="browser|customstring" You can specify a custom implementation.
See MSDN for more information at http://
www.mng.bz/94Co.

VaryByHeader="headers" Similar to VaryByParam, but only the request
headers are used.

VaryByParam="parameters" You can specify a list of parameters from query
string, form, and cookie.

SqlDependency You’ll specify a dependency to SQL Server. When
the data changes, the notification is triggered,

and the OuputCache data is invalidated.

http://www.mng.bz/94Co
http://www.mng.bz/94Co

370 CHAPTER 14 Caching in ASP.NET

Note that the VaryByParam parameter is the only mandatory property; all the others
are optional.

OutputCache via code
You can also configure OutputCache via code, using the Cache property of the
HttpResponse class. You can use this option if the settings are related to conditions
that must be evaluated at runtime.

 To use this syntax, you have to write something like this:

C#:
Response.Cache.SetCacheability(HttpCacheability.Server);
Response.Cache.VaryByParams.IgnoreParams = true;
Response.Cache.SetExpires(DateTime.Now.AddMinutes(1))

VB:
Response.Cache.SetCacheability(HttpCacheability.Server)
Response.Cache.VaryByParams.IgnoreParams = True
Response.Cache.SetExpires(DateTime.Now.AddMinutes(1))

Using this approach, you can also specify dependencies from another object in the
cache or from a file. Specifying a dependency from a file is useful to invalidate the
markup when the file is used as the data source and has changed.

OutputCache profiles in web.config
When you have a group of pages—or controls—and you need to specify the same con-
figuration, merely getting them in sync by hand isn’t a feasible option: you probably
couldn’t remember how many pages need to be kept in sync, and it’s not a task that
can be shared by team members. For these reasons, ASP.NET supports cache profiles
stored in web.config, and you can simply refer to them using the CacheProfile attri-
bute on the aforementioned @OutputCache directive. You must include the following
configuration under configuration\system.web\caching:

<outputCacheSettings>
 <outputCacheProfiles>
 <clear />
 <add name=""
 enabled="true"
 duration="-1"
 location=""
 sqlDependency=""
 varyByCustom=""
 varyByControl=""
 varyByHeader=""
 varyByParam=""
 noStore="false" />
 </outputCacheProfiles>
</outputCacheSettings>

The attributes used in this declaration are similar to the properties in table 14.1 (see
table 13.1 for an explanation of the attributes). If you omit the name, as we did, you’ll
overwrite the default settings. If you specify a name instead, you can refer to this pro-
file configuration in this way:
<%@ OutputCache CacheProfile="ProfileName" %>

371TECHNIQUE 84 OutputCache in ASP.NET MVC

By using a profile, you can centrally control the behavior for a group of resources and
simplify its management.

DISCUSSION

OutputCache is useful, but it has a limitation: it can’t be personalized easily after the
markup has been generated. ASP.NET 2.0 introduced a control called Substitution
that lets you insert some placeholders that can inject dynamic values at runtime. Sub-
stitution can be used to represents strings, like the username or a link that’s avail-
able only to subscribers.

 We’ve completed our look at OutputCache’s features as far as it concerns Web
Forms. Now it’s time to take a look at how these same concepts apply to ASP.NET MVC.

14.3 OutputCache in ASP.NET MVC
ASP.NET MVC also has built-in support for OutputCache, which means you can effec-
tively leverage it to handle similar requests without overcharging the server and
achieve maximum scalability for your applications.

 Unlike what you learned in the previous section about Web Forms, to activate this
feature in ASP.NET MVC, you must decorate an action with the OutputCacheAttrib-
ute, as in the following code:

C#:
[OutputCache(Duration=10, VaryByParam="none")]
public ActionResult Index()
{
 // .. more code here ..
}

VB:
<OutputCache(Duration:=10, VaryByParam:="none")>
Public Function Index() As ActionResult
 ' .. more code here ..
End Function

If you need to, you can also decorate the whole controller so that every action is cached:

C#:
[OutputCache(Duration=10, VaryByParam="none")]
public class HomeController : Controller
{
 // ... more code here ...
}

VB:
<OutputCache(Duration:=10, VaryByParam:="none")>
Public Class HomeController
 Inherits Controller

 ' ... more code here ...
End Class

ASP.NET MVC’s OutputCache also supports dependencies in a manner similar to the
@OutputCache directive. OutputCacheAttribute provides a property for each one of

the items in table 14.1 except VaryByControl.

372 CHAPTER 14 Caching in ASP.NET

Activating this feature seems to be trivial, but when we use it in a real application, the
default implementation suddenly shows two big limitations:

■ If you decide that a page must be removed from the cache, you find that this
feature isn’t immediately available

■ Sometimes you want to cache just some portions of a page, not necessarily the
whole thing

We’re going to cover these two problems in the following pages and provide solutions
for both of them.

 Deterministically removing items from OutputCache

The default implementation of OutputCache in ASP.NET MVC supports only a time-
out-based expiration logic. For this reason, you can decide to keep a page in the cache
for a specific time span, for example, five minutes. The longer this timeout is, the bet-
ter the performance gain will be, but at the same time your website will be less respon-
sive to show up-do-date information. You can obviously tune the timeout to keep these
two aspects balanced, but you can’t get control when a newer version of the page will
finally replace the cached one.

 Unfortunately, in many situations, this result doesn’t provide enough control, and
such website behavior can leave your visitors with a bad feeling. To better explain this
concept, let’s recall for a moment CoolMVCBlog, the sample application we built in
chapters 8 and 9. Among all its great features, this application allows users to com-
ment a blog post, thanks to the form in figure 14.3.

 Now let’s imagine that a user arrives at our web site and posts a comment. If we
blindly use OutputCache on that page, he won’t see his new comment until the cache
timeout expires; he’ll most likely try to resubmit it a couple of times, and then he’ll
probably think our blog engine doesn’t work.

 Luckily for us, we can actually modify the default behavior of OutputCache in
ASP.NET MVC and provide it with better control over the expiration logic—we can tell
it to invalidate our cached pages whenever we need it to. Let’s get started.

PROBLEM

We want to use ASP.NET MVC’s OutputCache to improve performance of CoolMVCBlog’s
Show Post page. At the same time, we want to be able to remove that page from the cache

OutputCache in ASP.NET MVC smells like Web Forms
OutputCache in ASP.NET MVC is tightly coupled to the specific view engine we’re us-
ing, which in our case derives from Web Forms. For that reason, OutputCacheAt-
tribute internally is no more than a simple wrapper around the same functionality
in Web Forms and can’t be used with different view engines; the Spark view engine,
for example, uses a different approach to caching, and Razor, which will be the new
view engine adopted in ASP.NET MVC 3, still lacks official support for OutputCache.

TECHNIQUE 85
when a user inserts a new comment so that the new page shows immediately.

373TECHNIQUE 85 Deterministically removing items from OutputCache

SOLUTION

When we decorate an action with the OutputCacheAttribute, OutputCache stores its
result into ASP.NET Cache and automatically recovers it when it must serve a subse-
quent analogous request. If we knew which cache key the page belongs to, we could
easily remove it. Unfortunately, this isn’t easily possible, and even if it were, we aren’t
supposed to know it because it resides in the internal logic of the caching infrastruc-
ture and might change without notice in future releases.

 What we can do, though, is leverage the cache dependencies mechanism to
achieve a similar result. This feature is similar to the change monitors we’re going to
talk about in section 14.4. Leveraging cache dependencies consists of tying one cache
entry to another to automatically remove the first one when the latter is invalidated.
Figure 14.4 schematizes the whole process.

 The idea is to build a custom version of OutputCacheAttribute, similar to the one
in listing 14.1. This version of OutputCacheAttribute will take care of inserting a sec-
ond element in the cache, which will be the entry that we’ll remove; this element will
be our dependency item for the cached page, and we’ll use it to deterministically
invalidate the latter.

Figure 14.3
The user can fill in this
form, which we built in
chapter 8, to insert
new comments. This
page might behave in
an ugly way if we blind-
ly use ASP.NET MVC’s
OutputCache.

Cache
Item 1

Item 2

Cache.Remove(“Item 1”)

Cache dependency

Cache
Item 1

Item 2

Figure 14.4 How cache
dependency works: if Item
2 has a dependency on
Item 1, then when we
remove the Item 1, Item 2

also becomes invalid.

374 CHAPTER 14 Caching in ASP.NET

C#:
public class DependencyOutputCacheAttribute :
 OutputCacheAttribute
{
 public string ParameterName { get; set; }
 public string BasePrefix { get; set; }

 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 base.OnResultExecuting(filterContext);

 string key =
 string.IsNullOrEmpty(BasePrefix) ?
 filterContext.RouteData.Values["action"].ToString() +
 "_" +
 filterContext.RouteData.Values["controller"].ToString()
 : BasePrefix;

 if (!string.IsNullOrEmpty(ParameterName))
 key += "_" + filterContext.RouteData.Values[ParameterName];

 filterContext.HttpContext.Cache.Insert(
 key,
 key,
 null,
 Cache.NoAbsoluteExpiration,
 Cache.NoSlidingExpiration);

 filterContext.HttpContext
 .Response.AddCacheItemDependency(key);
 }
}

VB:
Public Class DependencyOutputCacheAttribute
 Inherits OutputCacheAttribute

 Public Property ParameterName As String
 Public Property BasePrefix As String

 Public Overrides Sub OnResultExecuting(
 ByVal filterContext As ResultExecutingContext)

 MyBase.OnResultExecuting(filterContext)

 Dim key As String
 If String.IsNullOrEmpty(BasePrefix) Then
 key = filterContext.RouteData.Values("action").ToString + "_" +
 filterContext.RouteData.Values("controller").ToString
 Else
 key = BasePrefix
 End If

 If Not String.IsNullOrEmpty(ParameterName) Then

Listing 14.1 Code for DependencyOutputCacheAttribute

Extend base
OutputCacheAttribute

B

Override
OnResultExecuting

C

Calculate
removal

item’s key D

Insert removal
item in cache

E

Set up cache
dependency

F

Extend base
OutputCacheAttribute

B

Override
OnResultExecuting

C

Calculate removal
item’s key D
 key += "_" +

375TECHNIQUE 85 Deterministically removing items from OutputCache

 filterContext.RouteData.Values(ParameterName).ToString
 End If

 filterContext.HttpContext.Cache.Insert(
 key, key, Nothing,
 Cache.NoAbsoluteExpiration,
 Cache.NoSlidingExpiration)

 filterContext.HttpContext.
 Response.AddCacheItemDependency(key)
 End Sub

End Class

Our custom DependencyOutputCacheAttribute inherits from the standard Output-
CacheAttribute B and modifies its OnResultExecuting method C, by which the
base class inserts the current page into the cache. Our task is to insert a second ele-
ment into the cache E, whose key is automatically determined and links the control-
ler and the action names. We’ll also insert another optional parameter if it’s
contained within the request D. The last step is to set up a dependency between the
OutputCache entry and this new one, which will be our removal item F. The entire
logic is shown in figure 14.5.

Now we can take care of the removal logic. Once again, the action filter’s infrastruc-
ture proves to be an extremely smart way to declaratively inject our custom logic
where we want. The following listing shows RemoveCachedAttribute’s code.

C#:
public class RemoveCachedAttribute : ActionFilterAttribute
{
 public string ParameterName { get; set; }
 public string BasePrefix { get; set; }

 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 base.OnResultExecuting(filterContext);

 string key = string.IsNullOrEmpty(BasePrefix) ?
 filterContext.RouteData.Values["action"].ToString() + "_" +
 filterContext.RouteData.Values["controller"].ToString() : BasePrefix;

 if (!string.IsNullOrEmpty(ParameterName))

Listing 14.2 Implementation of RemoveCachedAttribute

Insert removal
item in cache

E

Set up cache
dependency

F

Cache
Removal Item

Cached page

Cache.Remove(
 “Removal Item”)

Cache dependency

Cache
Remo al Item

Cach d page

Figure 14.5 Thanks to
the removal item and the
cache dependency that
we set up, we’re finally
able to evict the cached
page when we need to.

Calculate
removal
item’s key

B

 key += filterContext.RouteData.Values[ParameterName];

376 CHAPTER 14 Caching in ASP.NET

 filterContext.HttpContext.Cache.Remove(key);
 }
}

VB:
Public Class RemoveCachedAttribute
 Inherits ActionFilterAttribute

 Public Property ParameterName As String
 Public Property BasePrefix As String

 Public Overrides Sub OnResultExecuting(
 ByVal filterContext As ResultExecutingContext)
 MyBase.OnResultExecuting(filterContext)

 Dim key As String
 If String.IsNullOrEmpty(BasePrefix) Then
 key = filterContext.RouteData.Values("action").ToString + "_" +
 filterContext.RouteData.Values("controller").ToString
 Else
 key = BasePrefix
 End If

 If Not String.IsNullOrEmpty(ParameterName) Then
 key += "_" +
 filterContext.RouteData.Values(ParameterName).ToString
 End If

 filterContext.HttpContext.Cache.Remove(key)
 End Sub
End Class

This new filter represents the counterpart of DependencyOutputCacheAttribute and
uses the same logic to redetermine the same key B and use it to evict the removal
item from the cache C. Based on how ASP.NET Cache dependency works, the result is
the timely invalidation of the page from the OutputCache.

 At last, we managed to build everything we need to achieve our ultimate goal: to
cache the Show Post page and remove it whenever a new comment is inserted. We can
do it by simply decorating the corresponding two actions, as shown in the following
listing.

C#:
[DependencyOutputCache(Duration = 30,
 Location=OutputCacheLocation.Server,
 VaryByParam="None",
 ParameterName="id")]
public ActionResult Post(int id)
{
 // post load logic here
}

[HttpPost]

Listing 14.3 Deterministically removing the page from the cache

Invalidate
removal itemC

Calculate
removal
item’s key

B

Invalidate
removal itemC

OutputCache
with dependency

B

Page removed C

[RemoveCached(ParameterName = "id")] from cache

377TECHNIQUE 85 Deterministically removing items from OutputCache

public ActionResult Post(int id, Comment newComment)
{
 // comment save logic
}

VB:
<DependencyOutputCache(Duration := 30,
 Location:=OutputCacheLocation.Server,
 VaryByParam:="None",
 ParameterName:="id")>
Public Function Post(ByVal id as Integer) as ActionResult
 ' post load logic here
End Function

<HttpPost>
<RemoveCached(ParameterName := "id")>
Public Function Post(ByVal id as Integer,
 ByVal newComment as Comment) as ActionResult
 ' comment save logic
End Function

This code contains the two actions involved in the process of showing a post and
inserting a new comment. The first one caches the page by using DependencyOutput-
CacheAttribute B, discriminating the removal item’s key with the id parameter. We
need to use the ID because we want to be able to have as many removal items as we
have cached posts. The second action, using the same parameter, invalidates the page
by using RemoveCacheAttribute C.

DISCUSSION

OutputCache is one of the best ways to limit the computational load on the server,
although the standard implementation in ASP.NET MVC isn’t exempt from limitations;
the inability to deterministically remove pages from the cache forces us to base our
invalidation logic on timeout only. Unfortunately, you won’t always be able to accept
this compromise. When your website offers a certain degree of interactivity, users
always expect to see the results of their inputs on the page immediately.

 Thanks to ASP.NET MVC’s high level of expandability, you can have the best of both
worlds with a simple customization. In this section, we built an extended version of
OutputCache support that allowed us to signal to the framework when an action must

OutputCache
with dependency

B

Page removed
from cache

C

What if the two actions had different names?
DependencyOutputCacheAttribute and RemoveCachedAttribute build the re-
moval-item key by using the controller and the action names. This state of affairs
works fine until the two actions involved in the process have the same name, as in
listing 14.3. In the more typical case in which this isn’t necessarily true, a Base-
Prefix property is provided for both attributes to set up a common key.
cause a page to disappear from the cache. We did this by using action filters or, in

378 CHAPTER 14 Caching in ASP.NET

other words, by writing declarative code in ASP.NET MVC fashion. The advantage of
this solution is not only stylistic—it’s much less invasive and can easily be plugged into
an existing project.

 OutputCache and partial views

When you’re building an application, it’s quite uncommon to cache the whole page;
usually only portions of it are customizable on a per-user basis. Take a look at figure 14.6,
which shows CoolMVCBlog’s homepage.

 The page shown in figure 14.6 has a welcome message that’s shown only when it’s
served to an authenticated user. The message itself changes from user to user, and it’s
customized with their name. These characteristics make it unfeasible to cache this
whole page. On the other hand, the list of posts is a good candidate for being cached
because it remains unchanged each time the page is returned, unless someone writes
a new post.

COULDN’T WE USE VARYBYCUSTOM FOR THIS? To get around this issue and
keep showing to each user the correct welcome message, we could use a
VaryByCustom parameter on the OutputCache attribute to differentiate the
cache entries based on the session ID. Although everything would work as
expected, this isn’t a solution to the problem of scalability because it won’t be
shared among users; we’ll end up having a cached page for each user, raising
the memory pressure without almost any performance gain. Doing things this
way would be like saving pages in session storage.

We need something that allows us to cache only portions of a page. Even though this
solution isn’t immediately available in ASP.NET MVC, you can still leverage it on your
websites by referencing the MvcContrib external library. Let’s see how.

TECHNIQUE 86

Figure 14.6 CoolMVCBlog provides a welcome message for the authenticated user. If we cached this

whole page, the same message would be shown to everyone who visits our website.

379TECHNIQUE 86 OutputCache and partial views

PROBLEM

We do like OutputCache, but we want to apply it to only some portions of the page
instead of the whole page.

SOLUTION

As far as we know, when a request to an ASP.NET MVC application returns a web page,
it can be the result of one view and some partial views, but on the controller side the pro-
cess is orchestrated by a single action. This process flow isn’t always true; we can effec-
tively render a portion of a page using different actions via the RenderAction HTML
helper. When you use actions in this way they’re called child actions and are another way
to build reusable components, in addition to the ones you saw in chapter 9. Let’s imag-
ine we have an action that returns the server time, like the one in the following listing.

C#:
public ActionResult CurrentServerTime()
{
 ViewData["time"] = DateTime.Now.ToLongTimeString();

 return this.View();
}

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl" %>
Hi from CurrentServerTime: <%: ViewData["time"] %>

VB:
Public Function CurrentServerTime() As ActionResult
 ViewData("time") = DateTime.Now.ToLongTimeString

 return this.View
End Function

<%@ Control Language="VB"
 Inherits="System.Web.Mvc.ViewUserControl" %>
Hi from CurrentServerTime: <%: ViewData("time") %>

We can insert the output it produces within another view, referencing it with the Ren-
derAction HTML helper:

<% Html.RenderAction("CurrentServerTime"); %>

If we could leverage OutputCache for just this child action, we could effectively
achieve our goal of caching portions of pages. Unfortunately, the standard Output-
CacheAttribute doesn’t work with child actions. So what happens if we decorate Cur-
rentServerTime with the attribute, as in the following code?

C#:
[OutputCache(Duration=30, VaryByParam="none")]
public ActionResult CurrentServerTime()
{
 // ...

Listing 14.4 Action and view to show the server time
}

380 CHAPTER 14 Caching in ASP.NET

VB:
<OutputCache(Duration:=30, VaryByParam:="none")>
Public Function CurrentServerTime() As ActionResult
 ' ...
End Function

What happens is you don’t get any results: the caching feature isn’t triggered and the
action gets executed at every request. You can easily verify this by adding this child
action to a parent non-cached one, which produces the output in figure 14.7. Then
you can experiment to determine that the
two times are perfectly in sync.

 To activate OutputCache for child
actions, you need an additional feature
that’s available in ASP.NET MVC only as a
separate download. It’s part of the MvcCon-
trib project and you can download it at
http://mvccontrib.codeplex.com/.

After you’ve downloaded MvcContrib’s bin file and referenced it in your project, acti-
vating partial caching is a breeze. All you have to do is decorate the child action with
ChildActionCacheAttribute:

C#:
[ChildActionCache(Duration=30)]
public ActionResult CurrentServerTime()
{
 // ...
}

VB:
<ChildActionCache(Duration:=30)>
Public Function CurrentServerTime() As ActionResult
 ' ...
End Function

With this attribute in place on the child
action, if you rerun and refresh the previ-
ous page, you’ll get the result shown in fig-

MvcContrib what?
MvcContrib is an open source project that involves some of the best ASP.NET gurus
on the planet. MvcContrib aims to extend ASP.NET MVC by providing features that
aren’t part of the original release. Its code is released under the Apache 2.0 license,
so you can use it for both proprietary and open source projects. ASP.NET MVC 3 will
hopefully feature built-in support for partial caching.

Figure 14.7 Although CurrentServerTime
is OutputCache-enabled, this feature doesn’t
affect the child action. As a result, both the non-
cached parent and the cached child show the
same time.

Figure 14.8 Parent and child action times
are not in sync anymore because the child
CurrentServerTime action has been success-
ure 14.8—the caching is actually working! fully cached and refreshes only every 30 seconds.

http://mvccontrib.codeplex.com/

381TECHNIQUE 87 Implementing data caching in ASP.NET

 Notice that the current implementation is far simpler than the “official” Output-
Cache; all it provides is a Duration-based expiration logic. A Key property is also pro-
vided; you can specify the cache key you want to use so that you can manually remove
the cached entry when you need to.

DISCUSSION

In an application, you won’t usually keep the whole page in memory. Think about per-
user customized content, such as welcome messages and login forms, or consider what
happens when you provide dynamic advertising, banners, or data that must be up-to-
date at each response. In these situations, the ability to cache only some portions of a
web page, without affecting others, is dramatically useful. Even though ASP.NET MVC
doesn’t provide a built-in mechanism to accomplish such a result, you don’t have to
build your own implementation; instead, consider using the one provided with the
MVCContrib open source project, which makes achieving your goals a breeze.

 Until now, we’ve used ASP.NET Cache to keep some HTML output in memory so
that we can reuse it when similar and subsequent requests occur. Because ASP.NET
Cache is primarily general-purpose storage, you can leverage it to keep objects of any
type. Our next step is to analyze what ASP.NET 4.0 can offer in terms of data caching
and how this feature can meet your needs for scaling.

14.4 Data caching techniques
OutputCache isn’t flexible enough when you have different representations of the
same data that differ only in terms of the markup generated. If you use OutputCache,
you’re saving the cost associated with generating the markup (which is minimal, after
all), but you’ll continue to make different queries to the same data just to save its dif-
ferent representation in memory. OutputCache has other limitations, so in distrib-
uted applications you should opt for data caching (often simply referred to as
caching). By saving an object in memory, you can use it whenever you like, without
limits, and transform it into different shapes.

 Implementing data caching in ASP.NET

Because ASP.NET 4.0 is based on .NET Framework 4.0, you get a set of new caching fea-
tures that are useful and interesting. In this scenario, we’ll explore what you can do
with these features.

PROBLEM

If the amount of work that the pages are sending to the database is growing, the prob-
lem is that you need to be parsimonious. Remember, external calls (to a database, or,
in distributed environments, to services) have a high cost. In most cases, the requests
made by different pages are identical and so is the response. You can dramatically
improve the performance and scalability of your application with some caching.

SOLUTION

We’re comfortable with the axiom that our page will be faster if we don’t invoke a
query—or perform a call to a service—each time the page is requested. Caching tries

TECHNIQUE 87
to apply this axiom, using an API that we can program against.

382 CHAPTER 14 Caching in ASP.NET

 As previously outlined, .NET Framework 4.0 has a new set of APIs that are built
from scratch and can be used independently from ASP.NET. If you have old applica-
tions that you’re migrating from previous versions, don’t worry: the old calls will auto-
matically be redirected to the new implementation, so you won’t need to do it
manually. Technically speaking, the new caching features are implemented in classes
located under System.Runtime.Caching and custom providers are supported (we’ll
talk about all this in more detail later in this chapter).

 The base abstract class is called ObjectCache and represents a generic cache
implementation that’s not specifically limited to in-memory. The default (and only)
provider shipped with .NET Framework 4.0 is called MemoryCache and works in mem-
ory, but, thanks to the base abstract class, you can directly work against ObjectCache
in your business layer. The base abstract class will help you be prepared to change the
implementation based on your future needs, without rewriting the code.

ObjectCache has an interface that supports cache region (useful when you’re deal-
ing with out-of-process caching services) and change monitors (the equivalent of
cache dependencies from previous versions), and has a richer API—it’s more mature
and more useful in modern applications.

MemoryCache doesn’t support regions, but has new methods to query the cache
store, which are used in the following listing.

C#:
string key = "lastUpdate";

if (!MemoryCache.Default.Contains(key, null))
 MemoryCache.Default[key] = DateTime.Now;

DateTime value = (DateTime)MemoryCache.Default[key];

DateTime value2 = (DateTime)MemoryCache.Default.AddOrGetExisting(key,
 DateTime.Now, ObjectCache.InfiniteAbsoluteExpiration,
 null);

VB:
Dim key as String = "lastUpdate"

If Not MemoryCache.Default.Contains(key, Nothing) is Nothing Then
 MemoryCache.Default(key) = DateTime.Now
End If

Dim value as DateTime = (DateTime)MemoryCache.Default(key)

Dim value2 as DateTime =
 (DateTime)MemoryCache.Default.AddOrGetExisting(key,
 DateTime.Now, ObjectCache.InfiniteAbsoluteExpiration,
 null)

ObjectCache provides a full API that lets you add, replace, remove, and enumerate
objects from the cache store. The previous code is the same even if you use another
provider. You can simply refer to ObjectCache to represent the correct provider’s

Listing 14.5 MemoryCache can be used to save and retrieve data from cache
instance to refer to it.

383TECHNIQUE 87 Implementing data caching in ASP.NET

CACHE: ADD VERSUS INSERT Although adding and inserting elements into the
cash might seem to be similar tasks, they’re actually different. If you add an
object to the cache and another object already exists for the given key, an
exception is thrown. If you just want to replace an object (if it’s present), you
need to use the insert methods.

Change monitors are an important aspect of .NET Framework 4.0’s cache implemen-
tation; they’re used to provide an expiration policy that isn’t only based on timeout,
but can also be linked to particular events, like a file modification or another cache
object’s expiration. Let’s take a closer look at change monitors.

Using change monitors
ASP.NET 4.0 supports the following change monitors, which are all based on the Chan-
geMonitor class in System.Runtime.Caching:

■ CacheEntryChangeMonitor—Monitors another cache entry
■ FileChangeMonitor—Links to a list of files
■ SqlChangeMonitor—Uses SQL Server’s cache dependency

The change monitor classes implement the corresponding features that were previ-
ously provided by cache dependencies and are similar to them.

 Figure 14.9 is a basic schema of how a change monitor works.

With change monitors, you have more granular control over the expiration policy,
and they’re simpler to combine together than cache dependencies are. The following
listing contains an example of how the new API works.

C#:
CacheItemPolicy policy = new CacheItemPolicy {
 AbsoluteExpiration = DateTime.Now.AddHours(1),
 SlidingExpiration = ObjectCache.NoSlidingExpiration,
 Priority = CacheItemPriority.Default,

Listing 14.6 Explicitly specifying a CacheItemPolicy with ChangeMonitor

Object saved in
cache

Cache
store

A monitor is added Monitor

Callback invoked
Item removed from
cache

Item in cache

Figure 14.9 Change monitors are used to monitor an external resource. When their monitored
resources change, a callback to the application is invoked and the related cache entry is removed.
 ChangeMonitors = {

384 CHAPTER 14 Caching in ASP.NET

 new HostFileChangeMonitor(new List<String> {
 "c:\\pathto\\myfile.ext"
 })
 }
};
MemoryCache.Default.Add("cacheKey", DateTime.Now, policy, null);

VB:
Dim policy As New CacheItemPolicy With {
 .AbsoluteExpiration = DateTime.Now.AddHours(1),
 .SlidingExpiration = ObjectCache.NoSlidingExpiration,
 .Priority = CacheItemPriority.Default }

policy.ChangeMonitors.Add(New HostFileChangeMonitor({"c:\path"}))

MemoryCache.Default.Add("cacheKey", DateTime.Now, policy, Nothing)

In this example, a new HostFileChangeMonitor is added to the collection of change
monitors in the current CacheItemPolicy, which monitors the specified files and, if
any of them is modified, triggers the invalidation. Using callbacks, you can associate
your own logic with removal and updating using the RemovedCallback and Update-
Callback properties.

DISCUSSION

Caching features in .NET Framework 4.0 are now mature, and you can use them not
only for your web applications, but also for non-web ones. Even though caching was
possible with previous versions, now that the classes reside in a separate assembly, you
don’t need to reference System.Web, which simplifies the deployment.

 Cache in ASP.NET 4.0 might benefit from these new features, which will add more
granular control over an item’s expiration policy and support custom providers, like
the one you use when you have to share the cache items across multiple, different
servers. Before moving on to the topics related to building custom cache providers, lis-
ten up while we tell you about some tips and tricks that are useful when you’re work-
ing with caching.

14.4.1 Cache tips and tricks

This section consists of a list of tips and tricks that we’ve learned from our own experi-
ence of working with caching in everyday applications. Use this information as a guide
to enhance your cache strategy and get some great advice from us!

DO NOT DIRECTLY USE CACHE

It’s always a good choice to wrap your cache in your business logic so that you don’t
directly reference the cache in your pages. Wrapping your cache in this way will help
you to granularly control its behavior and keep everything organized. Caching is a
responsibility that is demanded of the business logic, which can centrally apply the
requested behavior.

USE LOCKS TO AVOID RACE CONDITIONS

Typically, Cache is accessed in a multithreading environment, which means that

you’re subject to deadlocks and race conditions. When this happens, it’s possible that

385TECHNIQUE 87 Implementing data caching in ASP.NET

a call to an instruction is performed at the same time from different threads, and then
an unwanted situation occurs.

 Depending on your code, you might execute the code multiple times or not at all.
To keep that from happening, you need to write code that will use locking and avoid
concurrency. Of course, you only need to do this when items are being added to the
cache, because reading is thread-safe by design. In reality, MemoryCache is thread-safe,
but because race conditions can occur while reading, a lock is required to ensure data
integrity. The following listing contains the implementation of the solution.

C#:
private static object lockObject = new object();

public List<Customer> GetCustomers()
{
 string cacheKey = "customers";
 List<Customer> customers = ObjectCache[cacheKey] as List<Customer>;

 if(customers == null)
 {
 lock (lockObject)
 {
 customers = ObjectCache[cacheKey] as List<Customer>;
 if (customers == null)
 {
 ...
 ObjectCache[cacheKey] = customers;
 }
 }
 }
 return customers;
}

VB:
Private Shared lockObject As New Object()

Public Function GetCustomers() As List(Of Customer)
 Dim cacheKey As String = "customers"
 Dim customers As List(Of Customer) =
 TryCast(ObjectCache(cacheKey), List(Of Customer))

 If customers Is Nothing Then
 SyncLock lockObject
 customer = TryCast(ObjectCache(cacheKey), List(Of Customer))
 If customers Is Nothing Then
 ...
 ObjectCache(cacheKey) = customers
 End If
 End SyncLock
 End If
 Return customers
End Function

Listing 14.7 A thread-safe cache pattern

386 CHAPTER 14 Caching in ASP.NET

Locking the items will let you control the phase and avoid race conditions. As for mul-
tithreading techniques, we’re going to explain them in more detail in chapter 16.

DO NOT USE HIGH TIMEOUTS

High timeouts aren’t always a good option. If you need to persist your objects for a
long time, it might be the right choice. On the other hand, if you already know that
the objects aren’t going to be used very often, are going to change frequently,
or aren’t crucial to your application, a policy with a lower timeout is a better choice.
Always remember that you’re consuming your server’s memory, so it’s not ideal
to cache objects for a long time; they probably won’t be used effectively for a
long period.

DO NOT USE REMOVEDCALLBACKS TO INSERT ITEMS IN THE CACHE

If you need to ensure that a copy exists in the cache every time a particular object is
requested, you don’t need to use RemovedCallbacks to implement this behavior.
RemovedCallbacks are, in fact, useful for associating custom logic with removal (to
remove other objects, based on some conditions). If you simply insert an item into the
cache again just after it’s removed (after a memory pressure from the server
occurred), you decrease your scalability. The best pattern to use to ensure that a fresh
item is inserted in the cache every time it’s accessed (if it’s not already present) is
shown in listing 14.7.

DO NOT ALTER COLLECTIONS IN MEMORY

This point is related to the first one about not using caching directly. When you’re
dealing with a cached object, you’re dealing with multithreading, and race conditions
might occur. To avoid this problem, avoid altering collections in memory; if you need to,
use a lock, like we showed you in listing 14.7. Accessing an item by key is quicker than
retrieving a collection from memory and finding the item inside it.

PREPARE YOUR OBJECTS TO BE SERIALIZABLE

This tip is important for dealing with out-of-process providers, when an item saved in
cache must be serializable. A serializable item can not only be copied in memory, but
can also be transmitted across the wire. If you’re planning to switch sometime to an
out-of-process provider, you’ll want to remember this advice. Because you can choose
the caching provider at the runtime stage in ASP.NET 4.0, serializable items let you
transparently move from an in-process strategy, such as the standard ASP.NET Cache,
to an enterprise cache server, like AppFabric, by building your own provider.

 We just provided you with a wealth of tips that you can use to make your applica-
tions the best they can be. Now let’s talk about custom cache providers and what they
can do for you.

14.5 Building custom cache providers
If you’re lucky enough to work on big projects, you’ll probably have needs that are dif-
ferent from those of the average developer. Big projects don’t come around often, but

they need non-trivial techniques.

387TECHNIQUE 87 Building custom cache providers

 In previous versions of ASP.NET, support for cache providers was nonexistent, so you
had to write the implementation and basic infrastructure code if you needed to support
different strategies and switch them without rewriting the code. For these situations,
you couldn’t even use OutputCache. It’s so tied to the ASP.NET infrastructure that the
only way to implement a custom approach is to be part of the ASP.NET team itself.

 Version 4.0 introduces a new set of APIs specifically targeted to developing a cus-
tom provider, so your work is simplified. Before we get into it, we need to analyze the
reasons behind writing custom providers and how you can benefit from existing solu-
tions on the market.

14.5.1 Do I need a provider?

When you have a high number of concurrent requests, caching might help you avoid
calls to external resources, like a database or a service. In these scenarios, you’ll typi-
cally be using more than one server in a cluster configuration. Clusters are powerful
because you can reply to a huge amount of requests in a short amount of time,
depending on how many nodes you add to it. Clusters let you scale quickly by adding
more hardware.

 In a distributed architecture like this one, the problem with ASP.NET memory
cache is that it’s limited to a single server and can’t be synchronized across them. You
can write code that does this for you (by using a set of services that will work under the
hood), but doing it that way will add a lot of complexity in terms of code to be written,
and it will have an impact on deployment, too.

CACHE LIFETIME IN OUT-OF-PROCESS ENGINES When you use an out-of-process
engine for caching, the items are saved outside the ASP.NET process and seri-
alized (and deserialized) on request. This means that the class must be
marked as Serializable. The items aren’t tied to a specific AppDomain, so
when one of the web applications recycles, the items aren’t removed from the
cache. To clear the cache, you have to follow the engine rules.

To handle this situation, you need to change your implementation from an in-mem-
ory one to an out-of-process one. The best option is to use a distributed caching engine,
which can automatically synchronize cache items across several servers, without
requiring you to do any additional work. It’s a good idea to follow this route when
you’re working with clusters, but you can also use it as a way to share the same objects
across different AppDomains. The typical scenario is an application that has more
than one web site (www., forum., and so on). Generally, each site will have its own copy
of cached objects, which will consume more memory and introduce problems with
consistency of data across the different AppDomains. Out-of-process caching will help
in this situation, too.

 The next topic we’ll cover is how to simply achieve out-of-process caching by taking
advantage of the features offered by Microsoft Windows Server AppFabric, a new
application framework recently introduced by Microsoft.

388 CHAPTER 14 Caching in ASP.NET

14.5.2 Windows Server AppFabric caching

Plenty of cache engines work out-of-process, from MemCached to NCache to Scale-
Out. A new player that was released just a month after .NET Framework 4.0 is Micro-
soft Windows Server AppFabric caching, previously known by the code name Velocity .

 AppFabric caching is a fully distributed cache engine that supports cache regions,
balancing items across the nodes, and so on. Read more about AppFabric caching on
http://www.mng.bz/sxza. You can install it on Windows Vista, Windows 7, Windows
Server 2008, and Windows Server 2008 R2. Best of all, it’s free of charge. You can see
how it works in figure 14.10.
We’re going to use AppFabric caching in this section because it’s gaining a lot in pop-
ularity. If you don’t have it installed already, you can do so quickly from Microsoft Web
Platform Installer. AppFabric caching works as a single node cluster, which is useful
for you to test its behavior before moving to production. Unfortunately, its administra-
tion is possible only via a command prompt (based on PowerShell) or API. An official
graphical interface doesn’t exist, but the commands to start and query the engine sta-
tus are simple and are highlighted in MSDN.

 Our first provider based on AppFabric caching will be a custom cache provider.

 Custom cache provider

You can write a custom cache provider in ASP.NET 4.0 by simply implementing a class
that inherits from ObjectCache, which is the base abstract class that’s used by the only
provider already implemented in ASP.NET, the aforementioned MemoryCache.

 Writing a custom provider isn’t difficult. In this example, we’ll use Windows Server
AppFabric, which we assume is configured and running locally. You can obviously use

Web cluster Cache cluster

Server1

Server2

Server3

Obj

Web2

Web1

Web3

Web4

Figure 14.10 When an item is added to the cache, AppFabric caching automatically
balances it across the cluster’s nodes. When retrieved, the object can be sent from
any server in the cluster.

TECHNIQUE 88
this as a base to implement additional option or to target a different caching engine.

http://www.mng.bz/sxza

389TECHNIQUE 88 Custom cache provider

PROBLEM

We need to share the cache objects in a cluster and make the cached items synchro-
nized across the different servers. AppFabric caching will make this possible.

 Our custom provider will be based on ObjectCache, and we’ll show you how to
build a simple cache factory. You’ll be able to change the provider by changing the
configuration. This ability fills a gap present in ASP.NET, where a full Provider Model
(like the one for the Membership, Roles, or Profile APIs) doesn’t exist for caching.

SOLUTION

The API for AppFabric caching is located in the Microsoft.ApplicationServer.
Caching.Client and Microsoft.ApplicationServer.Caching.Core assemblies. You
need to add a reference to them in your application before you start. Our solution
will offer a new caching provider for .NET Framework 4.0, which we’ll use in our
ASP.NET application.

Configure AppFabric
First of all, you need to configure the caching servers. You can be this via code or in
web.config. Using web.config is a better idea because you can control this setting
more easily.

<configSections>
 <section name="dataCacheClient"
 type="Microsoft.ApplicationServer.Caching.DataCacheClientSection,
 Microsoft.ApplicationServer.Caching.Core, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
</configSections>

<dataCacheClient>
 <hosts>
 <host name="localhost" cachePort="22233" />
 </hosts>
 <securityProperties mode="None" protectionLevel="None"/>
</dataCacheClient>

Now that the provider is configured, you can write the code necessary to implement
the provider.

DataCache and DataCacheFactory
The class that’s responsible for accessing AppFabric caching is DataCache, which can
be created via the DataCacheFactory class. Because creating this instance is expen-
sive, it needs to be created and shared across multiple requests. To implement this
behavior, we chose a static property; the code is shown in the following listing.

C#:
private static DataCache factory;

private static DataCache CacheFactory
{

Listing 14.8 DataCache factory initialization
 get

390 CHAPTER 14 Caching in ASP.NET

 {
 if (factory == null)
 {
 lock (syncObj)
 {
 if (factory == null)
 {
 DataCacheFactory cacheFactory = new DataCacheFactory();
 factory = cacheFactory.GetDefaultCache();
 }
 }
 }

 return factory;
 }
}

VB:
Private Shared factory As DataCache

Private Shared ReadOnly Property CacheFactory() As DataCache
 Get
 If factory Is Nothing Then
 SyncLock syncObj
 If factory Is Nothing Then
 Dim cacheFactory As New DataCacheFactory()
 factory = cacheFactory.GetDefaultCache()
 End If
 End SyncLock
 End If

 Return factory
 End Get
End Property

By using this code, we’re reading the configuration from the application configura-
tion file, which in our case is web.config.

Saving items in the cache
The cache instance is ready, but we need to access it. ObjectCache provides a lot of
overloads, which are mandatory and must be implemented. You can find the com-
plete listing in the downloadable code samples for this book. The following listing
shows the most interesting part. The other overloads will simply call this method.

C#:
public override void Set(CacheItem item, CacheItemPolicy policy)
{
 if (item == null || item.Value == null)
 return;

 if (policy != null && policy.ChangeMonitors != null
 && policy.ChangeMonitors.Count>0)

Listing 14.9 Saving items in cache using Windows Server AppFabric
 throw new NotSupportedException("Change monitors are not supported");

391TECHNIQUE 88 Custom cache provider

 item.Key = item.Key.ToLowerInvariant();
 CreateRegionIfNeeded();

 TimeSpan expire = (policy.AbsoluteExpiration.Equals(null)) ?
 policy.SlidingExpiration :
 (policy.AbsoluteExpiration - DateTimeOffset.Now);

 if (string.IsNullOrEmpty(item.RegionName))
 CacheFactory.Put(item.Key, item.Value, expire);
 else
 CacheFactory.Put(item.Key, item.Value,
 expire, item.RegionName);
}

VB:
Public Overrides Sub [Set](item As CacheItem,
 policy As CacheItemPolicy)
 If item Is Nothing OrElse item.Value Is Nothing Then
 Return
 End If

 If policy IsNot Nothing
 AndAlso policy.ChangeMonitors IsNot Nothing
 AndAlso policy.ChangeMonitors.Count > 0 Then
 Throw New NotSupportedException("Change monitors are not supported")
 End If

 item.Key = item.Key.ToLowerInvariant()
 CreateRegionIfNeeded()

 Dim expire As TimeSpan =
 If((policy.AbsoluteExpiration.Equals(Nothing)),
 policy.SlidingExpiration,
 (policy.AbsoluteExpiration - DateTimeOffset.Now))
 If String.IsNullOrEmpty(item.RegionName) Then
 CacheFactory.Put(item.Key, item.Value, expire)
 Else
 CacheFactory.Put(item.Key, item.Value, expire, item.RegionName)
 End If
End Sub

Remember that to be cached in AppFabric caching, the objects need to be serializ-
able. The only other important point to keep in mind is that AppFabric’s API provides
explicit calls for default or explicit regions, and you must address this fact in your
code. Regions are used to separate the items, which are contained in the same area, to
be divided by multiple applications. You don’t have to use regions, but using them
enables you to differentiate your cache policy. AppFabric caching also supports
named caches, which is another option that groups together a set of regions.

 To create the region, you need to use the CreateRegion method provided by
DataCache. The following listing contains the code.

C#:
private void CreateRegionIfNeeded()

Listing 14.10 Create or check for a cache region

Keys are case sensitive

Region
created if
needed

Absolute or sliding
expiration check

Keys are case sensitive

Region
created if
needed

Absolute
or sliding
expiration
check
{

392 CHAPTER 14 Caching in ASP.NET

 try
 {
 CacheFactory.CreateRegion(DefaultRegionName);
 }
 catch (DataCacheException ex)
 {
 if (!ex.ErrorCode.Equals(
 DataCacheErrorCode.RegionAlreadyExists))
 throw ex;
 }
}

VB:
Private Sub CreateRegionIfNeeded()
 Try
 CacheFactory.CreateRegion(DefaultRegionName)
 Catch ex As DataCacheException
 If Not ex.ErrorCode.
 Equals(_
 DataCacheErrorCode.RegionAlreadyExists) Then
 Throw ex
 End If
 End Try
End Sub

As you can see, you need to explicitly create the region every time because it’s
removed when the service restarts (it’s saved in memory). Unfortunately, there isn’t a
specific API to check for the existence of a region, and a specific exception is provided
instead. This is by design and can’t be changed.

Retrieving items from the cache
To retrieve an item previously cached by AppFabric, you have to use the Get method.
As you can see in the following listing, the code is straightforward.

C#:
public override object Get(string key, string regionName = null)
{
 key = key.ToLower()Invariant;
 CreateRegionIfNeeded();

 return (regionName == null) ?
 CacheFactory.Get(key) :
 CacheFactory.Get(key, regionName);
}

VB:
Public Overrides Function Get(key As String,
 regionName As String = Nothing) As Object
 key = key.ToLowerInvariant()
 CreateRegionIfNeeded()

 If regionName Is Nothing Then

Listing 14.11 Retrieving items from cache using AppFabric

Create
region

Ignore
exception

Create
region

Ignore
exception
 Return CacheFactory.Get(key)

393TECHNIQUE 89 Custom OutputCache provider

 Else
 Return CacheFactory.Get(key, regionName)
 End If
End Function

You don’t need to know anything else to start working with AppFabric. You can test
your provider directly, or, as you’ll learn in the next section, write a simple set of
classes to implement a Provider Model.

Using a Provider Model
To support a Provider Model, you need to implement a custom interface:

C#:
public interface ICacheBuilder
{
 ObjectCache GetInstance();
}

VB:
Public Interface ICacheBuilder
 Function GetInstance() As ObjectCache
End Interface

You need this interface because MemoryCache doesn’t have a public parameterless con-
structor, but its instance needs to be accessed using its Default property.

 To speed up development, we used an Inversion of Control (IoC) container, spe-
cifically Unity from Microsoft patterns & practices. Take a look at the previous snip-
pet, which exposes a static property of type ObjectCache. Using this approach, you
can simply refer to this class, called CacheFactory, which will instantiate the provider
defined in web.config.

DISCUSSION

Custom providers are a new and exciting feature in ASP.NET 4.0. If you write a custom
provider, you’re no longer forced to store your objects in local memory—you can also
go out-of-process. Windows Server AppFabric caching is the solution offered by Micro-
soft to easily manage out-of-process and distributed caching. By implementing a custom
provider using its API and putting forth a small amount of effort to produce a cache fac-
tory, we made ASP.NET fully support a true Provider Model; we specified the configured
provider in web.config and automatically injected it using an IoC container.

 Custom OutputCache provider

To complete our examination of cache providers, we need to take a look at Output-
Cache. In this scenario, we’ll write a custom provider using the same API that we pre-
sented before, so that we can save the items directly in Windows Server AppFabric’s
caching store.

PROBLEM

When OutputCache items are saved out-of-process in a distributed cache store, they
can be synchronized across multiple servers, and you can keep them updated with less

TECHNIQUE 89

394 CHAPTER 14 Caching in ASP.NET

effort. ASP.NET 4.0 supports custom providers, and we want to use AppFabric caching
as the designated storage.

SOLUTION

To implement a custom OutputCache provider, you need to inherit from the base
class OutputCacheProvider, which has a single implementation already available that
saves the items in memory. This class provides three methods to insert, get, and
remove items; we’re not providing them in this book because they’re simple (and will
basically implement code similar to the code in section 14.5.2).

 The interesting thing about this case is that you can also specify the provider pro-
grammatically, by overriding the GetOutputCacheProviderName method in global.asax:

C#:
public override string GetOutputCacheProviderName(HttpContext context)
{
 if (context.Request.Path.EndsWith("outputcache.aspx",
 StringComparison.InvariantCultureIgnoreCase))
 return "AppFabricCache";
 else
 return base.GetOutputCacheProviderName(context);
}

VB:
Public Overrides Function GetOutputCacheProviderName(context As
 HttpContext) As String
 If context.Request.Path.EndsWith("outputcache.aspx",
 StringComparison.InvariantCultureIgnoreCase) Then
 Return "AppFabricCache"
 Else
 Return MyBase.GetOutputCacheProviderName(context)
 End If
End Function

Or, you can globally register the provider in web.config:

<caching>
 <outputCache>
 <providers>
 <add name="AppFabricCache" type="AppFabricCacheProvider, App_Code"/>
 </providers>
 </outputCache>
</caching>

When a page with the @OutputCache directive that matches our requirements is found
(a page that has outputcache.aspx as its path), our new provider will be used.

DISCUSSION

ASP.NET 4.0 fully supports caching, thanks to an extensible model that enables custom
providers to be implemented. Data caching or output caching serve different needs,
but can work together to support your caching strategies. When these different cach-
ing strategies are used correctly, they can give your existing applications new life, with-

out any additional investments in hardware.

395Summary

14.6 Summary
This chapter analyzed in depth the different options available in ASP.NET when it comes
time to give a serious boost to your applications. If your website is performing slowly, or
you’re experiencing overloads on the server, caching is the key to effective scaling.

 Cache is especially useful in high traffic sites because it shields the database (or the
services, if an SOA architecture is used) from a high number of calls. In turn, your
application’s throughput will increase, without investments in more hardware.

 In this chapter, we went through different, practical issues you might face in real-
world scenarios, all of which had a common solution: always keep the most used items
(whether .NET objects or entire pages) in separate storage, so that you can easily and
quickly reuse them.

 After exploring many features of data caching and output caching, valid for both
ASP.NET Web Forms and MVC applications, we moved on to the new features in .NET
Framework 4.0 for building custom cache providers. When you need to keep the cache
synchronized across different servers, this is the way to go. Using an out-of-process
engine, like Microsoft Windows Server AppFabric caching, you can further enhance
your performance and gain even more scalability.

 Now that most of the picture is clear, the next chapter will cover some extreme cus-
tomizations and concepts you can put into practice to build even smarter applications.

Extreme ASP.NET 4.0
Extensibility is a driving force of ASP.NET, and this chapter is composed of different
techniques used to implement advanced—and probably extreme—ASP.NET-based
features.

 We described HttpModules and HttpHandlers in chapter 1 from an architectural
point of view. In this chapter, we’ll use them to implement common strategies in
websites; for example, we’ll look at error handling, which is fundamental for both
security and troubleshooting. We’ll use multithreading techniques to increase per-
formance in specific scenarios. Finally, we’ll talk about how HttpRuntime extensibil-
ity can address your remaining needs, letting you store your own source in any non-
conventional storage, such as a database or even remote servers.

 This chapter and the next are the last in the book, and we’ve already covered
everything you’ll see from now on, to some degree, in the previous chapters.

This chapter covers
■ HttpModules
■ Logging and error handling
■ Extending HttpRuntime
■ How to build a virtual path provider
396

This chapter, in particular, is organized to show you advanced topics related to

397Using HttpModules

HttpRuntime and multithreading. If you need out-of-the-ordinary techniques in your
application, this chapter is for you.

15.1 Using HttpModules
As we mentioned in chapter 1, HttpModules are a special kind of class used to intercept
mainly HttpApplication events (but you can handle events from any object if you need
to). An HttpModule implements the IHttpModule interface from the System.Web
namespace and is loaded at runtime. Generally, HttpModules are stateless with regard
to the current request, so they don’t contain state related to the current request, but they
do use HttpContext (a singleton class) as their state context.

HttpContext offers access to both HttpRequest and HttpResponse, enabling state
to be used across request and response. You also have the ability to use session state,
caching, and application state.

 Each HttpApplication has only one instance of a given HttpModule. Remember
that you can have different instances of HttpApplication in a given web application,
depending on the ASP.NET HttpApplication pool configuration (not to be confused
with IIS ones), or in case ASP.NET demands more. (For a complete rundown of the
details of this topic, see chapter 1.) This single-instance behavior is reflected by
IHttpModule interface members, which are composed of a simple Init() member,
used to initialize elements, and a Dispose() member, optionally used to clean up
resources if you need to do that.

To build an HttpModule, you need to register it in the web.config file. Depending on
your IIS version, you can make an HttpModule globally available and use it across all
kinds of requests. For information about this specific feature, available on IIS 7.0 and 7.5,
see chapter 1.

Migrating HttpHandlers and HttpModules to the IIS 7.0 integrated pipeline
To enable HttpHandlers and HttpModules in the IIS 7.0 integrated pipeline, you
need to move the data under the system.WebServer node, instead of under sys-
tem.web. You can automatically do this with the following command-line tool:

%windir%\system32\inetsrv\APPCMD.EXE migrate config <Application Path>

To avoid a runtime error when the legacy httpModules section is present (for exam-
ple, if you need to deploy this application to both IIS 6.0/7.0 in classic pipeline and
IIS 7.0 in integrated pipeline), you can set validateIntegratedModeConfigura-
tion under system.webServer\validation.

You can also use a shortcut to enable all managed modules to run for all requests in
your application, regardless of the preCondition attribute (to be set to managed-
Handler), by setting the runAllManagedModulesForAllRequests property in the sys-
tem.webServer\modules section.

398 CHAPTER 15 Extreme ASP.NET 4.0

NOTE HttpApplication has different events, giving you full control over
which ASP.NET state you need to capture, either request or response. You can
find all the events in the documentation, which is also available on MSDN at
http://www.mng.bz/SeWM.

HttpModules are considered the heart of ASP.NET because common features are
implemented with it: OutputCache, SessionState, authorization, and authentication,
to name a few. Extensibility in ASP.NET often depends on HttpModules because they
enable you to modify virtually anything related to the response and request flows. This
section is dedicated to leveraging HttpApplication.

 Modifying the response flow with HttpModules

HttpModules can modify every single aspect of ASP.NET, so you can use them to manip-
ulate the response flow before you send the output straight to the browser. This tech-
nique can be useful in a lot of scenarios: you can add specific headers to specific kinds
of content or simply modify the flow and redirect the user to a specific page. When
you use HttpModules creatively, you can deeply influence the way ASP.NET handles the
response flow, as we’ll show you in this example.

PROBLEM

We want to write a module to handle a custom authorization mechanism for our appli-
cation. We want to provide a new authorization feature, with our custom logic inside.
ASP.NET includes UrlAuthorizationModule by default, which is useful for mapping
access, via web.config, to a given set of URLs. This custom module will let you dynami-
cally specify authorization rules, so you don’t have to rely on static specification with
the web.config rules.

SOLUTION

Generally, BeginRequest or EndRequest events of HttpApplication are used the most
because you usually need to modify the output either before the corresponding
HttpHandler begins its work or right after the output is ready to be sent.

 The AuthorizeRequest and AuthenticateRequest events are also useful. They’re
respectively related to authorization and authentication requests from ASP.NET. They
both enable you to customize those mechanisms, as outlined in figure 15.1.

TECHNIQUE 90

Figure 15.1 The ASP.NET request flow in action. HttpApplication events are intercepted by custom
modules, so the flow can be changed. In this figure, MyModule is a custom module that will intercept

BeginRequest and AuthorizeRequest events.

http://www.mng.bz/SeWM

399TECHNIQUE 90 Modifying the response flow with HttpModules

These events are strictly synchronous, but you can also use their asynchronous equiva-
lents in a fire-and-forget way. Using them asynchronously is handy when you have to
deal with data loading or intensive processing routines, where you don’t need to mod-
ify the request or response status.

 For our specific problem, we need to intercept and handle the AuthorizeRequest
event of the HttpApplication class. This event occurs after BeginRequest and
AuthenticateRequest to ensure that the request will be authorized before any han-
dler or module is processed any further.

 For our simple example, we’re going to intercept the event, and, if the current
time is after 5 PM, we’ll set the StatusCode property of HttpResponse to 401, which
means that the request isn’t authorized. The result is that ASP.NET will stop the
request, and, depending on the authentication configuration, the user will be redi-
rected to the login page; in the case of Windows Authentication, the user will be asked
for a valid account.

 Obviously, you can use a better-fitting dynamic routine, but this solution is a good
way for you to get the point regarding authorization customization. The code in the
following listing shows how to achieve the result.

C#:
public class AuthorizationModule : IHttpModule
{
 ...
 public void Init(HttpApplication context)
 {
 context.AuthorizeRequest += new EventHandler(OnAuthorizeRequest);
 }

 void OnAuthorizeRequest (object sender, EventArgs e)
 {
 HttpApplication app = (HttpApplication)sender;

 if (DateTime.Now.Hour >= 17
 app.Context.Response.StatusCode = 401;
 }
}

VB:
Public Class AuthorizationModule
 Implements IHttpModule
 ...
 Public Sub Init(ByVal context As HttpApplication)

➥ Implements IHttpModule.Init
 AddHandler context.AuthorizeRequest, AddressOf OnAuthorizeRequest
 End Sub

 Private Sub OnAuthorizeRequest(ByVal sender As Object,
 ByVal e As EventArgs)
 Dim app As HttpApplication = DirectCast(sender, HttpApplication)

 If DateTime.Now.Hour >= 17 Then

Listing 15.1 A custom authorization module to modify the response flow
 app.Context.Response.StatusCode = 401

400 CHAPTER 15 Extreme ASP.NET 4.0

 End If
 End Sub

End Class

The code is self-explanatory: we’re intercepting the authorization request and chang-
ing the request flow by setting a specific HTTP response code.

 As we already mentioned, the HttpModule needs to be registered in web.config. It
will work on every request coming to ASP.NET (not only those coming to .aspx pages),
so if you have special content, like images or style sheet, you should exclude them
from its range.

DISCUSSION

Customizing the ASP.NET response flow isn’t so difficult: you have to intercept and
handle HttpApplication events and provide your own custom code in response. This
approach could lead to some interesting personalization, using a clean and central-
ized solution.

 Even though the code presented in this example is simple, you can add your own
rules to validate the current request authentication, and consequently authorize the
response based on your needs. You can get even more creative in your use of HttpMod-
ules, as you’ll see in the next example in which we’ll intercept and handle a mobile-
device-specific skin.

 Intercepting and handling mobile device requests

Mobile devices are extremely popular today, but
they require a special kind of UI. They have smaller
screens, less power, and different screen resolutions
than other devices. They can also have different
screen orientations: square screen, portrait, or land-
scape. They need special treatment to use a website
to its maximum potential. This example addresses
this problem with a solution applied in the heart of
the application.

PROBLEM

We want to write a custom action to intercept and
manage requests coming from mobile devices.
We’re going to apply a specific master page
because we don’t want to let non-mobile users navi-
gate in our specific low-band version; we want to
reserve it for the exclusive use of mobile users.

SOLUTION

The solution is simple and is based partially on
browser capabilities (see section 7.2). The magic
behind this script is in how ASP.NET intercepts and
handles our request. The result will be similar to

TECHNIQUE 91

Figure 15.2 The website, as it will be
displayed in its mobile-specific layout.
By using a specific version for specific
the screenshot shown in figure 15.2. devices, you’ll achieve better usability.

http://mng.bz/cuH6
http://mng.bz/cuH6
http://mng.bz/cuH6

401TECHNIQUE 91 Intercepting and handling mobile device requests

 Let’s suppose that we have the browser definitions updated (or a custom provider
in place); all we need to do is check the IsMobileDevice property of the Http-
BrowserCapabilities instance, which we can access through HttpRequest.

 To indicate that a mobile version is running, we’re injecting a special value into
HttpContext.Items so that we can access it later in our controls. Listing 15.2 contains
the code that will help us identify mobile requests and produce the corresponding
output in the inner components (for example, it will change the page size for lists or
simply provide less content for some specific views).

C#:
public void Init(HttpApplication context)
{
 context.PreRequestHandlerExecute += new EventHandler(CheckMobileRequest);
}

void CheckMobileRequest(object sender, EventArgs e)
{
 HttpApplication app = sender as HttpApplication;

 if (app.Request.Browser.IsMobileDevice)
 {
 app.Context.Items["isMobile"] = true;
 ModifyMasterPage(app);
 }
}

private void ModifyMasterPage(HttpApplication app)
{
 if (app.Context.Handler is Page)
 {
 ((Page)app.Context.Handler).PreInit +=
 new EventHandler(ApplyMasterPage);
 }
}

private void ApplyMasterPage(object sender, EventArgs e)
{
 ((Page)sender).MasterPageFile = "~/Masters/Mobile.master";
}

VB:
Public Sub Init(ByVal context As HttpApplication) Implements IHttpModule.Init
 AddHandler context.PreRequestHandlerExecute, AddressOf CheckMobileRequest
End Sub

Private Sub CheckMobileRequest(ByVal sender As Object,
 ByVal e As EventArgs)
 Dim app As HttpApplication = TryCast(sender, HttpApplication)

 If app.Request.Browser.IsMobileDevice Then
 app.Context.Items("isMobile") = True
 ModifyMasterPage(app)
 End If
End Sub

Private Sub ModifyMasterPage(ByVal app As HttpApplication)

Listing 15.2 A custom HttpModule to handle mobile devices

For mobiles
only

Check for page
request

Change
to mobile

For mobiles
only

Check for
 If TypeOf app.Context.Handler Is Page Then
page request

402 CHAPTER 15 Extreme ASP.NET 4.0

 AddHandler DirectCast(app.Context.Handler, Page).PreInit,
 AddressOf ApplyMasterPage
 End If
End Sub

Private Sub ApplyMasterPage(ByVal sender As Object, ByVal e As EventArgs)
 DirectCast(sender, Page).MasterPageFile =
 "~/Masters/Mobile.master"
End Sub

The code is simple and consists of a series of checks that ensure that we’re modifying
only requests directed to pages and only those made by mobile devices. The result will
look similar to figure 15.2.

DISCUSSION

Instead of a classic example based on HttpApplication events, this one is the best way
to demonstrate the potential offered by HttpModules: you can change every single
aspect of the pipeline and plug your code where it’s functional for your needs.

 The important technique shown in this example is the ability to, from a central
point, add an event handler for every page requested. You can do this by using the
Handler property of HttpContext, which contains the current handler assigned to the
response. The remaining code is self-explanatory: we changed the master page to
Mobile.master, which is how the magic of changing the layout occurs.

 We created three master pages: one to act as a master for the others (Main.master),
one for the normal version (Full.master), and one for the mobile one (Mobile.
master). Pages will reference only Full.master, which is based on Main.master (nested
master pages are fully supported); this module will change—on the fly—the value of the
Page.MasterPageFile property to the corresponding path for our mobile-enabled mas-
ter page.

 The result is truly amazing because it clearly shows you the potential of HttpMod-
ules. You might arrive at a similar result using a base common class for pages, but the
approach we’ve described here is more versatile because you can apply your own rules
to existing applications, or you can apply them granularly to a specific set of pages. All
this is possible because you can easily plug HttpModules into the pipeline.

 The next part is dedicated to another important topic: how to deal with errors, log
them, and handle them properly.

15.2 Logging and handling errors
Logging exceptions is important for controlling your applications when they’re
deployed. You can opt for your own way of storing this information, using a variation of
the code shown in listing 15.1 and intercepting the Error event of HttpApplication,
or by using one of the libraries available on the market. Both solutions have their own
pros and cons: writing your own code is probably a win/win situation if you don’t want
to include references to gigantic libraries in order to use only a small portion of their
features; using third-part code lets you implement the task in less time.

 No matter which method you choose, handling errors the right way is crucial from

Change
to mobile
a security point of view: the less your attacker can see, the more secure your application

403TECHNIQUE 92 Intercepting, and handling errors with a custom module

is. In this section, you’ll learn how to protect your errors from others’ eyes, and, at the
same time, log them for tracing purposes.

15.2.1 Error logging with Enterprise Library and log4net

If you decide to use custom libraries to handle logs, you’ll probably choose between
Microsoft Enterprise Library and Apache Software Foundation’s (ASF) log4net.

 Microsoft Enterprise Library (at the time we were writing this book) is available in
version 5.0 at http://www.mng.bz/T85o. This library is free and contains a lot of func-
tionalities, of which logging is only a small part. It’s widely used among enterprise
applications; even though it’s not part of the .NET Framework BCL, developers tend to
trust external class libraries that come from Microsoft. log4net is a project from
Apache Software Foundation and is available under the Apache License at http://
www.mng.bz/0OX6. Both libraries provide great flexibility: you can log information
(and errors) to a file, a database, a message queue, the event log, or just generate an
email. If you’re trying to choose between the two, consider these points:

■ Enterprise Library has a GUI tool for configuring its Logging Application Block
■ log4net supports hierarchical log maintenance

The choice is based mainly on features you need to address because, from a perfor-
mance point of view, they’re similar. Enterprise Library is often used because of its
capabilities. If you’re using it already in your project (for example, because you’re
using the Cache Application Block), it might seem familiar to you; in this case, using
the Enterprise Library is the right choice because you already have a dependency on
the main library. On the other hand, log4net is preferred by developers who are
searching for a simple and complete library to perform this task, and nothing more.

 If you prefer to write code, and your logging needs are relative only to exceptions,
you’ll probably find it easier to handle errors and store this information with your own
custom code.

 Intercepting, and handling errors with a custom module

Exposing errors to end users isn’t a good idea, from both a usability and a security point
of view. Error handling implemented the right way will help administrators to inspect
the complete error, and will provide the casual user with a more useful courtesy page.

PROBLEM

You want to avoid full error disclosure to normal users but display the full error to
administrators. Your application will be secure, and administrators will be able to
inspect errors, without accessing the error logging tool, while they’re running the
page that caused the error. You also want to provide an entry point to add more pow-
erful exception logging capabilities in the future.

SOLUTION

As we discussed in chapter 4 when we talked about security, it’s important not to show
sensitive information to users: you should always consider errors to be dangerous.
ASP.NET gives you control over errors, letting you choose from three options:

TECHNIQUE 92

http://www.mng.bz/T85o
http://www.mng.bz/0OX6
http://www.mng.bz/0OX6

404 CHAPTER 15 Extreme ASP.NET 4.0

■ Always show errors
■ Never show errors
■ Show errors only when the request is coming from the same machine that’s run-

ning the application

Following code comes from a typical web.config and demonstrates each of these options:

<configuration>
 <system.web>
 <customErrors mode="On|Off|RemoteOnly"
 defaultRedirect="CustomPage.htm" />
 </system.web>
</configuration>

These settings are flexible enough to cover your needs while you’re developing the
application. The reality is that when you put your application in production, you prob-
ably won’t make requests from the same machine running the page, and so you need
to be the only one accessing error details.

HttpApplication has a useful Error event, used to intercept exceptions that aren’t
blocked at a higher level, such as in a try/catch block. This event can be handled to
combine authorization and authentication from ASP.NET—you can show the error to
only a specific group of people, thanks to the Roles API that’s available on ASP.NET
(see chapter 5 for more information about the Roles API). The code is simple: you just
have to handle the event, verify user permissions given the current roles, and then
show a personalized error page—or just let ASP.NET do the magic, using the values
specified in web.config.

 We need to configure web.config to register our module, just like we did in list-
ing 15.1. When an error occurs, the exception will be handled by our event handler,
and we’ll display an error message similar to the one shown in figure 15.3.

Figure 15.3
Using our custom error
system, we can add ad-
ditional information to
the error page or decide
to show the error to spe-
cific clients.

405TECHNIQUE 92 Intercepting, and handling errors with a custom module

To implement such a personalized view, we need to write a custom HttpModule like
the one shown in the following listing.

C#:
namespace ASPNET4InPractice.
{
 public class ErrorModule: IHttpModule
 {
 ...
 public void Init(HttpApplication context)
 {
 context.Error+=new EventHandler(OnError);
 }

 void OnError(object sender, EventArgs e)
 {
 HttpApplication app = (HttpApplication)sender;
 HttpException ex = app.Server.GetLastError() as HttpException;

 if (app.User.IsInRole(AdministrativeRole))
 {
 app.Response.Clear();
 app.Response.TrySkipIisCustomErrors = true;
 app.Response.Write(
 string.Format("<h1>This error is only visible" +
 " to '{0}' members.</h1>", AdministrativeRole));
 app.Response.Write(ex.GetHtmlErrorMessage());
 app.Context.ApplicationInstance.CompleteRequest(); }
 }
 }
}

VB:
Namespace ASPNET4InPractice
 Public Class ErrorModule
 Implements IHttpModule
 ...
 Public Sub Init(ByVal context As HttpApplication)

➥ Implements IHttpModule.Init
 AddHandler context.Error, AddressOf OnError
 End Sub

 Private Sub OnError(ByVal sender As Object, ByVal e As EventArgs)
 Dim app As HttpApplication = DirectCast(sender, HttpApplication)
 Dim ex As HttpException = TryCast(app.Server.GetLastError(),
 HttpException)

 If app.User.IsInRole(AdministrativeRole) Then
 app.Response.Clear()
 app.Response.TrySkipIisCustomErrors = True

 app.Response.Write(String.Format("<h1>This error is only visible" &
 " to '{0}' members.</h1>", AdministrativeRole))
 app.Response.Write(ex.GetHtmlErrorMessage())

Listing 15.3 A custom error logging module

Register for Error event
on HttpApplication

Display error
details

Register for Error event
on HttpApplication

Display error
details
 app.Context.ApplicationInstance.CompleteRequest() End If

406 CHAPTER 15 Extreme ASP.NET 4.0

 End Sub
 End Class
End Namespace

You can easily adapt this code to integrate more logging instrumentations, like form
variables or application status. To register the module, you have to place this configu-
ration in your web.config:

<configuration>
 <appSettings>
 <add key="admnistrativeRole" value="admin"/>
 </appSettings>
 <system.web>
 <httpModules>
 <add name="CustomErrorModule"
 type="ASPNET4InPractice.Chapter15.ErrorModule, App_Code"/>
 </httpModules>

 <customErrors mode="On" defaultRedirect="ErrorPage.htm" />
 </system.web>
</configuration>

Use the TrySkipIisCustomErrors property from the HttpResponse class to modify the
default behavior of IIS 7.x when you’re dealing with custom errors. By default, IIS 7
bypasses local error handling and, instead, uses the configuration applied in the
system.webServer section. By setting this property, you can control IIS 7.x behavior,
too; the behavior of IIS 6.0 isn’t affected by this change.

DISCUSSION

HttpModules enable global event handling and are useful whenever you have that kind
of situation. This approach is simple, centralized, open to additional improvements,
and shows you how easy it is to tweak ASP.NET behavior and avoid security concerns at
the same time. You can handle error logging with many different approaches, as well as
with the libraries we mentioned earlier. The methods we’ve described here are a start-
ing point. The main thing to keep in mind no matter how you decide to deal with the
problem is that the less an attacker sees, the better your application security is.

 Our journey through ASP.NET advanced techniques will continue now with a topic
that’s bound to be of interest to you: how to extend ASP.NET HttpRuntime and gain

Sending error message details via email
If you want to send every error via email, the Error event handler is the right place
to add your code. You can use the MailMessage class from System.Net.Mail to
compose a notification email and send it to your address. If you want to use some-
thing already available, take a look at Health Monitoring in the MSDN documentation
at http://www.mng.bz/8p51. If you want to store the error log in a database table or
in a file, see the corresponding topics in chapters 2 and 3.
more control over ASP.NET page compilation.

http://www.mng.bz/8p51

407TECHNIQUE 93 Running your site from the database

15.3 Extending ASP.NET HttpRuntime
ASP.NET HttpRuntime provides great flexibility. If you need to tweak something
related to ASP.NET, you’ll probably end up with HttpRuntime. Both HttpHandlers and
HttpModules are considered part of HttpRuntime, but you can leverage other things to
modify ASP.NET.

VirtualPathProvider is a feature that was introduced with ASP.NET 2.0. You can
use it to dynamically load resources from a source that’s different from that of the file-
system and to build them as if they were normal resources. VirtualPathProvider is
intended for browsable resources (.aspx, .ascx, master pages, and themes). If you want
to virtualize other kinds of resources, you need to implement a BuildProvider.

VirtualPathProvider must be registered at application startup, usually in the
AppInitialize static method with global.asax or in the constructor of an HttpModule.
Unfortunately, VirtualPathProvider won’t work with a precompiled web site, unless
you try some of the hacks that use reflection to invoke a private method. That scenario
isn’t tested, so try it at your own risk.

 Running your site from the database

Running your code from the database is easy using VirtualPathProvider. You can
define special kinds of requests to be served from a database, so maintenance will be
simpler and won’t require FTP access. Microsoft Office SharePoint Server (MOSS) is
built on that assumption, so you’ll probably find this technique useful in your proj-
ects, too.

PROBLEM

Saving the page source on disk is feasible for many of the situations you’ll face. But in
some cases, you might need to store it at other locations, such as a database, without
any loss of features. This solution might be useful when you have multiple servers and
you need to keep the source in sync among different servers, without using network
shares or something similar.

SOLUTION

VirtualPathProvider is built on top of three fundamental classes that come from the
System.Web.Hosting namespace:

■ VirtualPathProvider—Used as a base class for the implementation
■ VirtualDirectory—Represents a directory
■ VirtualFile—Represents a file

NOTE Custom implementations for the VirtualPathProvider, Virtual-
Directory, and VirtualFile classes need to run under full trust permissions.
If you’re using another trust level, you can’t run this example. For more infor-
mation on trust levels, see http://mng.bz/cuH6.

First of all, we need to implement a new class that derives from VirtualPathProvider
and overrides the FileExists and DirectoryExists methods. These methods are

TECHNIQUE 93

http://mng.bz/cuH6

408 CHAPTER 15 Extreme ASP.NET 4.0

used to determine whether the requested file or directory exists. The GetFile and
GetDirectory methods are implemented to serve an instance of VirtualFile and
VirtualDirectory, respectively. These classes represent the files and directories, and
you use them even with normal files and directories coming from the filesystem. You’ll
get the same experience, but your code will be loaded from the database. The differ-
ence in this scenario is that we need to implement these classes to represent our con-
cepts of both directories and files.

 Our custom VirtualDirectory implementation isn’t difficult: we simply need to
implement a class similar to the one shown in the following listing.

C#:
namespace ASPNET4InPractice
{
 public class DatabaseDirectory : VirtualDirectory
 {
 private List<string> _directories = new List<string>();
 private List<string> _files = new List<string>();
 private List<string> _children = new List<string>();

 public DatabaseDirectory(string virtualPath): base(virtualPath) {}

 public override IEnumerable Children
 {
 get
 {
 return _children;
 }
 }

 public override IEnumerable Directories
 {
 get
 {
 return _directories;
 }
 }

 public override IEnumerable Files
 {
 get
 {
 return _files;
 }
 }
 }
}

VB:
Namespace ASPNET4InPractice
 Public Class DatabaseDirectory
 Inherits VirtualDirectory

Listing 15.4 Our VirtualDirectory implementation

Directories
in path

Files in
path
 Private _directories As New List(Of String)()

409TECHNIQUE 93 Running your site from the database

 Private _files As New List(Of String)()
 Private _children As New List(Of String)()

 Public Sub New(ByVal virtualPath As String)
 MyBase.New(virtualPath)
 End Sub

 Public Overloads Overrides ReadOnly Property Children() As IEnumerable
 Get
 Return _children
 End Get
 End Property

 Public Overloads Overrides ReadOnly Property Directories()

➥ As IEnumerable
 Get
 Return _directories
 End Get
 End Property

 Public Overloads Overrides ReadOnly Property Files()

➥ As IEnumerable
 Get
 Return _files
 End Get
 End Property
 End Class
End Namespace

A VirtualFile implementation is more difficult to pull off because we need to get the
file content from the database. We’ll use a table like the one in figure 15.4 to repre-
sent our virtual filesystem. We’ll use Entity Framework to map our table to an object
model and query it using LINQ extensions methods.

Directories
in path

Files in
path

Figure 15.4 The database model used to represent our virtual filesystem is simple and consists of three

columns to identify the page path, its content, and the last modified date.

410 CHAPTER 15 Extreme ASP.NET 4.0

The core of this system is shown in the following listing, which contains a snippet from
the VirtualFile implementation details.

C#:
namespace ASPNET4InPractice
{
 public class DatabaseFile : VirtualFile
 {
 public DatabaseFile(string virtualPath) : base(virtualPath) { }

 public override Stream Open()
 {
 // get file contents and write to the stream
 string fileContents = Utility.GetFileContents(
 VirtualPathUtility.ToAppRelative(VirtualPath));

 Stream stream = new MemoryStream();
 if (!string.IsNullOrEmpty(fileContents))
 {
 StreamWriter writer = new StreamWriter(stream);
 writer.Write(fileContents);
 writer.Flush();
 stream.Seek(0, SeekOrigin.Begin);
 }
 return stream;
 }
 }
}

VB:
Namespace ASPNET4InPractice
 Public Class DatabaseFile
 Inherits VirtualFile
 Public Sub New(ByVal virtualPath As String)
 MyBase.New(virtualPath)
 End Sub

 Public Overloads Overrides Function Open() As Stream
 ' get file contents and write to the stream
 Dim fileContents As String = Utility.GetFileContents(
 VirtualPathUtility.ToAppRelative(VirtualPath))

 Dim stream As Stream = New MemoryStream()
 If Not String.IsNullOrEmpty(fileContents) Then
 Dim writer As New StreamWriter(stream)
 writer.Write(fileContents)
 writer.Flush()
 stream.Seek(0, SeekOrigin.Begin)
 End If
 Return stream
 End Function
 End Class
End Namespace

Listing 15.5 VirtualFile implementation to load content from a database

Retrieve file
contents

Read content
in memory

Retrieve file
contents

Read content
in memory

411TECHNIQUE 93 Running your site from the database

To check whether a file is modified, we’ll add a new method that contains this code:

C#:
public byte[] LastModifiedTimeStamp
{
 get
 {
 return Utility.GetLastModifiedTimeStamp(
 VirtualPathUtility.ToAppRelative(VirtualPath));
 }
}

VB:
Public ReadOnly Property LastModifiedTimeStamp() As Byte()
 Get
 Return Utility.GetLastModifiedTimeStamp(
 VirtualPathUtility.ToAppRelative(VirtualPath))
 End Get
End Property

The last thing to implement is the real VirtualPathProvider custom class. We need
to derive from this class and override a couple of methods:

■ GetCacheDependency and GetFileHash—Implemented to provide a custom
mechanism for cache dependency. ASP.NET uses a simple method to determine
whether a given resource needs to be recompiled or the current one can be
used. Our custom implementation has no CacheDependency but does provide a
custom-computed HashCode, using a timestamp column in the database

■ FileExists and DirectoryExists—These methods are used to determine
whether a file or directory exists. For directories, we simply return true if the
path is inside our scope. For files, we check the existence of the virtual path
using our Entity Framework model.

■ GetFile and GetDirectory—Get the corresponding VirtualFile and Virtu-
alDirectory custom implementations, which are included in the download-
able code.

The code in the following listing contains the main methods used to retrieve the file
and directory content.

C#:
namespace ASPNET4InPractice
{
 public class DatabasePathProvider : VirtualPathProvider
 {
 public DatabasePathProvider() : base()
 {

 public override VirtualFile GetFile(string virtualPath)
 {
 if (IsVirtualPath(virtualPath))

Listing 15.6 The VirtualPathProvider implementation

Load content
 return new DatabaseFile(virtualPath);
from database

412 CHAPTER 15 Extreme ASP.NET 4.0

 else
 return Previous.GetFile(virtualPath);
 }

 public override VirtualDirectory GetDirectory(string virtualDir)
 {
 if (IsVirtualPath(virtualDir))
 return new DatabaseDirectory(virtualDir);
 else
 return Previous.GetDirectory(virtualDir);
 }

 }
}

VB:
Namespace ASPNET4InPractice
 Public Class DatabasePathProvider
 Inherits VirtualPathProvider
 Public Sub New()
 MyBase.New()
 End Sub

 Public Overloads Overrides Function GetFile(
 ByVal virtualPath As String) As VirtualFile
 If IsVirtualPath(virtualPath) Then
 Return New DatabaseFile(virtualPath)
 Else
 Return Previous.GetFile(virtualPath)
 End If
 End Function

 Public Overloads Overrides Function GetDirectory(
 ByVal virtualDir As String) As VirtualDirectory
 If IsVirtualPath(virtualDir) Then
 Return New DatabaseDirectory(virtualDir)
 Return Previous.GetDirectory(virtualDir)
 End If
 End Function
 End Class
End Namespace

To verify that a file or directory exists, you have to implement the FileExists and
DirectoryExists methods. The VirtualPathUtility.ToAppRelative method is
used to convert the absolute path to an application-relative one (for example, /
myroot/Virtual/test2.aspx to ~/Virtual/test2.aspx), as in the following listing.

C#:
public override bool FileExists(string virtualPath)
{
 if (IsVirtualPath(virtualPath) &&
 Utility.FileExists(
 VirtualPathUtility.ToAppRelative(virtualPath)))

Listing 15.7 FileExists and DirectoryExists implementation

Use previous
provider

Load content
from database

Use previous
provider

Load content
from database

Use previous
provider

Load content
from database

Use previous
provider
 return true;

413TECHNIQUE 93 Running your site from the database

 return Previous.FileExists(virtualPath);
}

public override bool DirectoryExists(string virtualDir)
{
 if (IsVirtualPath(virtualDir))
 return true;

 return Previous.DirectoryExists(virtualDir);
}

VB:
 Private Function IsVirtualPath(ByVal virtualPath As String) As Boolean
 Return VirtualPathUtility.ToAppRelative(virtualPath).
 StartsWith(Utility.BasePath,
 StringComparison.InvariantCultureIgnoreCase)
 End Function

Public Overloads Overrides Function FileExists(
 ByVal virtualPath As String) As Boolean
 If IsVirtualPath(virtualPath) AndAlso
 Utility.FileExists(VirtualPathUtility.ToAppRelative(virtualPath))
 Then
 Return True
 End If

 Return Previous.FileExists(virtualPath)
 End Function

 Public Overloads Overrides Function DirectoryExists(
 ByVal virtualDir As String) As Boolean
 If IsVirtualPath(virtualDir) Then
 Return True
 End If

 Return Previous.DirectoryExists(virtualDir)
 End Function

Last, but not least, to avoid performance loss, you must cache the compilation. Vir-
tualPathProvider has two methods that control caching behavior, as implemented in
the following listing.

C#:
public override CacheDependency GetCacheDependency(string virtualPath,
 IEnumerable virtualPathDependencies, DateTime utcStart)
{
 if (IsVirtualPath(virtualPath))
 return null;

 return base.GetCacheDependency(virtualPath,
 virtualPathDependencies, utcStart);
}

public override string GetFileHash(string virtualPath,

Listing 15.8 Controlling page compilation in VirtualPathProvider

Implementation
default

Invalidate
compilation
 IEnumerable virtualPathDependencies)

414 CHAPTER 15 Extreme ASP.NET 4.0

{
 HashCodeCombiner hashCodeCombiner = new HashCodeCombiner();

 List<string> unrecognizedDependencies = new List<string>();

 foreach (string virtualDependency in virtualPathDependencies)
 {
 if (IsVirtualPath(virtualDependency))
 {
 DatabaseFile file = (DatabaseFile)GetFile(virtualDependency);
 hashCodeCombiner.AddObject(file.LastModifiedTimeStamp);
 }
 else
 {
 unrecognizedDependencies.Add(virtualDependency);
 }
 }

 string result = hashCodeCombiner.CombinedHashString;

 if (unrecognizedDependencies.Count > 0)
 {
 result += Previous.GetFileHash(virtualPath, unrecognizedDependencies);
 }

 return result;
}

VB:
Public Overloads Overrides Function GetCacheDependency(
 ByVal virtualPath As String,
 ByVal virtualPathDependencies As IEnumerable,
 ByVal utcStart As DateTime) As CacheDependency
 If IsVirtualPath(virtualPath) Then
 Return Nothing
 End If

 Return MyBase.GetCacheDependency(
 virtualPath,
 virtualPathDependencies,
 utcStart)
End Function

Public Overloads Overrides Function GetFileHash(
 ByVal virtualPath As String,
 ByVal virtualPathDependencies As IEnumerable) As String
 Dim hashCodeCombiner As New HashCodeCombiner()

 Dim unrecognizedDependencies As New List(Of String)()

 For Each virtualDependency As String In virtualPathDependencies
 If IsVirtualPath(virtualDependency) Then
 Dim file As DatabaseFile = DirectCast(
 GetFile(virtualDependency), DatabaseFile)
 hashCodeCombiner.AddObject(file.LastModifiedTimeStamp)
 Else
 unrecognizedDependencies.Add(virtualDependency)
 End If
 Next

Implementation
default

Invalidate
compilation
 Dim result As String = hashCodeCombiner.CombinedHashString

415Summary

 If unrecognizedDependencies.Count > 0 Then
 result += Previous.GetFileHash(virtualPath, unrecognizedDependencies)
 End If

 Return result
End Function

The code used in this solution isn’t hard to understand, but it is a bit verbose; Vir-
tualPathProvider and its relative classes are general purpose and need a lot of
plumbing code to be implemented. As we’ve shown you in this example, you don’t
need to fully implement all of them, but only the one that’s useful in your scenario.

DISCUSSION

The scenario addressed in this section provided a good lesson in how extensible ASP.NET
is. The code isn’t difficult to understand and it uses some of the inner details of HttpRun-
time. You can apply this code in multiple ways, beginning with using a different store
for the file source to enable better administration and to simplify code distribution
across load-balanced web servers. As
you can see in figure 15.5, the result will
look as if the page was stored on a disk
and then traditionally executed.

 If you plan to use this code in pro-
duction, you’ll probably need to add
some caching to improve performance
and save your database from a few
calls. We’ve attached a simple page
(admin.aspx) to let you experiment
easily by administering the virtual file-
system content.

 This example is the last one in the chapter because it deals with compilation, the
Page Parser, and the inner details of ASP.NET engine. We hope it’s useful to you and
has shown you how easily you can enhance ASP.NET to suit your needs.

15.4 Summary
This chapter contained special techniques to address specific scenarios. Remember
that ASP.NET is built for flexibility; this characteristic reflects how many incredible
things you can do by using extreme techniques.

HttpRuntime offers the right entry points to add your own custom mechanisms to
implement simple things like intercepting (and logging) exceptions and more complex
things like modifying page behavior using an HttpModule, or implementing a Virtual-
PathProvider to load code from a database. ASP.NET is so powerful that you can literally
do anything you need to: you just have to write code and express your imagination!

 The next chapter, which is the last one in the book, will continue on this path
and introduce you to useful tips that will increase the performance of your ASP.NET

Figure 15.5 The resulting page is served from the
database that was previously created. When the
database content is changed, the new version is
automatically used.
applications.

Performance
 and optimizations
This chapter is the last one of our book, and we’re approaching the end of our
exploration of ASP.NET. What better way to end our voyage than with performance.

 Performance is a driving factor for web applications. You never know how cru-
cial it is until you have a problem. Performance is often confused with scalability,
but they aren’t the same thing. You can achieve better performance by scaling, and
you can optimize your user experience by following a simple set of rules—and by
employing some tricks. Depending on the context, the word performance can
assume different meanings: for our purposes, it’s the possibility of performing the

This chapter covers
■ Compressing and minifying your markup, CSS,

and JavaScript files
■ Using multithreading techniques to boost

performance
■ Writing parallel code using ParallelFX
■ Optimizing web.config
416

same work in less time. Minifying JavaScript, CSS, or markup, for example, can

417TECHNIQUE 94 Building a request filter to minify HTML

speed up page load on the browser side. Sometimes performance is just a matter of
doing little things the right way.

 On the other hand, multithreading techniques can boost the performance of your
application on the server side by using multiple threads to span the work across them.
Modern hardware capabilities let you build a new kind of application because multi-
core architecture is well established.

 This chapter will guide you through the different aspects of gaining better perfor-
mance in a typical ASP.NET application. You don’t need to write a high-traffic applica-
tion in order to enjoy the benefits of these techniques!

16.1 Increasing download performance by minifying
Minifying is a special technique that compresses markup, CSS, and JavaScript by remov-
ing unwanted characters to improve download speed. In a real-world scenario, imagine
trying to run with a lot of extra weight attached to you—this is what your application
feels like. It would be easier to just get rid of everything that’s not necessary.

HTML, JavaScript, and CSS usually contain a lot of unnecessary weight; tabs, spaces,
and lines are useful to improve readability while you’re developing, but they’re a waste
for the browser. This section will address removing unwanted characters from
markup, CSS, and JavaScript. Each of these is characterized by different needs, so we’ll
introduce different strategies. You’ll be able to remove tabs and line feeds from
markup, and comments from JavaScript external files. To address these different strat-
egies, we’ll use HttpModule and HttpHandler, as well as other advanced techniques.

 Building a request filter to minify HTML

You can apply minifying techniques to markup to reduce response size. With modern
internet speeds, moving your data might not be a problem, but minifying will affect
how fast a browser can render the page. Compressing and minifying markup helps to
reduce size and speed rendering time for browsers. In most pages, size can be reduced

Should I dynamically compress the generated data or let IIS do the magic?
Because modern browsers can decompress content on the fly, without significant
overhead, compression can be your friend.

You can certainly dynamically compress the markup (or, generally speaking, the con-
tent) using the gzip/deflate implementation inside the BCL provided by .NET Frame-
work, but that’s not the best deal in terms of performance.

Starting with version 6.0, IIS can compress both static and dynamic content, resulting
in better performance than you could achieve writing your own module. You can find
related information on Windows Server SDK on Technet.com. Information for IIS 6 is
at http://www.mng.bz/b49a; IIS 7 is at http://www.mng.bz/9C1A.

TECHNIQUE 94
by 60% or more.

http://www.mng.bz/b49a
http://www.mng.bz/9C1A

418 CHAPTER 16 Performance and optimizations

PROBLEM

We want to modify page output to control ASP.NET rendering or to replace some
placeholder on our page. We don’t want to touch existing pages, so we need to apply
this filter from a central and unique point. The result will be a minified HTML markup
page, with unuseful (for the browser) return carriage characters and tabs removed.

SOLUTION

In this example, we’ll build a response filter to modify ASP.NET output. The term
response filter is based on the Filter property of the HttpResponse class in the Sys-
tem.Web namespace. The response filter consists of a class deriving from Stream in the
System.IO namespace. We’re going to modify the output to remove tab characters
and carriage returns. You can use this technique to minify markup, too. You can also
add substitution patterns (like replacing more than two spaces with one space, or
something similar).

 The flow of the proposed solution is a little bit complicated: first of all, we need to
create an HttpModule and then intercept the PreRequestHandlerExecute event of
HttpApplication. Then we’ll check for the CurrentHandler property of HttpContext
to verify that the request is made from a class deriving from Page, and then finally
we’ll set our filter. Performing the check will help to avoid the interception of non-
HTML requests that won’t benefit from our manipulation.

 The filter class will also receive the current OutputStream property value of the
HttpResponse object, which holds the Stream related to the generated response out-
put. We’ll be able to substitute the default filter with our custom implementation. To
write the filter, we need to implement a class deriving from Stream, so that the real
logic is inside its Write method—we need to append the content to a buffer, to
replace it in the Flush method. Next, the magic happens: we search for an </html>
string, to make sure that the writing is complete and that we can perform our replace-
ments. The result is a shrinked page, as you can see by exploring the resulting
markup. The module code is shown in the following listing.

C#:
public class CustomResponseModule : IHttpModule
{
 ...

 public void Init(HttpApplication context)
 {
 context.PreRequestHandlerExecute +=
 new EventHandler(AddFilter);
 }

 void AddFilter(object sender, EventArgs e)
 {
 HttpApplication app = (HttpApplication)sender;

 if (!(app.Context.CurrentHandler is Page) ||
 !string.IsNullOrEmpty(

Listing 16.1 The HttpModule responsible for changing the response filter

Add
filter

Ignore
non-page
and Ajax
 app.Request["HTTP_X_MICROSOFTAJAX"])) requests

419TECHNIQUE 94 Building a request filter to minify HTML

 return;

 Stream filter = app.Response.Filter;

 app.Response.Filter = new ResponseFilter(
 app.Response.OutputStream);
 }

}

VB:
Public Class CustomResponseModule
 Implements IHttpModule
 ...

 Public Sub Init(ByVal context As HttpApplication)

➥ Implements IHttpModule.Init
 AddHandler context.PreRequestHandlerExecute,
 AddressOf AddFilter
 End Sub

 Private Sub AddFilter(ByVal sender As Object, ByVal e As EventArgs)
 Dim app As HttpApplication = DirectCast(sender, HttpApplication)

 If Not (
 TypeOf app.Context.CurrentHandler Is Page) OrElse
 Not String.IsNullOrEmpty(app.Request("HTTP_X_MICROSOFTAJAX")
) Then
 Exit Sub
 End If

 Dim filter As Stream = app.Response.Filter

 app.Response.Filter =
 New ResponseFilter(app.Response.OutputStream)
 End Sub

End Class

We need to mention one thing in this code. Due to a bug introduced in ASP.NET 3.5,
you need to query the Filter property before assigning a value to it B; otherwise,
you’ll get an exception and your code won’t work.

 This module works with a specific response filter, which analyzes the markup and
removes the unwanted characters from the output. The following listing contains the
filter code.

C#:
public class ResponseFilter : Stream
{
 private Stream responseStream;
 private StringBuilder markup;
 private string resultingHtml;

 public ResponseFilter(Stream inputStream)

Listing 16.2 The response filter implementation for minifying markup

Handle
bug

B

Add custom
filter

Add
filter

Ignore non-page
and Ajax requests

Handle
bugB

Add custom
filter
 {

http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://msdn.microsoft.com/en-us/concurrency/default.aspx

420 CHAPTER 16 Performance and optimizations

 if (inputStream == null)
 throw new ArgumentNullException("inputStream");

 markup = new StringBuilder();
 resultingHtml = String.Empty;
 responseStream = inputStream;
 }

 public override void Write(byte[] byteBuffer,
 int offset, int count)
 {
 string buffer = Encoding.Default.GetString(byteBuffer, offset, count);
 markup.Append(buffer);
 }

 public override void Flush()
 {
 resultingHtml = markup.ToString();

 if (resultingHtml.IndexOf("</html>",
StringComparison.InvariantCultureIgnoreCase) > -1)

 {
 resultingHtml = Regex.Replace(resultingHtml, "\t", " ");
 resultingHtml = Regex.Replace(resultingHtml, "\r\n", " ");
 resultingHtml = Regex.Replace(resultingHtml, "\r", " ");
 resultingHtml = Regex.Replace(resultingHtml, "\n", " ");

 resultingHtml = resultingHtml.Trim();
 }

 byte[] data = Encoding.Default.GetBytes(resultingHtml);
 responseStream.Write(data, 0, data.Length);

 responseStream.Flush();
 }
 ...
}

VB:
Public Class ResponseFilter
 Inherits Stream
 Private responseStream As Stream
 Private markup As StringBuilder
 Private resultingHtml As String

 Public Sub New(ByVal inputStream As Stream)
 If inputStream Is Nothing Then
 Throw New ArgumentNullException("inputStream")
 End If

 markup = New StringBuilder()
 resultingHtml = [String].Empty
 responseStream = inputStream
 End Sub

 Public Overloads Overrides Sub Write(
 ByVal byteBuffer As Byte(),
 ByVal offset As Integer,

Compose
buffer

Allow only
HTML content

Send
data

Compose
buffer
 ByVal count As Integer

421TECHNIQUE 94 Building a request filter to minify HTML

 Dim buffer As String = Encoding.Default.GetString(byteBuffer, offset,
 count)
 markup.Append(buffer)
 End Sub

 Public Overloads Overrides Sub Flush()
 resultingHtml = markup.ToString()

 If resultingHtml.IndexOf("</html>",
 StringComparison.InvariantCultureIgnoreCase) > -1 Then
 ' in this example, we will remove tab and \r\n from markup
 resultingHtml = Regex.Replace(resultingHtml, vbTab, " ")
 resultingHtml = Regex.Replace(resultingHtml, vbCr & vbLf, " ")
 resultingHtml = Regex.Replace(resultingHtml, vbCr, " ")
 resultingHtml = Regex.Replace(resultingHtml, vbLf, " ")

 resultingHtml = resultingHtml.Trim()
 End If

 ' send data out to response buffer
 Dim data As Byte() = Encoding.Default.GetBytes(resultingHtml)
 responseStream.Write(data, 0, data.Length)

 responseStream.Flush()
 End Sub
 ...
End Class

The code in listing 16.2 will reduce the markup size, using a mechanism similar to the
one shown in figure 16.1.

 By combining the classes we created in this scenario, you can totally compress the
resulting text to include only the necessary characters, eliminating less important
ones. Keep in mind that if you need to preserve whitespaces (for example, when
you’re using the pre tag), this technique could require some extra effort: you need to
use a regular expression to make sure that these blocks are excluded and their
whitespaces preserved.

DISCUSSION

This example is the most powerful one you’ll find for pipeline manipulation. It shows
how flexible ASP.NET is and that it’s built with personalization in mind. Using a simple
approach, we just replaced the default rendering mechanism with a custom one and
then changed the content on the fly.

Allow only
HTML content

Send
data

Original page
Minify

Result

Figure 16.1 The mechanism associated with minifying: the original page is modified,

and its minified content is sent to the browser.

422 CHAPTER 16 Performance and optimizations

You have to keep in mind, though, that strings are immutable in .NET Framework, so
playing with these too much can actually cause performance degradation—and trou-
ble. We encourage you to use this technique in moderation (it’s widely used in pro-
duction applications). Remember also that this specific example will mess up
JavaScript inline code, and you’ll need to apply the right formatting, avoiding carriage
return replacements in proximity to this kind of code.

 Our next examples are dedicated to CSS and JavaScript.

 Building an HTTPHandler to minify CSS

CSS minifying is the simplest possible task because all we need to do is replace tabs,
line feeds, and double spaces. CSS style sheets are easy to address because comment
blocks (/*..*/) are the only things present; you don’t need to consider special char-
acters or sequences.

PROBLEM

We want to reduce the size of the style sheet for a page dynamically but also preserve
performance. Because you don’t often modify style sheets, we’ll cache the result in
memory so that we can improve performance. The modification of the original file
will result in the invalidation of the current compressed request and produce a new
one; in this way, the content is always up-to-date.

SOLUTION

This solution is based on a custom HttpHandler, mapped to the .css extension. You’ll
need to map this extension, via IIS, to the common ASP.NET engine. You won’t have to
do this if you’re running an integrated pipeline via IIS 7.x. If you want to use this code
in hosting, you can simply use the same code in a page, which is used as a gateway to
the real file. Figure 16.2 shows a minified and unminified version of the same file.

TECHNIQUE 95

Figure 16.2 The minified version of a file (top) is composed of a single line, without spaces

and tabs. The usual version contains a lot of unwanted characters.

423TECHNIQUE 95 Building an HTTPHandler to minify CSS

First of all, let’s create the HttpHandler class. The file path is loaded using the Physi-
calPath property of the HttpRequest object, available via the current HttpContext.

 The remaining code is about replacements and caching. We’re taking advantage of
the cache dependency feature available in ASP.NET to relate a specific cache entry to a
path. Now, every time we modify the physical file, the cache entry will be invalidated
automatically, and it will be populated again with fresh content at the next useful
request. The results are shown in the following listing.

C#:
public class CssHandler : IHttpHandler
{

 public bool IsReusable
 {
 get { return true; }
 }

 public void ProcessRequest(HttpContext context)
 {
 string fileContent = string.Empty;
 string filePath = context.Request.PhysicalPath;
 string cacheKey = string.Concat("css-", filePath);
 object cacheValue = context.Cache[cacheKey];

 if (cacheValue == null)
 fileContent = AddInCache(filePath, cacheKey);
 else
 fileContent = cacheValue as string;

 context.Response.ContentType = "text/css";
 context.Response.Write(fileContent);
 }

 private static string AddInCache(string filePath, string cacheKey)
 {
 string fileContent = File.ReadAllText(filePath);
 fileContent = string.Concat("/* minifyed at ", DateTime.Now, "*/ ",
 fileContent);

 fileContent = Regex.Replace(fileContent, "\t", string.Empty);
 fileContent = Regex.Replace(fileContent, "\r\n", string.Empty);
 fileContent = Regex.Replace(fileContent, "\r", string.Empty);
 fileContent = Regex.Replace(fileContent, "\n", string.Empty);

 fileContent = Regex.Replace(fileContent,
 "[]{2,}", string.Empty);

 HttpContext.Current.Cache.Insert(cacheKey, fileContent,
 new CacheDependency(filePath),
 DateTime.Now.AddHours(2),
 TimeSpan.Zero);

 return fileContent;
 }

Listing 16.3 The HttpHandler to minify .css style sheet files

Cache
key

B

Save content
in cache

C

Replace more
than two spaces

D

Cache text
for two
hours

E

}

http://msdn.microsoft.com/en-us/library/dd465326.aspx
http://msdn.microsoft.com/en-us/library/dd465326.aspx

424 CHAPTER 16 Performance and optimizations

VB:
Public Class CssHandler
 Implements IHttpHandler

 Public ReadOnly Property IsReusable() As Boolean

➥ Implements IHttpHandler.IsReusable
 Get
 Return True
 End Get
 End Property

 Public Sub ProcessRequest(ByVal context As HttpContext)

➥ Implements IHttpHandler.ProcessRequest
 Dim fileContent As String = String.Empty
 Dim filePath As String = context.Request.PhysicalPath
 Dim cacheKey As String =
 String.Concat("css-", filePath)
 Dim cacheValue As Object = context.Cache(cacheKey)

 If cacheValue Is Nothing Then
 fileContent = AddInCache(filePath, cacheKey)
 Else
 fileContent = TryCast(cacheValue, String)
 End If

 context.Response.ContentType = "text/css"
 context.Response.Write(fileContent)
 End Sub

 Private Shared Function AddInCache(ByVal filePath As String,
 ByVal cacheKey As String) As String
 ' write the file and replace values
 Dim fileContent As String = File.ReadAllText(filePath)
 fileContent = String.Concat("/* minifyed at ", DateTime.Now, "*/ ",
 fileContent)

 fileContent = Regex.Replace(fileContent, vbTab, string.Empty)
 fileContent = Regex.Replace(fileContent, vbCr & vbLf, String.Empty)
 fileContent = Regex.Replace(fileContent, vbCr, String.Empty)
 fileContent = Regex.Replace(fileContent, vbLf, String.Empty)

 fileContent = Regex.Replace(fileContent,
 "[]{2,}", String.Empty)

 HttpContext.Current.Cache.Insert(cacheKey, fileContent,
 New CacheDependency(filePath),
 DateTime.Now.AddHours(2),
 TimeSpan.Zero)

 Return fileContent
 End Function

End Class

web.config:
<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="*.css" validate="false"

Cache
key

B

Save content
in cache

C

Replace more
than two spaces

D

Cache text
for two
hours

E

 type="ASPNET4InPractice.Chapter16.CssHandler"/>

425TECHNIQUE 96 Building an HTTPHandler to minify JavaScript

 </httpHandlers>
 </system.web>
</configuration>

IsReusable is generally set to true to reuse the same instance of the class across differ-
ent requests. To achieve scalability, items are saved in the cache B C E. The content
type and the content are sent to the browser, after the replacements are performed D.

 By associating this content with .css files, we’re modifying the output of these files.
You can apply the same techniques to similar content, when you need to perform the
same replacements.

DISCUSSION

Typical CSS files aren’t big in size, so caching them in memory is acceptable and—of
course—fast. Just like the previous technique, this one uses string manipulation, so
the same caveats apply. The results of this simple handler are pretty amazing: you can
considerably reduce the size of a CSS file. Given the nature of style sheets, which are
composed of lots of line feeds, spaces, and tabs, minification can greatly improve the
speed of your application.

 Building an HTTPHandler to minify JavaScript

This example is similar to the one we presented in technique 95. The real difference is
in the algorithm associated with the minifying. In this scenario, to minify JavaScript exter-
nal files, we’ll also remove comments from code, both inline (/*…*/) and per line (//…).

PROBLEM

JavaScript files are full of tabs, comments, and spaces. These characters are useful
while you’re in the throes of developing, but they’re less useful to browsers (the same
considerations for the example in technique 95 apply here, too). We want to build a
system that minifies JavaScript content on the fly, without modifying files before
deployment. As always, we’re also keeping great performance in mind.

SOLUTION

The solution is similar to the one we used in technique 95—the only real difference is
in the content type response header and the regular expression that does the magic to
strip out comments.

 You have to map the resulting HttpHandler to the .js extension in IIS (if you aren’t
using IIS 7.x integrated mode) and register it in web.config. As we’ve said before, you
can reuse this code in a bridge page if you need to use it in a hosting scenario where
you can’t map custom extensions.

 The core piece of this class is the regular expression used to catch comments in
the following code:

C#:
fileContent = Regex.Replace(fileContent,
 @"(?mi)(/*[\d\D]*?*/)|(//.*$)", string.Empty);

VB:
fileContent = Regex.Replace(fileContent,

TECHNIQUE 96
 "(?mi)(/*[\d\D]*?*/)|(//.*$)", string.Empty)

426 CHAPTER 16 Performance and optimizations

The rest of the code is similar to listing 16.3; the only difference is that we first need to
remove comments and then remove line feeds and tabs.

 This solution isn’t the only option available to you. Let’s look at another possibility.

Another option: Microsoft Ajax Minifier
To carry out our solution, you could also use a new tool called the Microsoft Ajax
Minifier, available at http://ajaxmin.codeplex.com/. The Ajax Minifier consists of a
command-line tool, an MSBuild task to minify JavaScript files at compile time, and a
library to do it at runtime, just like we’re doing in this example. You might be able to
further compress JavaScript that’s already been compressed by using the Minifier’s
hypercrunching mode, which renames variables to reduce file size.

 For real-world scenarios, the Minifier is the best choice. We’ve provided the last
two examples so that you can understand different approaches to the same problem if
you need to provide your own rules in terms of personalizations.

DISCUSSION

Even though the outcome isn’t quite perfect, the solutions offered here will work for
most situations. Keep in mind that complex comments sequences might modify this
script output, so, as always, you’ll need to test this technique with your files before
going into production. Performance increases are guaranteed by caching and com-
pressing content, and size reductions of 70% and more are possible.

 Similarly, multithreading techniques can impact your server performance because
you can span the work across multiple threads. The next section of this chapter will
expose you to that option, starting with a technique not entirely new to ASP.NET 4.0,
and continuing with ParallelFX, a new technology that uses the parallelism that was
introduced in .NET Framework 4.0.

16.2 Reducing computing time with multithreading
With so many multicore CPUs on the market, multithreading and parallel execution
are becoming more popular topics among developers. Both multithreading and paral-
lel execution aim to reduce computing time, which improves performance.

 Let’s define our terms:

■ Multithreading is the ability to execute multiple tasks at the same time, using
different threads. Figure 16.3 shows an example of a multithread architecture.

■ Parallel execution is the ability to span a single task across multiple CPUs to use
the power of all of them to execute a computing task in the fastest possible way.

StartWork()

Engine1 Enginen

Completed

Figure 16.3
In the multithreading architec-
ture shown here, the StartWork
method will instantiate differ-
ent engines at the same time to
execute multiple requests at

one time.

http://ajaxmin.codeplex.com/

427TECHNIQUE 97 Increasing performance with multithreading

When a piece of code is executed, the thread is blocked and waits for the response. If
you have a single thread responding to your code execution needs, the problem is
simple: you’ll have a waiting list for code to be executed. For most applications, this
method isn’t going to work. Let’s imagine that while you’re in a production program
like the ones in Microsoft Office, you have to wait for every single operation you do to
complete before you can move on to another one. Under these circumstances, it
would be impossible to have a background spell checker or to start printing while
you’re still editing a document.

 This example highlights the importance of multithreading. ASP.NET supports mul-
tiple threads, as we discussed in chapter 1. Using multithreads, one request doesn’t
stop the others, and multiple requests can be served at the same time. More important
is the ability to create new threads and assign a specific code to them, so that part of
the work can be executed in a different thread. To be clear, we’re talking about gener-
ating multiple threads from a single request to increase response time. When you
need to make calls to external resources, like databases or web services, you’ll find this
approach to be quite useful.

 Vigorous debate is going on about whether generating multiple threads in a web
application is a best practice. Remember, the working threads are shared by all the
requests. In this kind of situation, if you can afford better application componentiza-
tion, you can achieve the same results by simply moving thread generation to a differ-
ent layer and using the application as a controller and method of display only. Even
though the jury is still out, the technique shown in the next example should be useful
to you in scenarios where you don’t need this kind of componentization or it’s just
not possible.

 Increasing performance with multithreading

Applying multithreading techniques is a good idea when you have to deal with multi-
ple requests and you don’t want to slow the process while you’re waiting for results. A
typical example is a system made of many requests to different web services. If you
need to implement something similar, you’ll probably end up using a simple for iter-
ation and calling each web service in this block. That technique might work with a few

Process, thread, and execution
When a program is executed, the operating system creates a particular object called
a process and gives isolated memory space to it. A process contains threads, which
are used to execute the code. A process doesn’t have the ability to execute anything.
A process contains at least one thread (the primary one). When the primary thread is
terminated, the process itself is terminated and the memory is unloaded.

From a performance point of view, creating a thread is easier than creating a process
because you aren’t required to allocate memory.

TECHNIQUE 97
requests, but to speed up execution, you need to use multithreading.

428 CHAPTER 16 Performance and optimizations

PROBLEM

Let’s suppose you have to gather some data using different web services and then dis-
play the results on the page, just like a flight comparison engine does. You want to
avoid latency and provide a better experience for users while they’re waiting for differ-
ent external services to respond to their requests. Usually, if you opt to execute a sin-
gle task at a time, the total time will be the sum of the entire operation. You can
dramatically improve speed by executing the tasks in parallel, and you’ll gain in total
response time.

SOLUTION

In heavy-load scenarios where you need to execute different tasks at the same time,
you might be able to use a worker thread to reduce the total execution time. A worker
thread is a secondary thread created by the primary one to accomplish a specific task.

 The .NET Framework has a specific namespace, called System.Threading, to sup-
port threads, and a specific class, named Thread, to represent the concept of a thread
in managed code. Thread has a special constructor that receives the code to be exe-
cuted and a Start method to begin execution. When the thread is created, there’s a
fork in the execution flow: the primary thread continues its normal execution, and the
secondary starts its work.

 To provide a true multithreading experience, we’re going to execute every request
on a separate thread. Using this approach, the total time for the complete request to
be executed isn’t the amount of time it takes to execute all the different requests, but
the longest amount of time that it takes to execute any one of them (plus the over-
head of creating, destroying, and joining threads).

 Even if it’s possible, it’s not a good idea to directly instantiate threads; for this spe-
cific scenario, a specialized class called ThreadPool exists. This class represents a pool
of threads managed by the CLR itself, and can be used to coordinate them.

 When you’re using a technique like this one, you need thread synchronization:
each call to the QueueUserWorkItem method immediately returns, so you need a way
to notify your class that each thread has completed its work and that the results are
ready to show. To accomplish this task, you need to use a WaitHandle class manually,
as shown in figure 16.4.

StartWork()

Engine 1 Engine n

T1.Join()

Tn.Join()
Completed

Figure 16.4 Thread generation and synchronization need to be handled manually to work

correctly with threads. When completed, a single thread will notify the ThreadPool.

429TECHNIQUE 97 Increasing performance with multithreading

The problem at this point is that while accessing the List<T> to add our results,
there’s no guarantee that there won’t be collisions resulting from different threads
trying to modify the same collection at the same time. List<T> isn’t thread-safe, so we
need to synchronize the modifications using the lock keyword (in C#) or the Monitor
class. All the code is shown in the following listing.

C#:
public class PriceEngine
{
 public PriceEngine(string flightNumber)
 {
 FlightNumber = flightNumber;
 FlightResults = new List<FlightPriceResult>();
 }

 public void GetFlightPrices()
 {
 StartTime = DateTime.Now;
 try
 {
 List<WaitHandle> handles = new List<WaitHandle>();

 foreach (IFlightPriceProvider provider in GetProviders())
 {
 ManualResetEvent handle = new ManualResetEvent(false);
 handles.Add(handle);
 Tuple<IFlightPriceProvider, ManualResetEvent> currentState =
 new Tuple<IFlightPriceProvider, ManualResetEvent>
 (provider, handle);

 ThreadPool.QueueUserWorkItem(
 delegate(object state)
 {
 ... // Engine implementation in listing 16.5
 }, currentState
);
 }
 WaitHandle.WaitAll(handles.ToArray());

 }
 finally
 {
 EndTime = DateTime.Now;
 Completed = true;
 }
 }
}

VB:
Public Class PriceEngine
 Public Sub New(ByVal number As String)
 FlightNumber = number

Listing 16.4 The engine for initializing the multithreading requests

WaitHandle
tasks

Retrieve
providers list

Create and
register handle

Set completed
flags
 FlightResults = New List(Of FlightPriceResult)()

st
430 CHAPTER 16 Performance and optimizations

 End Sub

 Public Sub GetFlightPrices()
 StartTime = DateTime.Now
 Try
 Dim handleList As New List(Of WaitHandle)()

 For Each provider As IFlightPriceProvider In GetProviders()
 Dim handle As New ManualResetEvent(False)
 handleList.Add(handle)
 Dim currentState As
 New Tuple(Of IFlightPriceProvider, ManualResetEvent)

 (provider, handle)
 ThreadPool.QueueUserWorkItem(AddressOf ExecuteProvider,
 currentState)
 Next

 WaitHandle.WaitAll(handleList.ToArray())
 Finally
 EndTime = DateTime.Now
 Completed = True
 End Try End Sub
End Class

In this listing, you can see the general structure of the engine, but its inner workings
are contained in the code in the following listing. Each result is retrieved from the dif-
ferent providers and added to the results collection using a thread-safe approach.

C#:
delegate(object state)
{
 Tuple<IFlightPriceProvider, ManualResetEvent> invokeState =
 (Tuple<IFlightPriceProvider, ManualResetEvent>)state;

 FlightPriceResult result = null;
 IFlightPriceProvider currentProvider = invokeState.Item1;
 result = currentProvider.GetFlightPrice(FlightNumber);

 bool lockTaken = false;
 Monitor.Enter(Sync, ref lockTaken);
 try
 {
 FlightResults.Add(result); }
 finally
 {
 if (lockTaken)
 Monitor.Exit(Sync);
 }

 ManualResetEvent resetHandle = invokeState.Item2;
 resetHandle.Set();
}

Listing 16.5 The engine implementation

WaitHandle
tasks

Retrieve
providers li

Create and
register handle

Set completed
flags

Using lock to
be thread-safe

Rejoining the
thread
VB:

431TECHNIQUE 97 Increasing performance with multithreading

 Private Sub ExecuteProvider(ByVal state As Object)
 Dim invokeState As Tuple(Of IFlightPriceProvider, ManualResetEvent) =
 DirectCast(state, Tuple(Of IFlightPriceProvider, ManualResetEvent))

 Dim result As FlightPriceResult = Nothing
 Dim currentProvider As IFlightPriceProvider = invokeState.Item1
 result = currentProvider.GetFlightPrice(FlightNumber)

 Dim lockTaken As Boolean = False
 Monitor.Enter(Sync, lockTaken)
 Try
 FlightResults.Add(result)
 Finally
 IF lockTaken Then
 Monitor.Exit(Sync) End If
 End Try

 Dim resetHandle As ManualResetEvent = invokeState.Item2
 resetHandle.Set()
 End Sub
End Class

The IFlightPriceProvider interface guarantees that every provider has the Get-
FlightPrice method to load results. It’s part of our design strategy, often referred to
as the Provider Model. The providers attached to this example are just for testing pur-
poses, and in order to simulate latency, they have a call to Thread.Sleep to freeze exe-
cution for a couple of seconds. A simple implementation is shown in the following listing.

C#:
public class SecondProvider: IFlightPriceProvider
{
 public FlightPriceResult GetFlightPrice(string FlightNumber)
 {
 Thread.Sleep(3000);

 return new FlightPriceResult() {
 FlightNumber = FlightNumber,
 Price = 260 };
 }

}

VB:
Public Class SecondProvider
 Implements IFlightPriceProvider
 Public Function GetFlightPrice(
 ByVal FlightNumber As String) As FlightPriceResult
 Thread.Sleep(3000)

 Dim result as New FlightPriceResult()
 result.FlightNumber = FlightNumber
 result.Price = 260
 Return result
 End Function

Listing 16.6 A simple provider implementation

Using lock to
be thread-safe

Rejoining the
thread

Simulate
latency

Return fixed
value

Simulate
latency

Return fixed
value
End Class

432 CHAPTER 16 Performance and optimizations

In real-life scenarios, you’ll insert your code in this method and populate a new
instance of the FlightPriceResult class to return the corresponding flight price.

 To effectively start the work, we need to create a page with a Textbox in which to
enter the flight number and a Button to execute the code, as shown in the following
listing.

C#:
protected void StartWork_Click(object sender, EventArgs e)
{
 PriceEngine engine =
 new PriceEngine(FlightNumber.Text);

 Session["engine"] = engine;

 ThreadPool.QueueUserWorkItem(
 delegate(object state)
 {
 PriceEngine priceEngine = (PriceEngine)state;
 priceEngine.GetFlightPrices();
 }, engine);

 Response.Redirect("results.aspx");
}

VB:
Protected Sub StartWork_Click(ByVal sender As Object, ByVal e As EventArgs)
 Dim engine As New PriceEngine(FlightNumber.Text)

 Session("engine") = engine

 ThreadPool.QueueUserWorkItem(AddressOf Execute,
 engine)

 Response.Redirect("results.aspx")
End Sub

Protected Sub Execute(ByVal state As Object)
 Dim priceEngine As PriceEngine = DirectCast(state, PriceEngine)
 priceEngine.GetFlightPrices()
End Sub

The code in this listing is simple: the engine will start, saving its instance in Session so
that we can access it later.

 The results.aspx page includes code that checks in Session for the instance of the
PriceEngine class that originates the threads, checking at intervals for the execution to
be completed. By using a simple reload of the page, as shown in the following listing,
we can check the state of the job, and, if it’s done, display only the results to the user.

Markup:
<asp:PlaceHolder ID="WaitingPanel"

Listing 16.7 The page containing the code to start the work

Listing 16.8 The results.aspx page contains both the waiting panel and the results

Start new
instance

Execute next
statement

Redirect on
waiting page

Start new
instance

Execute next
statement

Redirect on
waiting page

Show waiting
 runat="server" Visible="false">
panel

433TECHNIQUE 97 Increasing performance with multithreading

 Please wait...
</asp:PlaceHolder>

<asp:PlaceHolder ID="ResultsPanel"
 runat="server" Visible="false">
 <h1>Results</h1>

 <asp:literal ID="Feedback" runat="server" />

 <asp:GridView ID="ResultList" runat="server" />
</asp:PlaceHolder>

C#:
protected void Page_Load(object sender, EventArgs e)
{
 PriceEngine engine =
 Session["engine"] as PriceEngine;
 if (engine == null)
 Response.Redirect("./");

 if (engine.Completed)
 {
 ResultsPanel.Visible = true;
 ResultList.DataSource = engine.FlightResults;
 ResultList.DataBind();

 Feedback.Text = string.Format("Elapsed time: {0}",
 engine.EndTime.Subtract(engine.StartTime));

 }
 else
 {
 WaitingPanel.Visible = true;

 Header.Controls.Add(new HtmlMeta() {
 HttpEquiv = "refresh",
 Content = "2" });
 }
}

VB:
Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim engine As PriceEngine =
 TryCast(Session("engine"), PriceEngine)
 If engine Is Nothing Then
 Response.Redirect("./")
 End If

 If engine.Completed Then
 ResultsPanel.Visible = True
 ResultList.DataSource = engine.FlightResults
 ResultList.DataBind()

 Feedback.Text = String.Format("Elapsed time: {0}",
 engine.EndTime.Subtract(engine.StartTime))
 Else
 WaitingPanel.Visible = True

Show results
panel

Get engine
from session

Complete
work

Refresh page
and check again

Get engine
from session

Complete
work
 ' programmatically add a refresh meta tag

434 CHAPTER 16 Performance and optimizations

 Dim meta as New HtmlMeta()
 meta.HttpEquiv = "refresh"
 meta.Content = "2"
 Header.Controls.Add(meta)
 End If
End Sub

he sequence of the entire workflow is shown in figure 16.5. It’s similar to what flight
comparison engines do to speed up their execution while you’re waiting for the
results to display in the web page.

 Dealing with multithreading isn’t simple because, as we’ve discussed, you have to
take care of details and be sure to use thread-safe collections. But if you use a solution
like this one, the performance boost you can achieve by letting different threads
simultaneously execute different tasks will be obvious to both you and your customers.

DISCUSSION

Multithreading can boost specific applications, like the one in this scenario, by lever-
aging the ability to span the work on different threads. It’s not intended to be used by
every application because you do have to consider some drawbacks.

ASP.NET uses a thread pool, which we talked about in chapter 1. The pool size
includes both ASP.NET-generated threads and the ones generated in your code. Remem-
ber: if you use this technique in high-traffic applications, the entire pool size can be con-
sumed, and you’ll need to increase it accordingly if you notice that its size is low.

TIP You can monitor current threads in the Control Panel, under Perfor-
mance Monitor.

Even with that limitation, using threads to execute multiple tasks separately is a good
design decision that increases performance dramatically and leverages ASP.NET’s mul-
tithread nature.

Refresh page
and check again

Thread 2

Thread 1

GetFlightPrice()

GetFlightPrice()

GetFlightPrices()

Results.aspx Session

Completed

= true FlightResults.Add()

Figure 16.5 The sequence of our multithreading system: first, the providers are initialized
and their work is executed. When all the providers are done, the engine is notified so the

results can be displayed.

435TECHNIQUE 98 Using ParallelFX

Another possibility that might work for you is to employ parallel computing. Let’s talk
about that next.

 Using ParallelFX

ParallelFX is debuting with .NET Framework 4.0. It’s a framework specifically designed
to build applications that need parallelism. Parallel computing is a new trend among
developers because it’s clear that it will be difficult to increase CPU power (in GHz),
but in the future it will be fairly common to have multicore CPUs everywhere. Right
now, the most common server hardware architecture is multicore enabled, but appli-
cations aren’t. Parallel computing isn’t easy to master unless you’re lucky—like we
are—to have a framework to develop on.

PROBLEM

The problem is the same as in technique 97. We want to execute multiple tasks in par-
allel to make a gain in total computation time. This time, though, we want to use Par-
allelFX, a new feature in .NET Framework 4.0.

SOLUTION

Parallel task execution isn’t easy to implement. You have to take care of concurrent
access from multiple threads, thread joining, and other problems we addressed in
technique 97. NET Framework 4.0 introduces new high-level APIs, collectively called
ParallelFX, so that you can easily use parallelism in your applications. The difference
between ParallelFX and manual thread allocation is shown in figure 16.6.

 The example we’ll use in this section is the same one we used in the previous sce-
nario: we want to provide a flight search system that can query multiple providers in
order to obtain the best price on a specified fictitious flight number.

 The ParallelFX Task Parallel Library (TPL) is designed to be optimized against the
direct use of ThreadPool, which is what we did in technique 97. To scale well on multi-
ple processors, TPL uses an algorithm to dynamically adapt work items over the
threads and distribute them accordingly. By default, one single thread per process is
created, to avoid thread switching otherwise performed by the underlying operating
system. A specific task manager is responsible for this action.

 Each worker thread has a local task queue, representing the actions to be com-
pleted. Usually, the worker threads use a simple push/pop mechanism to queue and

TECHNIQUE 98

Figure 16.6 The upper part of this figure shows how manual thread allocation works; as you can see,
there’s a context switch between threads. ParallelFX avoids this problem by using a new architecture,

which in this example uses two cores.

436 CHAPTER 16 Performance and optimizations

enqueue the tasks. To optimize the computing time, when a local queue is empty, the
TPL looks for a queue handled by other worker threads so that they can perform the
work associated with a task and then removes the thread from the corresponding
queue. TPL has a distinct advantage over manual ThreadPool use: because the queues
are distributed, it doesn’t use synchronization between worker threads to join them.
This distinction is important because it enables you to achieve true scalability.

MORE INFORMATION ABOUT PARALLELFX ParallelFX isn’t limited to tasks; you can
use it with queries (with Parallel LINQ), iterations, and collections. You can find
more information on ParallelFX on MSDN at http://www.mng.bz/6w9g.

.NET Framework 4.0 includes new classes specifically designed to execute parallel
tasks, under the System.Threading.Tasks namespace. You can use the Task class
when, just like in this scenario, you want more control over the task—controlling
when it ends, appending execution of other tasks, and managing extension. In simple
scenarios, you can also directly use the Parallel.Invoke method. These new APIs are
so simple to use that to parallelize a task, you write something like this:

C#:
Task.Factory.StartNew(() => ...);

VB:
Task.Factory.StartNew(Sub ()
...
End Sub)

Using Task, you can write more concise code and you don’t need to directly handle
thread creation and its lifecycle. You have the Wait, WaitAll, and WaitAny methods to
respectively wait for a single task, all the tasks, or any task in the array to complete.

 To simplify exception management, when any exception is raised in a task, it’s
saved by the task scheduler and then raised when all tasks are completed. TPL creates
an AggregatedException that has an InnerExceptions property, which contains all
the exceptions generated by your tasks—exceptions can be managed centrally. The
exceptions are raised only if you call one of the Wait methods; otherwise, you’ll never
receive any.

 Both a single task and an array of tasks can use the ContinueWith or Continue-
WhenAll methods to associate code to be executed after the tasks are completed. In
the following listing, you’ll find the first part of the code, where the providers are
instantiated and executed in parallel.

C#:
...
IFlightPriceProvider[] providers = GetProviders().ToArray();
Task[] tasks = new Task[providers.Length];

Listing 16.9 Instantiating tasks using a simple iteration
for (int i = 0; i<providers.Length; i++)

http://www.mng.bz/6w9g

437TECHNIQUE 98 Using ParallelFX

{
 tasks [i] = Task.Factory.StartNew(currentProvider =>
 {
 return ((IFlightPriceProvider)currentProvider).
 GetFlightPrice(FlightNumber);
 },
 providers[i]
);
}

VB:
...
Dim providers As IFlightPriceProvider() = GetProviders().ToArray()
Dim tasks As Task() = New Task(providers.Length - 1)

For i As Integer = 0 To providers.Length - 1
 tasks(i) = Task.Factory.StartNew(Function(currentProvider)
 Return DirectCast(currentProvider, IFlightPriceProvider).
 GetFlightPrice(FlightNumber)
 End Function,
 providers(i)
)
Next

This method is interesting because the tasks are loaded in an array. Because this is a typ-
ical fire-and-forget situation, we can use the ContinueWhenAll method, instead of the typ-
ical WaitAll. ContinueWhenAll waits for all the tasks to be completed and then
asynchronously runs the corresponding code. The code is shown in the following listing.

C#:
Task.Factory.ContinueWhenAll(tasks.ToArray(), tasks =>
 {
 foreach (Task<FlightPriceResult> task in tasks)
 FlightResults.Enqueue(task.Result);

 EndTime = DateTime.Now;
 Completed = true;
 }
);

VB:
Task.Factory.ContinueWhenAll(tasks.ToArray(), Sub(currentTasks)
 For Each task As Task(Of FlightPriceResult) In currentTasks
 FlightResults.Enqueue(task.Result)
 Next
 EndTime = DateTime.Now
 Completed = True
End Sub)

The code in this listing will queue the tasks and wait for all the tasks to be completed.
Finally, a flag is set so we can notify the engine (and then the user) that the tasks are
completed. If you execute this code in debug, you can verify that the code is executed

Listing 16.10 Results from the providers are aggregated when all work is done
after the providers have completed their corresponding work. In the meantime, you

438 CHAPTER 16 Performance and optimizations

aren’t blocking any threads to wait for the tasks to be completed. You can accomplish
all this easily because ParallelFX simplifies the use of these techniques.

 In the System.Collections.Concurrent namespace, you’ll find specific thread-
safe collections that you can use in these scenarios. In listing 16.9, we used Concur-
rentQueue to queue the results as they arrive. We don’t need to take care of concur-
rent threads accessing the collection in write. This feature is fantastic if you think of
all the code you would need to write to do the same thing manually, as we did in the
previous example!

 The rest of the code is similar to that in technique 97, so we’re not going to discuss
it here. As you can see, with TPL you can simplify your code, take care of multithread-
ing access to collections, handle exceptions in an easier way, and increase perfor-
mance, thanks to the minimal thread switching that it provides.

DISCUSSION

ParallelFX is a new feature introduced in .NET Framework 4.0 that you probably won’t
use directly in an ASP.NET page, as we did in our example. More likely, you’ll wrap it in
a middle tier or something similar. ParallelFX can certainly help your routines per-
form faster. If you’ve had trouble in the past using ThreadPool, it’s a giant step for-
ward in accessing the operating system’s multicore inner features.

16.3 Optimize your web.config
ASP.NET 4.0 introduces a new web.config version, which contains less markup than in
previous versions. If you look at a web.config file from an ASP.NET 3.5 application,
you’ll notice the difference: a lot of the new features are baked into the core, so you
don’t have to do a new registration for them. This section presents a short list of what
you can do to optimize your web.config.

 Tips for your web.config

The web.config file contains the configuration of your application and plays a central
role in ASP.NET. It’s commonly used to register features, which in many cases aren’t
used and waste resources.

PROBLEM

The web.config file contains a lot of different sections, so it’s not always easy to master.
The typical approach is to just leave all the features on by default, to support the high-
est number of different configurations. But if you’re willing to spend five minutes, you
can optimize your application without writing any code.

SOLUTION

The following sections describe the actions you can take to optimize your configura-
tion. We’re not providing these actions in any order; you can use each one indepen-
dently of the others.

Always avoid debugging in production
Debugging during production will severely affect your site performance as a result of the

TECHNIQUE 99
artifacts that are added to support debugging. If you want to use different configurations

439Summary

for the environments that you support, take a look at Visual Studio 2010 web.config
transformation at http://www.mng.bz/DEq3.

Remove unnecessary HttpModules
You’ll never use a bunch of the HttpModules. If you take a look at C:\Windows\
Microsoft.NET\Framework\v4.0.30319\Config\web.config, under configuration\system.
web\httpModules, you’ll find the ones that are built-in.

 The following modules are the ones you’re least likely to use:

■ Session (if you don’t use session state)
■ WindowsAuthentication (if you don’t use Windows authentication)
■ FormsAuthentication (if you don’t use forms authentication)
■ PassportAuthentication (deprecated)
■ FileAuthorization

■ AnonymousIdentification (if you don’t use anonymous profiles)
■ ErrorHandlerModule (deprecated)

You can remove these modules from web.config by inserting a <remove /> tag under
the configuration\system.web\httpModules section. Removing session state is a special
case; let’s deal with that separately.

Remove session state
If you don’t use session state, you can remove the appropriate HttpModule (the afore-
mentioned Session) and disable it:

<configuration>
 <system.web>
 <sessionState mode="Off" />
 </system.web>
</configuration>

You can apply this same code to other features you aren’t using.

DISCUSSION

This section contained a short list, but we’ve packed in some useful advice. Optimiz-
ing your web.config is important—when you remove unwanted features, you keep
them from consuming resources.

 And now, our journey exploring the techniques related to performance and opti-
mization is complete.

16.4 Summary
Things like minifying markup, CSS, and JavaScript can decrease load time, and multi-
threading techniques have a high impact on response time in applications with inten-
sive I/O requests. This chapter has shown how you can increase the performance of
your applications from several different angles, not only by optimizing server-side
code, but also by decreasing file size, compressing markup, or using more threads to
process the work. ASP.NET is so powerful that you can literally do anything—you just
have to write code and express your imagination!

http://www.mng.bz/DEq3

440 CHAPTER 16 Performance and optimizations

 We hope that you’ve found this book exciting and full of great inspiration. All
the techniques we’ve demonstrated are the result of our day-to-day experiences
using ASP.NET. Our aim was to help you build your future applications with a much
deeper understanding of how things work under the hood. Have a great develop-
ment experience!

appendix A:
ASP.NET and IIS 7.x

Starting with IIS 7.0, which is included in Windows Server 2008 and Windows Vista,
.NET Framework became part of the web server, using a new architecture that
enables direct execution of managed code. IIS 7.0 introduced a new pipeline called
an integrated pipeline, which treats ASP.NET modules the same way IIS 6.0 treats
native ones. You can write your own extensions to web server request and response
handling using the same model that ASP.NET uses for HttpModules, and you can
apply them to all kinds of requests, not only ASP.NET ones.

 This appendix will analyze how to extend IIS and how to integrate it with ASP.NET.

A.1 What’s new in IIS 7.5
IIS 7.5 is available on top of Windows Server 2008 R2 and Windows 7 (because they
share the same base kernel). As in version 7.0, IIS 7.5 can host services in addition
to web applications. In fact, you can host WCF services natively using another bind-
ing protocol, just like direct TCP support lets you do.

 Starting with this version, IIS can use ASP.NET in Windows Server Core, a spe-
cific version of Windows Server, using versions 2.0, 3.0 (WCF), 3.5 SP 1, and, of
course, 4.0. Now you can finally host applications with different ASP.NET versions
(like 2.0 and 4.0) in the same application pool.

IIS 7.5 introduces support for PowerShell 2.0, a technology that uses managed
code to perform administrative tasks from the command line. PowerShell has a better
administration UI than did previous versions, supports Visual Studio one-click pub-
lishing to deploy web sites, and has configuration tracking capabilities. Last but not
least, a lot of the extensions previously available at http://www.iis.net/extensions/
are now integrated. Those modules are still valid if you’re using IIS 7.0.

 In this section, we’ll take a look at how you can modify IIS behavior in both
ASP.NET and non-ASP.NET applications. You can do that by writing special modules
441

that come directly from ASP.NET and that are now extended to be part of IIS, too.

http://www.iis.net/extensions/

442 APPENDIX A ASP.NET and IIS 7.x

A.2 Building extensions
You can build the same functionality offered by ISAPI modules when you use IIS 7.x in
integrated pipeline mode. ISAPI modules are built using native code (mainly C++)
and are quite difficult to master.

 For compatibility with ASP.NET, you have to write a class that implements the
IHttpModule interface (from the System.Web namespace). This interface provides a
simple Init method that’s used to initialize its behavior: you’ll generally add an Http-
Application event handler in the Init method, but you can also use this method to
initialize some application-specific data because this method is called when the appli-
cation starts.

 The new option offered by the integrated pipeline is useful in integration scenar-
ios when you have to deal with different applications that were written using different
technologies and you want to apply the same approach to them from a single and cen-
tralized point. In integrated mode, the events related to both request and response
are dispatched for every kind of content, not only ASP.NET pages. You can use some
ASP.NET features, such as authorization and authentication, in ASP, PHP, or even JSP
applications with little effort. Figure A.1 shows the new integrated pipeline in detail.

Windows Server Core
Server Core is a specific version of Windows Server that doesn’t have a UI. This setup
is ideal in scenarios where you want to avoid wasting resources. You can configure
and administrate Server Core only via scripting. You don’t get a GUI, and you can’t
even connect using a Terminal Session graphical interface.

Server Core is lightweight. Because of its features, it’s used in environments where
configuration can be injected via scripting, such as in cluster scenario where a web
server is similar to others in the node for both hardware characteristics and soft-
ware configuration.

WAS Integrated pipeline

http.sys

Native Managedend

begin

eventsauth

log

auth

session

Native handler IHttpHandler

static file *.aspx

Figure A.1 IIS 7.x
integrated pipeline mode
enables a useful integra-
tion between ASP.NET
and the web server. You
can write managed mod-
ules to intercept events
and provide the same
results as you can with

unmanaged ones.

443TECHNIQUE 100 Modifying IIS behavior with managed modules

The separation of the component outlines shown in figure A.1, where WAS, http.sys,
and application pools run in separate processes, ensures that when a problem occurs,
every single component can be recycled and, using the Application Pools features, iso-
lated from the others. We talk about extensibility techniques for HttpModules in detail
in chapter 15.

 Using the same technique to build an HttpModule, you can modify IIS behavior with
managed modules. You can implement features previously implemented only with
native code, like changing the default document behavior or intercepting every single
request. Let’s take a look at how you can easily accomplish these tasks with IIS 7.x.

 Modifying IIS behavior with managed modules

IIS 7.x gives you the possibility to write extensions using managed code and lets you
extend every single piece of its infrastructure.
PROBLEM

We want to modify IIS default behavior when we’re accessing a directory with no
default page inside. IIS generates a default message saying that you can’t browse direc-
tory content, and we want to change this behavior.
SOLUTION

With IIS 7.x, you can modify this behavior by creating a simple HttpModule and regis-
tering it under web.config. Our aim is to create an alternative message to be displayed
when a default content page isn’t present. To start using a managed module, the first
step is to register it in web.config, as shown in the following listing.

<configuration>
 <system.webServer>
 <modules>
 <remove name="DirectoryListingModule"/>
 <add name="DirectoryListingModuleManaged"
 type="MyFirstModule"/>
 </modules>
 </system.webServer>
</configuration>

This configuration works only with IIS
7.x and when the application is in an
integrated pipeline Application Pool.
We removed the default module, called
DirectoryListingModule, and regis-
tered a new one. When you browse a
directory that doesn’t have a default
page defined with this module in place,
you’ll end with a page similar to the one
in figure A.2.

Listing A.1 Registering HttpModule in web.config

TECHNIQUE 100

Figure A.2 A new default page associated with
our application running on IIS 7.x. You can easily
customize content to include special behavior; for
example, you can automatically show the thumbnails
associated with images in the current directory.

444 APPENDIX A ASP.NET and IIS 7.x

 Our module is a simple class that implements the IHttpModule interface, so in the
Init method we registered the EndRequest event of the HttpApplication class. The
code is shown in the following listing.

C#:
using System;
using System.Web;
using System.IO;

public class DirectoryListingModuleManaged : IHttpModule
{
 public void Init(HttpApplication application)
 {
 application.EndRequest +=
 new EventHandler(application_EndRequest);
 }

 void application_EndRequest(object sender, EventArgs e)
 {
 HttpContext context = ((HttpApplication)sender).Context;
 {
 if
 (Path.GetFileName(context.Request.Url.AbsolutePath).Length == 0 ||
 Path.GetFileName(context.Request.Url.AbsolutePath)
 .Equals(Path.GetFileNameWithoutExtension(
 context.Request.Url.AbsolutePath),
 StringComparison.InvariantCultureIgnoreCase)
)
 {
 context.Response.Clear();
 context.Response.Write("<p>This is a " +
 "custom default page.</p>");

 context.Response.End();
 }
 }
 }

 public void Dispose() {/*nothing */}
}

VB:
Imports System
Imports System.Web
Imports System.IO

Public Class DirectoryListingModuleManaged
 Implements IHttpModule
 Public Sub Init(ByVal application As HttpApplication)

➥ Implements IHttpModule.Init
 AddHandler application.EndRequest,
 AddressOf application_EndRequest
 End Sub

Listing A.2 Our custom HttpModule code

Register
EndRequest
event

No specific
page
requested

Write to the
response
stream

Register
EndRequest
event

445TECHNIQUE 101 Configuring application warm-up in IIS 7.5

 Private Sub application_EndRequest(ByVal sender As Object,
 ByVal e As EventArgs)
 Dim context As HttpContext = DirectCast(sender,
 HttpApplication).Context
 If True Then
 If Path.GetFileName(
 context.Request.Url.AbsolutePath).Length = 0
 OrElse
 Path.GetFileName(context.Request.Url.AbsolutePath)
 .Equals(Path.GetFileNameWithoutExtension(
 context.Request.Url.AbsolutePath),
 StringComparison.InvariantCultureIgnoreCase) Then
 context.Response.Clear()
 context.Response.Write("<p>This is a custom " +
 "default page.</p>")
 context.Response.End()
 End If
 End If
 End Sub

 Public Sub Dispose()Implements IHttpModule.Dispose
 'nothing
 End Sub
End Class

Starting from this simple example, you can further expand this module to better suit
your needs. You can modify every single default behavior of IIS using managed modules.
In specific scenarios when you need to use additional features, you can also use native
modules like the ones written in C++. There are no real differences between managed
and native modules, but managed ones need .NET Framework to be initialized, so you
take a small overhead hit when they’re used for the first time in the application lifetime.
DISCUSSION

At this point, it must be clear that you can modify every single aspect of the server
using the IIS 7.x integrated pipeline, and we’re not just talking about the ones related
to ASP.NET itself. You still need to create a classic HttpModule, but it will be used by the
entire pipeline. Remember that when you’re using integrated pipeline mode, you
need to remove ASP.NET HttpModules and register them under the specific web.config
node related to IIS (configuration\system.webServer\modules).

ASP.NET and IIS 7.x are so tightly integrated that when you run IIS modules, you’re
leveraging the ASP.NET HttpModule infrastructure and controlling the request and
response for all resources, not only ASP.NET ones.

 Configuring application warm-up in IIS 7.5

IIS 7.5 includes a unique feature called application warm-up. ASP.NET application
compilation and startup are performed on demand; in many situations, the first
request might take a lot of time.
PROBLEM

You need to pre-load an application with data-intensive routines. Or, you want to syn-
chronize access in load balancing scenarios. Either way, the following solution will

No specific
page
requested

Write to the
response
stream

TECHNIQUE 101
work for you.

446 APPENDIX A ASP.NET and IIS 7.x

SOLUTION

ASP.NET uses an on-demand compilation model, so when you restart the application
pool or the web server, the first request causes a compilation. Depending on what
you’re doing in your application startup routines, this compilation might require a lot
of time, leaving the user with the feeling that your code is running slowly. The new
warm-up feature helps you mitigate this behavior and makes it possible to add, at
startup, intensive data loading to your application.

 To enable this feature, the first thing you have to do is modify the application-
Host.config file, which contains general IIS configuration policies. The following list-
ing contains an example.

<applicationPools>
 <add name="MyApplicationPool" startMode="AlwaysRunning"/>
</applicationPools>
...
<sites>
 <site name="MySite" id="1">
 <application path="/"
 serviceAutoStartEnabled="true"
 serviceAutoStartProvider="MyWarmUpProvider">
 …
 </application>
 </site>
</sites>
...
<serviceAutoStartProviders>
 <add name="MyWarmUpProvider"
 type="MyApp.MyWarmUpProvider,MyAssembly" />
</serviceAutoStartProviders>

Next, you need to create a specific class in the example named MyWarmUpProvider,
implementing IProcessHostPreloadClient interface from the System.Web.Hosting
namespace. You’ll see a basic example in the following listing.

C#:
public class MyWarmUpProvider: System.Web.Hosting.IProcessHostPreloadClient
{
 public void Preload(string[] parameters)
 {
...
 }
}

VB:
Public Class MyWarmUpProvider
 Implements System.Web.Hosting.IProcessHostPreloadClient

Listing A.3 applicationHosting.config to enable warm-up

Listing A.4 Code to be implemented for warm-up

Enable
autostart

Configure
Provider

Initialization
code
 Public Sub Preload(ByVal parameters As String())

447Summary

...
 End Sub
End Class

The only limitation is that in this context, you don’t have access to the application
context.
DISCUSSION

This feature gives you a unified approach to data loading during an application cold
start. It’s particularly useful when you have to deal with intensive data loading at
startup. Note that ASP.NET won’t respond to any HTTP request prior to the end of the
PreLoad method execution, so this method is useful in a load-balancing scenario—
you can inform the balancer that the node is ready to serve requests.

A.3 Summary
ASP.NET can be easily plugged into IIS 7.x, with benefits for both. Using IIS’s exten-
sions, you can change the default behavior and gain granularity in the configuration.
You can easily control the behavior of the web server by using managed code (C# or
VB) and adding the same capabilities to non-ASP.NET applications. You can also use a
new warm-up feature in IIS 7.5 that might be useful in clustered applications, where
you need to control the behavior associated with the application’s load state.

 You can use IIS and ASP.NET together to produce interesting solutions. It’s impor-
tant for an ASP.NET developer to understand the advantages of these solutions when
they’re used correctly.

 The next appendix will cover how to deal with data access when you’re using
ADO.NET or getting data from XML sources. This topic is quite common, even though
it’s not considered trendy among developers; as you learned in chapters 2 and 3, new
approaches continue to emerge.

Initialization
code

appendix B:
Data access fundamentals

Throughout this book, we’ve used Entity Framework to access data stored in a
database. Although it’s recommended, Entity Framework isn’t the only choice for
retrieving data. A good alternative is to use ADO.NET. Entity Framework itself
leverages this component. ADO.NET is easy to use, but you have to manually han-
dle the connection to the database, the command to execute queries, and the
transaction to execute multiple update commands. Finally, data isn’t returned as
objects but as a generic-purpose container. All these features make ADO.NET sim-
ple but extremely code intensive. That’s why Entity Framework is the recom-
mended approach.

 Another alternative for managing data is to use XML. Although you can’t use
XML as a database in medium to big real-world applications, it’s still perfectly valid
for other purposes. It’s a great format for data exchange through messages or files
and is perfectly suitable for storing configuration information (the web.config file
is an XML file) or small pieces of data. For these reasons, it’s important for you to
know about XML.

 Let’s start this appendix by discussing how to use ADO.NET to retrieve and
update data. As usual, we’re going to use the Northwind database so that you can
compare the code in this chapter to the one in chapter 2. The code examples are
similar, but you’ll discover how much more code is required with ADO.NET.

B.1 Using ADO.NET to access data
ADO.NET is a technology that enables physical interaction with a database. Inter-
nally, it leverages Component Object Model (COM) providers, but it exposes func-
tionalities through .NET classes. Most of the complexity of communicating with the
database is stripped away, and you only have to deal with ADO.NET classes.

 Even if working with classes is somewhat hard, you can do lots of things to sim-
448

plify the process of retrieving data and pouring it into objects. The reverse process

449TECHNIQUE 102 Querying the database using ADO.NET

has the same issue; persisting entities
data into a database is code expensive.
You have to create and open a connec-
tion to the database, issue the com-
mands, process the result, and close
the connection. This flow is shown in
figure B.1.

 Another problem is that if you
need to issue multiple commands that
change data, you have to deal with the
transaction, too. Let’s put all this stuff
in practice.

 Querying the database using ADO.NET

As we said before, querying the database involves many steps. In this section, we’re
going to look at them so that you can understand how to issue a query to the database
and get back objects that you can work with.
PROBLEM

Suppose you have to create a web form that shows orders. Because the Northwind
database has hundreds of orders, you can’t show them all at once and you have to
page them. This scenario is common in most web applications that need to show lists
of data. The page doesn’t have to access the database directly but must rely on the
business layer or the domain model (we talked about these two layers in chapter 2) to
retrieve data. They must abstract persistence from UI.
SOLUTION

For this particular example, the UI problem isn’t what matters so let’s focus on the
code that interacts with the database. What we have to do is create a method that
opens a connection, sends the query to the database, iterates over the result, and, for
each record, creates an object that fills its properties with database data. Finally, we
have to close the connection and return the objects to the UI. Sounds easy, doesn’t it?

 Connecting to the database is just a matter of instantiating the SqlConnection
class located in the System.Data.SqlClient namespace, passing in the connection
string and invoking the Open method.

NOTE The connection string contains information about the database loca-
tion plus other additional information that can be different across different
platforms. SqlConnection passes it to the COM infrastructure to physically
connect to the database. The application configuration file contains a section
where you can place any connection string, and the .NET Framework class
library contains APIs to retrieve them. We’ll use such APIs in this appendix
instead of always rewriting the connection string.

Because the connection implements the IDisposable interface, we can wrap it inside
a using block, as in the following listing, so that it’s automatically disposed (and

TECHNIQUE 102

Open connection

Execute query

Process data

Close connection

Figure B.1 The query execution workflow. First, a
connection is created and opened. Later, the query
is executed and the result is processed by our code.
Finally, the connection is closed.
closed) at the end of the block.

450 APPENDIX B Data access fundamentals

C#:
var connString = ConfigurationManager.
 ConnectionStrings["conn"].ConnectionString;
using (var conn = new SqlConnection(connString))
{
 conn.Open();
 ...
}

VB:
Dim connString = ConfigurationManager.
 ConnectionStrings("conn").ConnectionString
Using conn = New SqlConnection(connString)
 conn.Open()
 ...
End Using

Okay, we’ve completed the first step. Now we need to create the Order class and put
data inside it. For brevity’s sake, we won’t show the Order code here. It’s a simple class
that has a property for each column in the Orders table with the addition of only the
Customer and Order_Details properties (which reference the customer who placed
the order and the details of the order).

 After the class is created, we can issue a SELECT command to the server using the
SqlCommand class, as shown in Listing B.2. This class is responsible for issuing any type
of command to the database. Because we have to retrieve a set of records, we’ll use the
ExecuteReader method, which returns an SqlDataReader instance. This instance is a
read-only and forward-only kind of cursor.

C#:
string sql = "WITH cte AS " +
 "(SELECT *, ROW_NUMBER() OVER(ORDER BY orderid) AS RowNumber " +
 "FROM orders) " +
 "SELECT * FROM cte " +
 "WHERE RowNumber >= @startIndex AND RowNumber <= @endIndex ";
using (var comm = new SqlCommand(sql, conn))
{
 comm.Parameters.AddWithValue("startIndex", ((pageIndex-1) * pageCount));
 comm.Parameters.AddWithValue("endIndex", (pageIndex * pageCount));
 var result = new List<Order>();
 conn.Open();
 using (var reader = comm.ExecuteReader())
 {
 while (reader.Read())
 {
 ...
 }
}

Listing B.1 Connecting to a database

Listing B.2 Issuing a command

451TECHNIQUE 102 Querying the database using ADO.NET

VB:
Dim sql As String = "WITH cte AS " &
 "(SELECT *, ROW_NUMBER() OVER(ORDER BY orderid) AS RowNumber " &
 "FROM orders) " &
 "SELECT * FROM cte " &
 "WHERE RowNumber >= @startIndex AND RowNumber <= @endIndex "
Using comm = New SqlCommand(sql, conn)
 comm.Parameters.AddWithValue("startIndex", ((pageIndex - 1) * pageCount))
 comm.Parameters.AddWithValue("endIndex", (pageIndex * pageCount))
 Dim result = New List(Of Order)()
 conn.Open()
 Using reader = comm.ExecuteReader()
 While reader.Read()
 ...
 End While
 End Using
End Using

Now we have to create objects from the data reader. Once again, it’s simple. You just
iterate over the records create an object for each one. Then, you pour data from
record columns into object properties. This technique is shown in listing B.3. Keep in
mind that the Get and GetNullable methods aren’t SqlDataReader methods but con-
venient extension methods we’ve created to cut down on some lines of code. You’ll
find these in the downloadable code for the book.

C#:
Order o = new Order()
{
 EmployeeID = reader.Get<int>("EmployeeID"),
 Freight = reader.GetNullable<decimal>("Freight"),
 OrderDate = reader.Get<DateTime>("OrderDate"),
 OrderID = reader.Get<int>("OrderID"),
 RequiredDate = reader.GetNullable<DateTime>("RequiredDate"),
 ShipAddress = reader.Get<string>("ShipAddress"),
 ShipCity = reader.Get<string>("ShipCity"),
 ShipCountry = reader.Get<string>("ShipCountry"),
 ShipName = reader.Get<string>("ShipName"),
 ShippedDate = reader.GetNullable<DateTime>("ShippedDate"),
 ShipPostalCode = reader.Get<string>("ShipPostalCode"),
 ShipRegion = reader.Get<string>("ShipRegion"),
 ShipVia = reader.GetNullable<int>("ShipVia")
};
result.Add(o);

VB:
Dim o As New Order() With { _
 .EmployeeID = reader.[Get](Of Integer)("EmployeeID"), _
 .Freight = reader.GetNullable(Of Decimal)("Freight"), _
 .OrderDate = reader.[Get](Of DateTime)("OrderDate"), _
 .OrderID = reader.[Get](Of Integer)("OrderID"), _

Listing B.3 Creating objects from a data reader
 .RequiredDate = reader.GetNullable(Of DateTime)("RequiredDate"), _

452 APPENDIX B Data access fundamentals

 .ShipAddress = reader.[Get](Of String)("ShipAddress"), _
 .ShipCity = reader.[Get](Of String)("ShipCity"), _
 .ShipCountry = reader.[Get](Of String)("ShipCountry"), _
 .ShipName = reader.[Get](Of String)("ShipName"), _
 .ShippedDate = reader.GetNullable(Of DateTime)("ShippedDate"), _
 .ShipPostalCode = reader.[Get](Of String)("ShipPostalCode"), _
 .ShipRegion = reader.[Get](Of String)("ShipRegion"), _
 .ShipVia = reader.GetNullable(Of Integer)("ShipVia") _
}
result.Add(o)

Congratulations! You’ve successfully connected to a database, issued a query, and cre-
ated objects from it.
DISCUSSION

The code for this example wasn’t difficult to write, but embedding queries inside the
code is something that’s not appealing for database administrators. They always prefer
that you use stored procedures because these can be controlled.

 Using stored procedures to query the database

Stored procedures offer a big advantage. They enable a high level of isolation between
the code and the database. If you need to optimize or change a query, you can do it
without recompiling the application.
PROBLEM

Suppose that you have to modify the problem in the previous section to use a stored
procedure instead of the embedded SQL statement. This scenario is common when
you have a DBA who wants full control over SQL statements issued to the database and
you want to raise isolation between code and database.
SOLUTION

Invoking a stored procedure is extremely simple. The code differs only slightly from
what we created previously. In fact, invoking a stored procedure is just a matter of
using its name instead of the full SQL statement and setting the CommandType property
of the SqlCommand class. The following listing shows the necessary code.

C#:
string sql = "GetOrders";
using (var comm = new SqlCommand(sql, conn))
{
 comm.CommandType = CommandType.StoredProcedure;
 ...
}

VB:
Dim sql As String = "GetOrders"
Using comm = New SqlCommand(sql, conn)
 comm.CommandType = CommandType.StoredProcedure
 ...

Listing B.4 Invoking a stored procedure

TECHNIQUE 103
End Using

453TECHNIQUE 104 Persisting data into the database

Believe it or not, that’s all you need to do. With a tiny change you get lots of benefits.
DISCUSSION

Using a stored procedure is a must in many applications. Fortunately ADO.NET was
designed to enable this feature, too. Thanks to this design, invoking stored proce-
dures is easy.

 So far, you’ve seen only how to query the database. We’re still missing the other
side of the coin: saving data in an object into the database.

 Persisting data into the database

When you need to save data into the database, the process is identical to what we did
before. You open a connection, execute the command, and close the connection. The
only optional variation is that if you have to send more than one command, you have
to use a transaction to ensure an all-or-nothing update. If a command goes wrong, you
can roll back the transaction and invalidate all previous commands; if everything
works fine, you can commit the transaction so that all changes made by the commands
become persistent. Figure B.2 shows this workflow.

 Now let’s see how we can write code that represents the workflow shown in figure B.2.
PROBLEM

Suppose you have a form in which the user can update the order information. He can
change the shipping address, as well as the shipping date or the shipment method. He
can also add a new detail, modify an existing one (for instance, change the quantity or
the discount), and remove one or more of them. What we have to do is create a data
access code to handle all these modifications.
SOLUTION

To resolve this problem, you can create a method that accepts the order, and three
parameters that represent the details that were added, modified, or removed. In that
method you can then launch a command to update the order and launch other com-
mands for each of the details.

TECHNIQUE 104

Open connection

Start transaction

Send commands

Close connection

Commit transaction Roll back transaction

No YesErrors

Figure B.2 The database update workflow. First, we open the connection and start
the transaction. Next, we send commands to the database. If all the commands are

executed correctly, we commit the transaction; otherwise, we roll it back.

454 APPENDIX B Data access fundamentals

Because we have to issue multiple commands, we have to wrap them inside a transac-
tion and manually commit or roll it back, depending on errors. If the user was able to
update only the order, the transaction doesn’t need to be completed.

 Sending a command to update the database requires you to use another method of
the SqlCommand class: ExecuteNonQuery. It doesn’t accept any parameter, but it returns
an Int32 representing the number of rows that were affected by the command.

 To start a transaction, you have to call the BeginTransaction method of the Sql-
Connection class. That method returns a SqlTransaction object that you later have to
pass to the SqlCommand object, along with the connection. To commit or roll back a
transaction, you have to call the Commit or Rollback methods respectively, as in the
following listing.

C#:
using (var conn = new SqlConnection(connString))
{
 using (var tr = conn.BeginTransaction())
 {
 try
 {
 string sql = "UpdateOrder";
 using (var comm = new SqlCommand(sql, conn, tr))
 {
 comm.CommandType = CommandType.StoredProcedure;
 comm.Parameters.AddWithValue("ShipAddress", order.ShipAddress);
 comm.Parameters.AddWithValue("ShipCity", order.ShipCity);
 comm.Parameters.AddWithValue("ShipCountry", order.ShipCountry);
 comm.Parameters.AddWithValue("ShipName", order.ShipName);
 comm.Parameters.AddWithValue("ShipPC", order.ShipPostalCode);
 comm.Parameters.AddWithValue("ShipRegion", order.ShipRegion);
 comm.Parameters.AddWithValue("ShipVia", order.ShipVia);
 comm.Parameters.AddWithValue("OrderId", order.ShipVia);
 comm.ExecuteNonQuery();
 }
 foreach (var detail in addedDetails)
 {
 ...
 }
 foreach (var detail in modifiedDetails)
 {
 ...
 }
 foreach (var detail in deletedDetails)
 {
 ...
 }
 tr.Commit();
 }
 catch
 {

Listing B.5 Persisting data using a transaction

Open
connection

Start
transaction

Execute
command

Commit if no
exception

Rollback if
 tr.Rollback();
exception

455TECHNIQUE 104 Persisting data into the database

 }
 }
}

VB:
Using conn = New SqlConnection(connString)
 Using tr = conn.BeginTransaction()
 Try
 Dim sql As String = "UpdateOrder"
 Using comm = New SqlCommand(sql, conn, tr)
 comm.CommandType = CommandType.StoredProcedure
 comm.Parameters.AddWithValue("ShipAddress", order.ShipAddress)
 comm.Parameters.AddWithValue("ShipCity", order.ShipCity)
 comm.Parameters.AddWithValue("ShipCountry", order.ShipCountry)
 comm.Parameters.AddWithValue("ShipName", order.ShipName)
 comm.Parameters.AddWithValue("ShipPC", order.ShipPostalCode)
 comm.Parameters.AddWithValue("ShipRegion", order.ShipRegion)
 comm.Parameters.AddWithValue("ShipVia", order.ShipVia)
 comm.Parameters.AddWithValue("OrderId", order.ShipVia)
 comm.ExecuteNonQuery()
 End Using
 For Each detail As var In addedDetails
 ...
 Next
 For Each detail As var In modifiedDetails
 ...
 Next
 For Each detail As var In deletedDetails
 ...
 Next
 tr.Commit()
 Catch
 tr.Rollback()
 End Try
 End Using
End Using

The code inside the loop has been omitted because it simply invokes the stored proce-
dures that add, modify, and delete details. That’s not at all different from the code
used to update the order.

 What’s interesting in this code is the transaction management. All code is inside a
try/catch block. The last statement of the try block is the Commit method, and the
only statement of the catch block is the Rollback method, which invalidates all the
commands executed in the try block.
DISCUSSION

In the end, modifying data is similar to reading it. In the first case, you read it and cre-
ate a set of classes and in the other one, you read classes and pour their values inside
the database.

 All the code we’ve written so far involves only the Order class (and the
Order_Details class, in the last example), but the complete scenario requires more.
Are you thinking about how much code you would have to write to query all the

Open
connection

Start
transaction

Execute
command

Commit if no
exception

Rollback if
exception
classes? In a real-world project, you would end up writing thousands of lines of code.

456 APPENDIX B Data access fundamentals

 But there’s more. Suppose that in another page, you have to show orders and their
related customers. That means that the code we’ve seen so far is somewhat limited
because it treats only one table and one class. You have to write new code to handle
both the Order and Customer classes in a single query. As complexity grows, so do the
lines of code.

 And what about this problem: the objects paradigm is completely different from
the database paradigm. Databases don’t have the concept of inheritance, they keep
relationships using foreign keys (objects use references to other objects), and they
organize data in rows and columns (objects organize data in properties that can con-
tain a scalar value or other objects). Handling such differences in code is trivial in
some scenarios but painful in others.

 Working with pure ADO.NET classes represents the most basic way of writing data
access code. You can use third-party libraries, like the Microsoft Enterprise Library,
but that’s just a way to eliminate lots of lines of code. Now you know why Entity Frame-
work greatly simplifies development.

B.2 Reading and writing XML
In this section, you’ll learn how to create and read an XML file using LINQ to XML. We
decided not to use the System.Xml APIs because they’re obsolete and are maintained
in .NET Framework 4.0 for compatibility reasons only.

 Writing XML

When LINQ to XML was designed, one of the goals was to make it simpler by using
fewer classes and less code to create and read a file. The result was the set of classes
shown in figure B.3.

TECHNIQUE 105

XCData
Class
�XText

XObject
Abstract Class

XAttribute
Abstract Class
�XObject

XComment
Class
�XNode

XDocument
Class
�XContainer

XElement
Class
�XContainer

XText
Class
�XNode

XContainer
Abstract Class
�XNode

XProcessingInst...
Class
�XNode

XDocumentType
Class
�XNode

XNode
Abstract Class
�XObject

IXmlLineInfo

IXmlSerializable
Figure B.3 The classes in LINQ to XML

457TECHNIQUE 105 Writing XML

Without going into each class in detail, you need to know that each of them is included
in the System.Xml.Linq namespace and that the following ones are the most important:

■ XDocument—Represents the XML
■ XElement—Represents a node in the XML
■ XComment—Represents a comment
■ XAttribute—Represents an attribute
■ XDeclaration—Represents the XML declaration

You will surely use the other classes, but in our experience, 90% of the time these are
the ones you’ll use the most.
PROBLEM

You need to create an XML file that contains the ID and the name of a given customer.
This file must be saved on the server machine for further processing.
SOLUTION

Creating an XML file using LINQ to XML is pretty easy. You have to create an XDocu-
ment instance and, in its constructor, pass the XElement instances that create the root
node. In turn, the XElement constructor takes a list of XElement instances that repre-
sent the children. Thanks to this design, you can create the whole XML in a single
statement, nesting XElement instances. If it’s well indented, such code is extremely
easy to understand, as you can see in the next listing.

C#:
XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-8", "true"),
 new XComment("comment"),
 new XElement("Customers",
 new XElement("Customer",
 new XAttribute("Id", "ALFKI"),
 new XElement("Name", "NAME")
)
)
);

VB:
Dim doc As New XDocument(
 New XDeclaration("1.0", "utf-8", "true"),
 New XComment("comment"),
 New XElement("Customers",
 New XElement("Customer",
 New XAttribute("Id", "ALFKI"),
 New XElement("Name", "NAME")
)
)
)

First, you create an XDocument instance and then nest an XDeclaration element and

Listing B.6 Creating an XML structure
an XComment element. Next, you nest an XElement (Customers) inside XDocument.

458 APPENDIX B Data access fundamentals

Inside the XElement, you put another XElement (Customer) to which you add an Attri-
bute (Id) and another XElement (Name). The result is the following:

<?xml version="1.0" encoding="utf-8"?>
<!—comment-->
<Customers>
 <Customer Id="ALFKI">
 <Name>Name</Name>
 </Customer>
</Customers>

After you have the XDocument instance with the XML shown in the previous snippet,
you can use the Save method to save the XML string in a file placed wherever
you want:

C#:
doc.Save(path);

VB:
doc.Save(path)

If you compare the code needed to write an XML file using LINQ to XML with the code
using System.Xml classes, you’ll understand that there’s no contest: LINQ to XML
is better.
DISCUSSION

This sample has clearly demonstrated that LINQ to XML is well designed and easy to
use. However, the benefits of such technology don’t end here—there’s more to learn.
Creating a simple XML structure on the fly with LINQ to XML is easy, but the real
power comes when you have to create a structure starting with a set of data.

 Generating XML from a data source

Have you ever happened to have a list of classes coming from a query or any other
source, and you need to transform its data into XML? Well, we have. Once again, Sys-
tem.Xml classes make this task a real nightmare because lots of code is needed, but
LINQ to XML keeps things small and easy.
PROBLEM

You have a page where the user submits a file containing the ID of all the customers
they need information about. You have to retrieve these customers and create an XML
file with the name and the full address for each of them.
SOLUTION

The solution here is split in two phases: the first one retrieves the customers from the
database, and the second one creates the XML. We’ll skip the first one and concen-
trate on the second.

 In the previous section, you learned that you can pass a list of elements to the
XElement constructor. By exploiting this feature, you can use a LINQ query to pass
child elements and nest data. The following listing shows this technique.

TECHNIQUE 106

459TECHNIQUE 107 Reading XML

C#:
var customers = CustomersFromAQuery();
var doc =
 new XDocument(
 new XElement("Customers",
 from c in customers
 select new XElement("Customer",
 new XElement("Name", c.CompanyName),
 new XElement("Address", c.Address),
 new XElement("PostalCode", c.PostalCode),
 new XElement("City", c.City),
 new XElement("Country", c.Country)
)
)
);

VB:
Dim customers = CustomersFromAQuery()
Dim doc =
 New XDocument(
 New XElement("Customers",
 From c In customers
 Select New XElement("Customer",
 New XElement("Name", c.CompanyName),
 New XElement("Address", c.Address),
 New XElement("PostalCode", c.PostalCode),
 New XElement("City", c.City),
 New XElement("Country", c.Country)
)
)
)

The nested LINQ query contains the structure of each Customer node. We don’t know
what you think, but the first time we wrote code like this, we almost cried thinking
about the power and simplicity of it.
DISCUSSION

The capability and extreme simplicity of creating simple structures (and complex
ones) and the readability of the code make LINQ to XML one of the wonderful gems
of the .NET Framework. Now that you know how to create an XML structure, let’s turn
to how to read it.

 Reading XML

As the name says, LINQ to XML enables you to execute LINQ queries over the XML
structure. In this case, you don’t have a set of classes, so you don’t have type safety.
This issue isn’t a significant problem because you can still perform queries in an
untyped way.

Listing B.7 Creating an XML structure from a list of objects

TECHNIQUE 107

460 APPENDIX B Data access fundamentals

PROBLEM

Suppose that you have to read the XML file you already generated. You need to extract
all customers in France for special processing, and after that you have to process all
customers in alphabetic order.
SOLUTION

To retrieve the customers in France, you have to follow these steps:

1 Create the XDocument using the XML.
2 Navigate the XElement elements to reach the Customer ones.
3 Take the XElement instances that have a child XElement whose name is Country

and whose value is France.

The next listing translates these actions into code.

C#:
var doc = XDocument.Load(path);
var france = doc.Root.Elements("Customer")
 .Where(c => c.Element("Country").Value == "France")
 .Select(c =>
 new
 {
 Name = c.Element("Name").Value,
 Country = c.Element("Country").Value
 }
);

VB:
Dim doc = XDocument.Load(path)
Dim france = doc.Root.Elements("Customer").
 Where(Function(c) c.Element("Country").Value = "France").
 Select(Function(c) _
 New With { _
 .Name = c.Element("Name").Value, _
 .Country = c.Element("Country").Value _
 }
)

The Root property of the XDocument object represents the root node, and the Ele-
ments property gives access to the children of the root (Customer). You then filter
them using a lambda expression B. Unfortunately, the lambda expression code isn’t
strongly typed because you’re working with XML, which is a loose-typed data format.

 Naturally, we can use any LINQ method in LINQ to XML syntax. For this reason, we
can use the OrderBy method to sort the customers by their name, as required in the
Problem section. The following listing shows the required code.

C#:
var sorted = doc.Root.Elements("Customer")

Listing B.8 Reading customers located in France

Listing B.9 Sorting customers by name

Perform
filter

B

Perform
filter

B

 .OrderBy(c => c.Element("Name").Value)

461Summary

 .Select(c =>
 new
 {
 Name = c.Element("Name").Value,
 Country = c.Element("Country").Value
 }
);

VB:
Dim sorted = doc.Root.Elements("Customer").
 OrderBy(Function(c) c.Element("Name").Value).
 Select(Function(c) New With { _
 .Name = c.Element("Name").Value, _
 .Country = c.Element("Country").Value _
})

Using the same mechanism, you can write any query you like. You’re not obliged to
pour data into objects; you can do whatever you want—even leave original queried
elements as XElement objects.
DISCUSSION

Reading an XML file using LINQ isn’t as easy as reading data from a list of objects, but
it’s far better than manually iterating over elements or using an XPath expression
(which is supported by LINQ to XML). If you’ve already worked with System.Xml
classes, you’ll surely agree.

 You’ve learned that LINQ to XML is a great technology for both reading and writ-
ing data. One day you’re going to find yourself struggling against XML; we hope that
you’ll remember that LINQ to XML is the best tool in your toolbox.

B.3 Summary
Now you know two alternative techniques for reading and writing data. ADO.NET
requires lots of code compared with Entity Framework, but don’t underestimate it.
Remember that Entity Framework is based on ADO.NET and that ADO.NET has
evolved in each release of .NET Framework. What’s more, Entity Framework doesn’t
offer all the power of ADO.NET. For instance, Entity Framework doesn’t support
stored procedures that return multiple result sets. This is why you always have to keep
an eye on ADO.NET.

 On the other hand, LINQ to XML has totally overcome the classes in the System.Xml
namespace. We’ve shown you only basic examples, but they unveiled the great potential
LINQ to XML enables in both reading and writing XML. If you’re starting to develop an
application from scratch, we strongly recommend that you use LINQ to XML.

index
Symbols

/ character 340
character 331, 345
$ character 331
$ method 331, 333

A

Access, Microsoft 268–269, 299
accessing data. See data access
ACL (access control list) 281
action attribute 80
action filters

injecting logic using 229–235
discussion 234–235
problem 231
solution 231–234

ActionFilterAttribute class 231
ActionLink helper 199, 226,

250, 255
ActionLink method 200, 226
Active Directory (AD)

284, 298–299
Active Server Pages (ASP) 3
ActiveDirectoryMembership-

Provider 290, 298
AD (Active Directory)

284, 298–299
AdapterEnabled property 169
adaptive rendering 14, 16,

163–177
and Control Adapter

Toolkit 177

disabling 169
using control adapters

adding OptionGroups to
DropDownList
164–170

building table-less
DataList 170–177

Add Controller option 194
add_endRequest method 329
add_init method 330
AddObject method 48–50
Address property 35
AddressInfo class 35
ADO.NET 105, 448
ADO.NET Entity

Framework 237–238
advanced user state 354–365

Profile API 355–359
and web projects 358–359
custom provider for

359–365
properties 355–358

AdventureWorks database 32
Ajax 319–347

improving usability with
320–322

overview 322–323
showing wait message during

PostBack 328–330
using triggers with 326–327
using UpdatePanel

control 324–328
ajax method 336, 338
Ajax Minifier, Microsoft 426

Anti-XSS Library, Microsoft. See
Microsoft Anti-XSS Library

Apache Software Foundation
(ASF) 403

App_Browsers directory
164, 169

App_Code directory 337
AppDomains 387
append method 335
appendTo method 335
AppFabric 386, 388–389
AppInitialize method 407
Application object 334
Application start method 247
Application_Start event 181
Application.Start event 201
applicationName attribute 291
applications

designing 31–34
protecting from SQL

injection 266–271
warm-up, configuring

445–447
architecture 7–12

Business Logic Layer 9
components 9–11
Data Access Layer 9
global.asax file 11–12
pipeline 12
three-layer architecture 7–9
web.config file 11–12

AreaName members 206
AreaRegistration class 206
ASF (Apache Software

Foundation) 403
463

and mobile controls 177 AlternatingItemTemplate 173 ASP (Active Server Pages) 3

INDEX464

ASP.NET 4.0
how it works 5–7
installing 4–5
new in 17–20

.NET Framework 4.0 17–18
ASP.NET AJAX 4.0 20
controlling ClientID

generation 19
dynamic data controls 19
flexible ViewState 19
IIS 7.5 integration 20
WEB.Config

minification 19
ASP.NET Ajax. See Ajax
ASP.NET MVC 5, 195

action method 194
actions 197
Add View dialog box 199
Add View option 197
Controller class 195
default view 197
IgnoreRoute method 202
model binder 211, 237
model class 198
OutputCache in 371–381

and partial views 378–381
removing items from

372–378
partial view 198, 208
project template 190
routes, registering 201
routing 195, 199
routing rules 205
shared view 197
strongly typed view 198
ViewResult 196–197

ASP.NET MVC (Model-View-
Controller) 187–218

controllers in 194–196
CoolMVCBlog example

190–200
models in 191–194
overview 188–190
routing in 200–207

concepts of 200–204
using areas with 204–207

user input in 207–218
handling at controller

level 207–212
validating data 212–218

views in 197–200
ASP.NET requests

using one context per 55–58
discussion 58
problem 55

aspnet_regsql.exe 290
AspNetCompatibilityRequire-

ments (System.Service-
Model.Activation
namespace) attribute 338

AspNetWindowsTokenRole-
Provider class 298

AsyncPostBackTrigger type 327
Atom feeds 28
attach entity 60, 63
Attach method 49, 63
attr method 334
AuthenticateRequest event

283, 398
authentication and

authorization 282–315
basics of 283–288
custom providers 298–315

for databases 298–300
Membership and Role

300–309
Windows Live ID authenti-

cation service 309–315
Membership API 288–293
Roles API 294–297

AuthorizeRequest event
283, 398–399

autocomplete method 342–343
AutoDetect option 353
autogenerateschema

attribute 299
automaticSaveEnabled

property 358
autoOpen property 345
AutoPostBack property 324

B

Backoffice Area 205
BackofficeAreaRegistration.cs

file 205
BasePrefix property 377
BBCode (Bulletin Board

Code) 273
BCL (Base Class Library) 17
BeginForm helper 210
BeginRequest event 10, 58,

272, 398
BeginRequest phase 254
BeginTransaction method 454
binders, model

building new from
scratch 243–249

custom for domain

BindingContext 241
BindModel method 237–238,

240, 244
BLL (Business Logic

Layer) 193–194
browser capabilities 400

how to register providers 181
in ASP.NET 4.0 163
supported devices 178

Browser property 163
browser support 177–183

building custom browser
capabilities 178–181

validating pages with W3C
validator 182–183

bugs, finding 262
Bulletin Board Code

(BBCode) 273
Business Logic Layer (BLL)

9, 31, 188, 193–194
Button object 5
buttons property 345–346

C

cache dependency 423
cache region 391
CacheEntryChangeMonitor 383
CacheProfile attribute 370
caching 366–395

custom providers for 386–395
and DataCache class

389–390
configuring AppFabric 389
custom OutputCache

provider 393–395
retrieving items 392–393
saving items 390–392
supporting Provider

Model 393
using AppFabric 388
when needed 387

OutputCache 368–371
configuring with code 370
dependencies 369–370
in user control 369
profiles in web.config

370–371
OutputCache in ASP.NET

MVC 371–381
and partial views 378–381
removing items from

372–378

solution 55–58 entities 236–243 per-application state 367–368

INDEX 465

caching (continued)
techniques for 381–386

in ASP.NET 381–384
not altering collections in

memory 386
not using directly 384
not using high

timeouts 386
not using RemovedCall-

backs for 386
preparing objects to be

serializable 386
using change

monitors 383–384
using locks to avoid race

conditions 384–386
canonicalization vulnerabilities

of paths 278–281
dynamically building 278–281

Cascading Style Sheets. See CSS
casting, to real type 72
catch block 455
CDN (content delivery

network) 326
change method 336
change monitors 383–384
change tracking 65, 73–74
ChangeMonitor class 383
ChangeObjectState method 61
:checkbox command 332
child actions 379
ChildActionCacheAttribute 380
children method 333
classes, connecting to each

other 33
Click event 5
click method 336
Client components, Ajax 323
client-centric pattern 330
ClientID generation 19, 147

controlling 83–85
discussion 85
problem 83
solution 84–85

supported modes 84
ClientIDMode property 84–85
ClientScript

GetPostBackClientHyperlink
method 146

RegisterForEventValidation
168

close string 346
CLR (Common Language

CMS (content management
systems) 91

code behind 6
code beside 6
code inline 7
Collections.Concurrent

namespace 438
columns, hiding 130
COM (Component Object

Model) 448
Combine method, Sys-

tem.IO.Path class 280
Combine() method, Path

class 279
CommandType property 452
Comment instance 209, 211
Comment object 211
Commit method 454–455
commits 454
Common Language Runtime

(CLR) 10
common method 340
CompareValidator control 24
componentized markup

through HTML helpers
226–229
discussion 229
problem 226
solution 226–229

components 9–11
composite controls

136, 139–144
discussion 144
events in 143–144
problem 140
solution 140–143
wrapping inner controls'

properties 142
compression, session 353
compressionEnable

attribute 353
concurrency 66–69

avoiding 385
discussion 68–69
problem 67
solution 67–68

Concurrency Mode property 68
connected approach, Entity

Framework 59
container controls 147–149

and PostBack 21–23
discussion 149
problem 147
properties as inner tags 149

Content control 85
content delivery network

(CDN) 326
content management system

(CMS) 91
ContentPlaceHolder

control 85–86
ContentResult, ASP.NET

MVC 196
ContentTemplate property 325
contentType parameter 339
context

disconnected approach
to 59–69
concurrency 66–69
persisting entities using

ViewState object 65–66
persisting entity

modifications 60–61
persisting selected proper-

ties of modified
entity 61–64

lifetime 53–59
instantiating context using

modules 58–59
one context per ASP.NET

request 55–58
one context per

method 53–54
context lifecycle 59
Context.Items collection 360
Context.Items container 351
ContextOptions.ProxyCreation-

Enabled property 65
ContinueWhenAll method

436–437
ContinueWith method 436
control adapter 81, 164
Control Adapter Toolkit 177
control adapters

adding OptionGroups to
DropDownList 164–170

building adapters 166
building table-less

DataList 170–177
control builders 136, 156

discussion 161
problem 156
solution 156–161

control designers 136
Control instance 329
ControlBuilderAttribute

attribute 159
ControlId property 327
Runtime) 10 solution 147–148 Controller class 195

INDEX466

Controller component,
MVC 190

-Controller suffix 194
ControllerContext

parameter 194–196, 238
handling user input 207–212

controls
custom 135–161

advanced controls 156–161
complex controls 147–156
composite controls

139–144
handling PostBack

events 144–146
simple controls 136–139

for form validation 23–26
security 293

ControlToValidate property 24
cookies 354, 369
Cookies properties 354
CoolMVCBlog example

190–200
Copy to Output Directory 41
CPU (central processing unit) 9
CreateChildControls

method 141, 154
CreateContext method 57
CreateRegion method,

DataCache 391
CreateUser method 292
CreateUserWizard control

82, 291–292
cross-site scripting. See XSS
CSS (Cascading Style Sheets) 19

building HTTPHandler class
to minify 422–425

registering attributes in
header at runtime 27

CurrentContext property 240
CurrentHandler property 418
CurrentServerTime action 380
custom controls 225

ControlBuilderAttribute 159
data binding with 152
how to handle PostBacks

in 145
ParseChildrenAttribute 148
PersistenceModeAttribute

149
TemplateContainerAttribute

150
templated controls 170

custom OutputCache
provider 393–395

Customer class 31–33, 35–36,

Customer property 33, 36,
39–40

CustomerId foreign key
column 36

CustomerId primary key
column 36

CustomerID property 32
CustomerId property 40
Customers table 35–36, 38
customProvider attribute 353
CustomValidation attribute 214
CustomValidator control 24

D

data
layers 35–37
templates 220–226
type mismatches 37
using Microsoft Entity Frame-

work
to read 43–48
to write 48–51

validation 32
data access

databases 448–461
persisting data into

453–456
querying 449–452

XML 456–461
generating from data

source 458–459
reading 459–461
writing 456–458

Data Access Layer 9, 31, 188
data annotations 131, 212–213
data binding 104–134, 152–156

displaying data 105–110
using ListView control

109–110
using Repeater

control 106–109
Dynamic Data controls

123–134
application using 123–127
extending 131–134
metadata and

templates 127–131
filtering and sorting

data 118–123
modifying data 111–118

EntityDataSource control
and Entity

GridView, FormView, and
ListView controls
115–118

using data source
controls 111–113

problem 153
solution 154–156
two-way 155

data binding controls 136
data parameter 338
data source controls

EntityDataSource
template 112

modifying data using 111–113
data sources, generating XML

from 458–459
data theft 260
databases 298–300, 448–461

persisting data into 453–456
discussion 455–456
problem 453
solution 453–455

problem 298
querying 449–452

discussion 452
problem 449
solution 449–452
using stored

procedures 452–453
running sites from 407–415

DataBinding event 106
DataCache class 389–390
DataItemIndex 107
DataList, building without

tables 170–177
DataSource property 105
DataSourceID property 112
dataType parameter 339
datatype problem 37
DataTypeAttribute

attribute 128, 224
datepicker behavior 343
datePicker method 343
datepicker method 343
Datepicker UI, jQuery 221–222
datetime datatype 37
debug mode 263
DefaultModelBinder class

240, 243–244
defaultUrl attribute 287
delegation 11
DeleteObject method 50
DeleteRole method 308
dependencies, for
38–39 Framework 114–115 OutputCache 369–370

INDEX 467

dependency injection 289
DestroyContext method 57
dialog method 345
directory traversal

vulnerability 278
DirectoryExists method

407, 411–412
DirectoryListingModule 443
disconnected approach

to context 59–69
concurrency 66–69
persisting entities using

ViewState object 65–66
persisting entity

modifications 60–61
persisting selected proper-

ties of modified
entity 61–64

display
changing behavior of

127–129
changing format of 129–130
changing name of 130

Display property 24
DisplayFor helper 224
DisplayFor statement 221
DisplayFormatAttribute

attribute 129
DisplayTemplates folder 224
Dispose() member 397
distributed architecture 387
distributed caching engine 387
div element 174
<div> tags 80
DLR (Dynamic Language

Runtime) 18
Document class 331
DOM (Document Object

Model) 330
events in, handling with

jQuery 335–336
manipulating with

jQuery 334–335
querying using jQuery

331–333
using methods 333

domain entities
custom model binders

for 236–243
discussion 242–243
problem 237
solution 237–242

download performance, increas-
ing by minifying 417–426

building HTTPHandler
class 422–426

building request filter to min-
ify HTML 417–422

DropDownList
adding OptionGroups

to 164–170
DropDownList control 168
Dynamic Data controls

123–134, 213
application using 123–127
extending 131–134

custom templates 132–133
discussion 134
problem 131
solution 131
validation 131–132

MetaColumn 124
MetaModel 124
MetaTable 124
working with templates 127

dynamic data controls
new in ASP.NET 4.0 19
ScaffoldAllTables

property 125
Dynamic Language Runtime

(DLR) 18
dynamic queries, with multiple

values 269–271
discussion 270–271
problem 269
solution 269–270

dynamic types 18
DynamicControl control 126
DynamicDataManager 127

E

eager loading 69–70
EditorFor helper

210, 220–221, 224
EditorFor syntax 210
EditorTemplates folder 223
EDM (Entity Data Model) 114
elements

reusable 220–235
injecting logic using action

filters 229–235
templates 220–226

Elements property 460
Email property 214
Employees table 36

EndRequest event 58, 398
EnsureChildControls

method 141
enterprise application 188
Enterprise Library,

Microsoft 403, 456
Entity Data Model (EDM) 114
Entity Framework 9, 52, 59–74,

114, 123, 300, 409, 448
context

disconnected approach
to 59–69

lifetime 53–59
EntityDataSource control

and 114–115
discussion 115
problem 114
solution 114–115

optimizing performance
69–74
avoiding multiple query

execution 70–71
disabling change

tracking 73–74
fetching 69–70
queries retrieving a single

element 71–73
Entity Framework, Microsoft. See

Microsoft Entity Framework
entity set 72
EntityDataSource control, and

Entity Framework 114–115
EntityDataSource

namespace 118
EntityDataSource. See data

source controls
EntityKey class 72
EntitySetName property 115
Error event 402, 404
ErrorMessage property 24, 216
errors

define custom pages for 403
logging and handling

402–406
with custom modules

403–406
with Microsoft Enterprise

Library and log4net
library 403

Eval method 107
event bubbling technique 140
EventName property 327
ExecuteNonQuery method 454
ExecuteReader method 450
domain models 33–34, 193, 449 EmployeeTerritories table 36 execution pipeline 58

INDEX468

extending 396–415
HttpModules class 397–402

intercepting and handling
mobile device
requests 400–402

modifying response flow
with 398–400

HttpRuntime element
407–415
running sites from

databases 407–415
logging and handling

errors 402–406
with custom modules

403–406
with Microsoft Enterprise

Library and log4net
library 403

extensibility 10
extensionless URLs 93
extensions

building in IIS 7.x 442–447
configuring application

warm-up 445–447
modifying behavior with

managed
modules 443–445

F

Facebook Connect 309
fetching, optimizing 69–70
FileAuthorizationModule 284
FileChangeMonitor 383
FileExists method 407, 411–412
FileResult, ASP.NET MVC 196
Filter property 418–419
filtering data 118–123

QueryExtender control
118–123
discussion 123
problem 118
solution 118
strings 122

filters
action 229–235
request 417–422

find method 333
fire-and-forget situation 437
First method 71
fixed extension 10
FlightPriceResult class 432
Flush method 418
for iteration 427

<form> tag 14
form validation, in Web

Forms 23–26
FormsAuthentication class

286–287, 314
FormsAuthentication

option 284–288
FormsAuthenticationTicket

class 285
FormsIdentity instance 286
FormView control 115–118, 126

discussion 118
problem 116
solution 116

formview 116
gridview 116–117
gridview and listview 116

full Provider Model 389
full trust permissions 407
Full.master master page 402
FullAddress property 33

G

GenericPrincipal class 286
GET field 271
Get method 451
GET requests 207
GetBrowserCapabilities

method 178
GetCacheDependency

method 411
GetCustomerById method 71
GetDirectory method 411
getElementById 331
GetElementById method 331
GetFile method 411
GetFileHash method 411
GetFlightPrice method 431
getInstance method 329
GetInvalidFileNameChars()

method, Path class 279
GetNullable method 451
GetObjectByKey method 71–72
GetOrdersAmount method 338
GetOutputCacheProviderName

method 394
GetPostedCategories

method 245
GetProfileData method 361
GetPropertyValues method 360
GetUser method 304
GetVirtualPath method 250,

global.asax file 11–12, 242, 247,
394, 407

granularity mismatches 35–36
GridView control

113, 115–118, 189
discussion 118
problem 116
solution

formview 116
gridview 116–117
gridview and listview 116

GROUP BY clause 45
GUID (globally unique

identifier) 262
gzip/deflate

implementation 417

H

Handler property 402
<head> tag 26
HeaderStyle property 176
helpers, HTML 226–229
HomepageModel class 192
HostFileChangeMonitor 384
href property 345
HTML (HyperText Markup

Language) helpers
componentized markup

through 226–229
discussion 229
problem 226
solution 226–229

HTML (HyperText Markup Lan-
guage), building request
filters to minify 417–422

HTML 5.0, support in
ASP.NET 79

HTML controls, for Web
Forms 14

<html> string 418
HTML template 328
HtmlAttributeEncode

method 275
HtmlEncode method 272, 275
HtmlHelper class 228
HtmlLink class 27
HtmlString class 228
HtmlTextWriter instance 137
HTTP 301 status code 254
HTTP logger 327
HTTP module 238, 240, 255
HTTP request 194, 200, 235
HttpApplication class 9, 283,
foreach cycle 363 252 399, 444

INDEX 469

HttpApplication event
handler 442

HttpApplication events 11
HttpApplication pool

configuration 397
HttpApplication, PostMap-

RequestHandler phase 94
HttpBrowserCapabilities

class 163
HttpCapabilitiesProvider

class 178
HttpContext class

Handler property 94
Items properties 56

HttpContext.Request
property 247

HttpEncoder class 277
HttpHandler 12
HttpHandler class 423
HTTPHandler class, building

to minify CSS 422–425
to minify JavaScript

language 425–426
HTTPHandlers 10–11
HttpHandlers 397
HttpModule 12, 368

how to register in
web.config 406

intercepting errors with 405
HttpModule class 58
HttpModules class 397–402

intercepting and handling
mobile device
requests 400–402

modifying response flow
with 398–400

removing unnecessary 439
HttpPostAttribute 211
HttpRequest class 354
HttpResponse class 370
HttpRuntime class 9
HttpRuntime element 407–415
HttpServerUtility class 272
HttpUtility class 272

I

IArticlePage interface 99
IAttributeAccessor

interface 165, 167
ICollection interface 105
ID attribute 13
IDataItemContainer

IDE (integrated development
environment) 4

Identity Map pattern 55, 73
identity theft 271
IDisposable interface 449
IEnumerable interface 105
IEnumerable source 154
IEnumerable type 243
IFlightPriceProvider

interface 431
IHasTagCloud interface

231, 233
IHtmlString interface 273
IHttpModule interface 397, 444
IIdentity 286, 294
IIS (Internet Information

Services) 4, 406, 441–447
building extensions 442–447

configuring application
warm-up 445–447

modifying IIS behavior with
managed
modules 443–445

new features 441
version 7.5 integration 20

IL (intermediate language) 17
IList interface 105
IModelBinder interface

237, 244
INamingContainer

interface 147, 154
Include method 69–70
incoming requests, filtering and

blocking 262–266
handling improper parame-

ter values 263–264
monitoring and blocking

bad 264–266
Index action 200
Index method 234
inherit, Page class 57
inheritance mismatches 36–37
inherits attribute 356
Init event 57
Init method 442
Init() member 397
InnerExceptions property 436
input

avoiding trusting 261
user 235–249

model binders 236–249
user handling and

displaying 271–274
<input> type 16

installing ASP.NET 4.0 4–5
int datatype 37
intermediate language. See IL
Internet Information Services.

See IIS
invisible command 321
IoC (Inversion of Control)

container 393
IParserAccessor interface 148
IPostBackEventHandler

interface 144
IPrincipal interface 286, 294
IProcessHostPreloadClient

interface 446
IQueryable 46, 133
IQueryableDataSource

interface 118
IRouteConstraint interface 100
IsInRole method 296
IsMobileDevice property 401
IsPostBack property 22
IsValid property 212
ITemplate interface 106
Items property 401
ItemStyle property 176
ItemTemplate 173

J

JavaScript language, building
HTTPHandler class to
minify 425–426

JavaScriptEncode method 275
JavaScriptResult, ASP.NET

MVC 196
JavaServer Pages 189
jQuery 330–347

and DOM
manipulating 334–335
querying 331–333

and jQueryUI 342–347
handling page loaded

event 334
invoking MVC actions

with 341–342
invoking page methods

with 339–341
invoking REST services

with 336–339
managing object events

335–336
jQueryUI 342–347
.js extension 425
interface 107 inputFile variable 43 JsonResult, ASP.NET MVC 196

INDEX470

L

LabelFor helper 210
lambda expression 63, 460
Language Integrated Query. See

LINQ
last node 335
layered architecture

188, 190–191
LayoutTemplate property 82
lazy loading feature 65, 69–70
li tags 332, 335, 344
LIKE clause 270
LINQ (Language Integrated

Query) 18
LINQ to Entities 70–71, 193
LINQ to SQL 123
LINQ to XML 458
LinqDataSource namespace 118
LinqDataSource. See data source

controls
List class 71
ListControl class 166
ListView control

82, 115–118, 126
discussion 118
displaying data using 109–110
problem 116
solution 116–117

Literal control 13, 16
LoadTagCloud attribute 234
LoadViewState event 350
Location attribute,

OutCache 369
log4net library 403
logging errors 402–406

with custom modules
403–406

with Microsoft Enterprise
Library and log4net
library 403

logic, injecting using action
filters 229–235

discussion 234–235
problem 231
solution 231–234

login
role-enabled, implementing

using Roles API 294–297
user, implementing using

Membership API 289–293
Login helper 228
LoginInput method 228
loginInput parameters 229

LoginStatus control 293
LoginView control 293, 295, 297
LogParser tool 265

M

machine.config file 9, 11
MailMessage class 406
Main.master master page 402
malicious requests 262
managed modules, modifying

IIS 7.x behavior with
443–445

MapHandler event 93
mark entity 61
mark properties, as modified 61
markup 162–183

adaptive rendering of
163–177
and Control Adapter

Toolkit 177
and mobile controls 177
using control

adapters 164–177
browser support in ASP.NET

4.0 177–183
building custom browser

capabilities
provider 178–181

validating pages with W3C
validator 182–183

componentized, through
HTML helpers 226–229

markup generation 81–83
master pages 198, 222, 227, 400

setting programmatically
88–91

using nested 86–88
MasterPageFile attribute 85
MasterPageFile property 88
Match method 100
maxDate parameter 343
Membership API (application

programming
interface) 288–293

implementing user login
using 289–293
discussion 293
recovering or changing

password 292–293
registering new user

291–292
security controls 293

provider for 300–309

MembershipProvider class
289, 300–301

MemCached 388
MemoryCache 393
MemoryCache class 382
MergeOption property 73
metadata 127–131, 225

discussion 130–131
display

changing format of
129–130

changing name of 130
display, changing behavior

of 127–129
hiding tables and

columns 130
problem 127
solution 127

Metadata Artifact Processing
property 41

metadata class 214
MetadataType attribute 128, 215
MethodExpression controls 121
methods, using one context

per 53–54
discussion 54
problem 53
solution 53–54

Microsoft
Access, parameterized que-

ries with 268–269
Ajax Minifier 426
Anti-XSS Library 275–278

discussion 277–278
problem 275
solution 275–277

Windows Live ID authentica-
tion service 309–315

Windows Server AppFabric
session provider 353–354

Microsoft Developer Network
(MSDN) 12

Microsoft Enterprise Library,
logging errors with 403

Microsoft Entity Framework
30–51

creating models using 38–41
designing applications 31–34
generating POCO code

41–43
reading data using 43–48
using ORM framework to

build data layer 35–37

LoginName control 293 Membership class 289, 291–292 writing data using 48–51

INDEX 471

Microsoft Office SharePoint
Server (MOSS) 407

Microsoft.Application-
Server.Caching.Client
assembly 389

Microsoft.Application-
Server.Caching.Core
assembly 389

minDate parameter 343
minifying increasing download

performance by 417–426
building HTTPHandler

class 422–426
building request filter to

minify HTML 417–422
mismatches

granularity 35–36
inheritance 36–37
relationship 36

Mobile.master master page 402
modal property 345
mode attribute 353
model binders 235

building new from
scratch 243–249
discussion 249
problem 244
solution 244–248

custom for domain
entities 236–243
discussion 242–243
problem 237
solution 237–242

Model component, MVC 190
ModelBindingContext

parameter 238
models

creating using Microsoft
Entity Framework 38–41

in ASP.NET MVC 191–194
Models list 324
ModelState.IsValid property 215
modifications

persisting 60–61
persisting selected properties

of entities 61–64
modules

custom
logging errors with

403–406
instantiating context

using 58–59
managed

modifying IIS 7.x behavior

Monitor class 429
MOSS (Microsoft Office Share-

Point Server) 407
MSDN (Microsoft Developer

Network) 12
multiple query 71
multithreading

fire-and-forget with 437
reducing computing time

with 426–438
multithreading

environment 384
MVC (Model-View-Controller)

customization 219–256
building reusable elements

in 220–235
componentized markup

through HTML
helpers 226–229

injecting logic using action
filters 229–235

templates 220–226
improving routing of 249–256
user input handling 235–249

MvcContrib project 207, 380
MySQL database, parameter-

ized queries with 268–269

N

navigation property 69
NCache 388
nesting master pages 86–88

discussion 88
problem 86
solution 86–88

.NET Framework 4.0 17–18
NewComment.ascx 208
Node1 element 333
Node2 element 333
Northwind database 32, 38
NotImplementException

305, 308
numberOfMonths property 344

O

object events, handling with
jQuery 335–336

object models 9, 32–33
connecting classes to each

other 33

domain models 33–34
property joining 32

object-oriented programming
(OOP) 5

Object-Relational Mapping
(ORM) 8, 17, 35–37

ObjectCache class 382
ObjectContext class 53, 55, 71

Attach method 63
ContextOptions.ProxyCre-

ationEnabled property 65
SaveChanges method 63

ObjectQuery class 70
ObjectSet class 69–70
ObjectStateManager class 55

ChangeObjectState
method 61

SetModifiedProperty
method 63

OnActionExecuted
method 231–233

OnActionExecuting
method 231

onclick event 336
OnResultExecuted method 231
OnResultExecuting

method 231–233, 375
OOP (object-oriented

programming) 5
Open method 449
OpenID 309
OperationContract

attribute 338
<optgroup> tag 168
optimistic concurrency 67
OptimisticConcurrency-

Exception class 68
optimizing web.config files

438–440
removing session state 439
removing unnecessary Http-

Modules classes 439
OptionGroups, adding to

DropDownList 164–170
Oracle database 268–269, 299
Order class 31, 33, 35, 38–40
Order Detail class 31, 33, 38
Order Details table 38
Order_Detail property 69
Order_Details property 33, 69
OrderBy method 46, 460
OrderDTO class 47
Orders property 36, 39
with 443–445 data validation 32 Orders table 36, 38, 40

INDEX472

ORM (Object-Relational
Mapping) 8, 17, 35–37

OutputCache 368–371
configuring with code 370
custom OutputCache

provider 393–395
dependencies 369–370
in ASP.NET MVC 371–381

and partial views 378–381
removing items from

372–378
in user control 369
profiles in web.config

370–371
OutputCache attribute 378
@OutputCache directive

370–371
OutputCache directive 369
OutputCacheAttribute 371, 379
OutputCacheModule 368
OutputStream property 418

P

page adapter 165
Page class 22, 57
page class 340
page compilation 7
@Page directive 85, 273
page events, for Web Forms

14–15
page header, modifying at

runtime 26–29
programmatically setting

values 26–27
registering CSS attributes 27
registering RSS feeds 27–28

page loaded event, handling
with jQuery 334

page methods, invoking with
jQuery 339–341

Page Parser, ASP.NET
10, 13, 138

page rendering, and Web
Forms 15

Page_Init event 15
Page_Load event 15
Page_LoadComplete event 15
Page_PreRender event 15
Page.Description property 26
Page.GetRouteUrl method 100
Page.Header property 27

Page.Keywords property 26
Page.MasterPageFile

property 402
Page.RouteData property 95
PageRequestManager class 329
PageRouteHandler class 95
parallel execution 426
Parallel.Invoke method 436
ParallelFX framework, reducing

computing time using
435–438

parameterized queries
with Microsoft Access, Oracle

database, and MySQL
database 268–269

parameters
handling improper

values 263–264
using to handle SQL 267–269

discussion 269
problem 267
solution 267–268
with Microsoft Access,

Oracle database, and
MySQL database
268–269

parametric query 360
ParseChildrenAttribute

attribute 148
partial rendering 325
partial views 229, 378–381
Password property 65
PasswordRecovery control 292
passwords, recovering or

changing 292–293
path canonicalization 262
Path class, System.IO

namespace 279
paths, canonicalization

vulnerabilities 278–281
per-application state,

caching 367–368
per-request state 349–351

Context.Items container 351
ViewStateMode

property 350–351
per-session state 351–354

cookies 354
Microsoft Windows Server

AppFabric session
provider 353–354

session compression 353
performance 416–440

download, increasing by
minifying 417–426

improving 73
optimizing 69–74

avoiding multiple query
execution 70–71

disabling change
tracking 73–74

fetching 69–70
queries retrieving a single

element 71–73
optimizing web.config

files 438–440
removing session state 439
removing unnecessary Http-

Modules classes 439
reducing computing time with

multithreading 426–438
using ParallelFX

framework 435–438
PersistenceModeAttribute

attribute 149
persisting

entity modifications 60–61
of entities using ViewState

object 65–66
selected properties of modi-

fied entity 61–64
persisting data into

databases 453–456
discussion 455–456
problem 453
solution 453–455

personalized error page 261
pessimistic concurrency 67
PhysicalPath property 423
pipeline, for ASP.NET 4.0 12
POCO (Plain Old CLR

Object) 114
generating 41–43

discussion 43
problem 42
solution 42–43

Portable Areas 207
Post arguments 211
Post class 242
POST field 271
Post.aspx view 207–208
PostAuthenticateRequest

event 294
PostBack 20–23, 325–326

and container controls 21–23
showing wait message

during 328–330

Page.Header, Page class 26 degradation of 66 using 16–17, 20–21

INDEX 473

PostBack events, handling
144–146

discussion 146
problem 144
solution 144–146

PostBacks 14, 16–17
PostBackTrigger type 327
preCondition attribute 397
PreInit event 85, 89
PreLoad method 447
PreRequestHandlerExecute

event 418
Presentation Layer 10, 188, 193
PriceEngine class 432
principal of least privilege 261
Product class 31, 33, 38, 44
Product property 33
Products table 38
Profile API 355–359

custom provider for 359–365
profile 360–364
registering 364

discussion 359
problem 355
properties

adding 355–356
retrieving and saving

356–358
property groups 357
solution 355
and web projects 358–359
web projects 356

Profile class 356
Profile property 356
ProfileBase 356, 358
ProfileCommon type 358
ProfileProvider class 360
profiles

loading 360–362
saving 362–364

programming setting master
pages 88–91

discussion 91
problem 88
solution 88–91

properties
as inner tags 149
marking as modified 61

property joining 32
Provider Model pattern

178, 288
providers, custom 298–315

for Profile API 359–365
Membership and Role

300–309
Microsoft Windows Live ID

authentication service
309–315

proxy
disabling creation 65
returning 65
serialized into ViewState 65

Q

queries
avoiding multiple execution

of 70–71
dynamic with multiple

values 269–271
retrieving a single

element 71–73
using parameters to handle

SQL 267–269
query string 369
QueryableFilterUserControl

133
QueryExtender control

118–123
discussion 123
filtering

basic 118–119
using a range 120
using custom

methods 121–122
using properties 120

problem 118
solution 118
strings 122

querying databases 449–452
discussion 452
problem 449
solution 449–452
using stored procedures

452–453
QueueUserWorkItem

method 428

R

RaisePostBackEvent method. See
IPostBackEventHandler

range filters 120
RangeValidator control 24

reading data, using Microsoft
Entity Framework 43–48

discussion 48
problem 43
solution 43–47

RedirectFromLoginPage
method 286

redirectMode attribute 102
RedirectPermanent

method 254
RedirectResult 196, 233
RedirectToRouteResult 196
Regions drop-down list 327
Regions list 324
Regions_Changed event

handler 324
@Register 139
RegisterAllAreas method 207
RegisterArea member 206
RegisterDataItem method 329
registering

controls 138–139
custom providers 364
new users 291–292

regular expressions 425
RegularExpression

attribute 214
RegularExpressionValidator

control 24
rel attribute 28
relationship mismatches 36
remove element 335
<remove> tag 439
removeAttr method 334
RemovedCallback property 384
RemovedCallbacks 386
Render method 15, 79, 164
RenderAction helper 379
RenderBeginTag method 176
RenderContents method 166
RenderEndTab method 176
RenderItem method 172
RenderOuterTable attribute 81
RenderPartial method 199
RepeatColumns property 170
RepeatDirection property 170
RepeatDirection value 172
Repeater control, displaying

data using 106–109
discussion 109
problem 106
solution 106–109

repository 56

for databases 298–300 Razor 372 Repository pattern 8

INDEX474

requests
filtering and blocking

incoming 262–266
handling improper parame-

ter values 263–264
monitoring and blocking

bad 264–266
RequiredFieldValidator

control 24
Response

RedirectPermanent
namespace 103

RedirectToRoute method 100
RedirectToRoutePermanent

method 100
REST services, invoking with

jQuery 336–339
RESTful (Representational State

Transfer-compliant)
schema 201

RestService class 337
RestService.cs|vb file 337
results.aspx page 432
ReturnUrl parameter 287
reusable elements 220–235

componentized markup
through HTML
helpers 226–229
discussion 229
problem 226
solution 226–229

injecting logic using action
filters 229–235
discussion 234–235
problem 231
solution 231–234

templates
customized data 221–226
using to represent

data 220–221
rewriting URLs 92

differences between routing
and 92

vs. routing 92–93
RIA (Rich Internet Application).

See Ajax
role-enabled login, implement-

ing using Roles API 294–
297

RoleManager module 294
RoleManagerModule 294
RolePrincipal instance 294
RoleProvider class 295, 300

Roles API (application program-
ming interface)

implementing role-enabled
login using 294–297

provider for 300–309
Rollback method 454–455
rollbacks 454
Root property 460
Route class 252
RouteData property 99
RouteHandler 95
RouteLink 204, 250, 255
Routes property 94
routes.MapRoute method 202
RouteTable class 94
RouteValueDictionary 94
routing

improving 249–256
in ASP.NET MVC 200–207

concepts of 200–204
using areas with 204–207

URLs 92
advanced scenarios 97–101
differences between rewrit-

ing and 92–93
rewriting vs. 92–93

routing.IgnoreRoute
method 202

RSS (Really Simple Syndica-
tion) feeds, registering in
header at runtime 27–28

Ruby on Rails 189
runAllManagedModulesForAll-

Requests property 397
runat attribute 13–14
runtime, modifying page header

at 26–29
programmatically setting

values 26–27
registering CSS attributes 27
registering RSS feeds 27–28

S

salts 65
Save method 458
SaveChanges method 48–50,

62–63, 238
SaveViewState event 350
saving data. See also persisting

data
ScaffoldAllTables property 125
ScaleOut 388
scripting cross-site. See XSS

ScriptManager control 323, 325
SDK (software development

kit) 4
search engine optimization

(SEO) 91
SearchExpression control 122
security 259–281

avoiding disclosing
details 261

avoiding trusting input 261
feature 261
filtering and blocking incom-

ing requests 262–266
handling improper parame-

ter values 263–264
monitoring and blocking

bad 264–266
finding bugs 262
path canonicalization

vulnerabilities 278–281
principal of least

privilege 261
protecting applications from

SQL injection 266–271
using common sense 262
XSS 271–278

handling and displaying
user input 271

using Microsoft Anti-XSS
Library 275–278

security controls 293
security ticket 285
Select method 47
<select> tag 269
SelectedIndexChanged

event 324
SelectMany method 306–307
SEO (search engine

optimization) 91
SeparatorItemTemplate

template 170
serialize entity 65
serializeAs attribute 356
Server AppFabric session

provider, Microsoft
Windows 353–354

Server components, Ajax 323
server controls 6

for Web Forms 13–14
HTML controls 14
using 15–17
WEB controls 14

Server disk access 260

Roles API 294–297, 404 ScriptManager class 329 Server property 272

INDEX 475

ServiceContract (System.Service-
Model namespace)
attribute 338

session spoofing 271
session state 352, 439
SessionEnd event 352
sessions

compression 353
providers for 353–354

SessionStart event 352
SetAuthCookie () method 287
SetFocusOnError property 24
SetModifiedProperty

method 63
SettingsPropertyValue-

Collection class 360
Shared attribute,

OutputCache 369
ShowMessageBox property 25
SignOut method 287
Site defacement or

alteration 260
sites, running from

databases 407–415
Skip method 46
Smalltalk 189
software developement kit

(SDK) 4
sorting data, QueryExtender

control 118–123
discussion 123
problem 118
solution 118
strings 122

source parameter 343
spaghetti code 7
 tag 80
Spark view engine 372
SpecialProduct class 44
SQL (Structured Query Lan-

guage)
injection, protecting applica-

tions from 266–271
using parameters to

handle 267–269
discussion 269
problem 267
solution 267–268
with Microsoft Access,

Oracle database, and
MySQL database
268–269

SQL injection 262

SQL Server database 298
SQL statements 452
SqlChangeMonitor 383
SqlCommand class

450, 452, 454
SqlConnection class 449, 454
SqlDataReader class 450–451
SqlDependency property 369
SqlMembershipProvider 290
SqlMembershipProvider

class 289, 298
SqlParameter class 267
SqlRoleProvider class 295, 298
SqlServerProfile 355
SqlTransaction class 454
SRE (Security Runtime

Engine) 275
Start method 428
state 348–365

advanced user 354–365
handling 349–354

basic concepts 349
per-request state 349–351
per-session state 351–354

status code 400 265
status code 404 265
status code 500 265
StatusCode property 399
stored procedure 452
stored procedures, querying

databases using 452–453
discussion 453
problem 452
solution 452–453

Strategy pattern 288
Stream 418
strings 122
Structured Query Language. See

SQL
stub entity

creating 61
defined 63

Substitution control 371
success parameter 339
Sys.Application class 330
System.Configuration

namespace 12
System.Data.SqlCient

namespace 360
System.Data.SqlClient

namespace 449
System.IO namespace 279, 418
System.IO.Compression.GZip-

System.IO.Path class 280
System.Net.Mail 406
System.Runtime.Caching

namespace 382
System.ServiceModel

namespace 338
System.Threading

namespace 428
System.Threading.Tasks

namespace 436
System.Web namespace

272, 397
System.Web.DynamicData.Field-

TemplateUserControl
class 132

System.Web.Hosting
namespace 407, 446

System.Web.Profile
namespace 356

System.Web.Routing
namespace 94

System.Web.Routing.dll
assembly 92

System.Web.Security
namespace 285, 298

System.Web.UI.Adapters.Control
Adapter 165

System.Web.UI.Control 350
System.Web.UI.ControlBuilder

class 157
System.Web.UI.HtmlControls

namespace 14
System.Web.UI.WebControls.

Adapters.WebControl-
Adapter 165

System.Web.UI.WebControls.
CompositeControl
class 140

System.Web.UI.WebControls.
CompositeDataBound-
Controls 154

System.Web.Util namespace 277
System.Web.Util.Request-

Validator class 272
system.WebServer node 397

T

<table> tags 81
table-per-concrete (TPC) 37
table-per-hierarchy (TPH) 37
table-per-type (TPT) 37
tables, hiding 130
SQL Server 369, 383 Stream class 353 <tag> syntax 335

INDEX476

TagBuilder object 229
TagCloudItems property 231
TagPrefix attribute 139
tags, properties as inner 149
Take method 46
Task Parallel Library (TPL),

ParallelFX 435
TemplateContainerAttribute

attribute 150
templated controls

136, 149–153, 170
discussion 153
problem 150
solution 150–153

templates 127–131
custom 132–133
customized data 221–226

discussion 225–226
problem 221
solution 221–225

discussion 130–131
display

changing behavior of
127–129

changing format of
129–130

changing name of 130
hiding tables and

columns 130
problem 127
solution 127
using to represent data

220–221
termination of URL

consistent 249–256
discussion 255–256
problem 249
solution 250–255

Territories drop-down list 327
Territories table 36
Text property 13, 24
TextBox control 16
TextBox helper 224
Thread class 428
thread synchronization 428
thread-safe collections 434, 438
thread-safety 429
Thread.Sleep method 431
ThreadPool class 428, 435
three-layer architecture 7–9
three-layer model 8
timeout attribute 285
Timestamp/RowVersion type 67

TPC (table-per-concrete) 37
TPH (table-per-hierarchy) 37
TPL (task Parallel Library),

ParallelFX 435
TPT (table-per-type) 37
tracking changes, disabling

73–74
discussion 73–74
problem 73
solution 73

transactions 453–455
tree element 333
treeview node 335
Triggers collection 328
triggers, using with Ajax

326–327
try block 455
TryGetObjectByKey method 72
TryParse method 263
TrySkipIisCustomErrors

property 406
TryUpdateModel method 236

U

UI (user interface) 9, 77–103
and Web Forms 78–85

better markup
generation 81–83

controlling ClientID
generation 83–85

new features 79–80
defining common, using

master pages 85–91
URLs 91–103

rewriting vs. routing 92–93
rewriting with UrlRewrit-

ing.NET library
101–103

routing 93–101
UIHintAttribute 129, 132, 224
ul tag 332
Uniform Resource Locators. See

URLs
Unload event 57
UPDATE statement 67
UpdateCallback property 384
UpdateMode property 328
UpdatePanel class 328
UpdatePanel control 323–328
UpdateProgress control 328
url parameter 340
UrlAuthorization option

UrlAuthorizationModule
287, 398

UrlEncode method 275
UrlHelper class 229
UrlRewriting.NET library

rewriting URLs with 101–103
discussion 103
problem 101
solution 101–103

URLs (Uniform Resource
Locators) 91–103

consistent termination
of 249–256
discussion 255–256
problem 249
solution 250–255

rewriting vs. routing 92–93
differences between 92–93
rewriting 92
routing 92

rewriting with UrlRewrit-
ing.NET library 101–103
discussion 103
problem 101
solution 101–103

routing
advanced scenarios 97–101
with Web Forms 93–96

routing extensionless 93
usability, improving with

Ajax 320–322
user control, OutputCache

in 137, 369
user input handling 235–249

model binders
building new from

scratch 243–249
custom for domain

entities 236–243
user input, in ASP.NET

MVC 207–218
handling at controller

level 207–212
validating data 212–218

user interface. See UI 103
User property 286, 294
user-request/server-response

model 321
users

login, implementing using
Membership API 289–293

registering new 291–292

title property 345–346 284–288 using block 449

INDEX 477

V

validateIntegratedModeConfigu
ration 397

ValidateRequest property 273
validation

data 32, 212–218
Dynamic Data controls

131–132
pages 182–183
See also form validation

ValidationGroup property 24
ValidationMessageFor

helper 210
ValidationSummary control 24
validator controls 24
value providers 247
varchar datatype 37
VaryByContentEncoding

property 369
VaryByControl property

369, 371
VaryByCustom parameter 378
VaryByCustom property 369
VaryByHeader property 369
VaryByParam property 369
VB (Visual Basic) 6 3
Velocity 388
Version column 68
View component, MVC 190
ViewData dictionary 233
ViewResult, ASP.NET MVC 196
views, in ASP.NET MVC

197–200
ViewState

encrypting 66
flexible 19
persisting of entities

using 65–66
discussion 66
problem 65
solution 65–66

using 16–17
ViewStateMode property

350–351
VirtualDirectory class 407
VirtualFile class 407
VirtualPathProvider class

407, 411, 413
VirtualPathUtility class 252
VirtualPathUtility.ToApp-

Relative method 412

Visual Basic (VB) 6 3
Visual Studio 2010 4, 190–191
Visual Web Developer Express 4
VisualBasicScriptEncode

method 275
vulnerabilities of path

canonicalization 278–281

W

W3C (World Wide Web
Consortium) 181

W3C validator 182–183
wait message 328–330
WaitHandle class 428
warm-up, application 445, 447
WCF (Windows Communica-

tion Foundation) 17
WEB controls for Web Forms 14
Web Form model 5
Web Forms 5, 13–17, 20–29

and page rendering 15
and UI 78–85

better markup
generation 81–83

controlling ClientID
generation 83–85

new features 79–80
form validation in 23–26
page events for 14–15
page header modification at

runtime 26–29
programmatically setting

values 26–27
registering CSS

attributes 27
registering RSS feeds 27–28

PostBack 20–23
and container controls

21–23
using 16–17, 20–21

routing URLs with
discussion 96
problem 93–94
solution 94–96

server controls for 13–14
HTML controls 14
using 15–17
WEB controls 14

ViewState 16–17
web projects, Profile API

web standards, ASP.NET
adherence to 80

web.config 11–12, 272, 393, 400,
404, 448

configurationsystem.web-
authorization section 286

configurationsystem.webforms-
Authentication section 285

optimizing 438–440
removing session state 439
removing unnecessary Http-

Modules classes 439
OutputCache in 370–371

WEB.Config minification 19
web.config transformation 439
WebMethod attribute 339
What You See Is What You Get

(WYSIWYG) editor 133
WHERE clause 67
Windows Authentication 399
Windows Communication Foun-

dation (WCF) 17
Windows Presentation

Foundation (WPF) 18
Windows Server AppFabric

caching. See AppFabric
Windows Server AppFabric

session provider,
Microsoft 353–354

WindowsAuthentication
option 284

WindowsLiveLogin class 311
WindowsTokenRoleProvider

295
Wizard control 82
worker thread 428
WPF (Windows Presentation

Foundation) 18
Write method 418
writing data, using Microsoft

Entity Framework 48–51
discussion 50–51
problem 48
solution 48–50

WYSIWYG (What You See Is
What You Get) editor 133

X

XAttribute class 457
XComment class 457
XDeclaration class 457
Visible property 22 and 358–359 XDocument class 457–458, 460

INDEX478

XElement class 457–458, 460
XML 448, 456–461

generating from data
source 458–459

XML (continued)
reading 459–461
writing 456–458

XmlAttributeEncode

XmlEncode method 275
XMLHTTP component

321–322
xp_cmdshell procedure 267
XPath expression 461
XSS (cross-site scripting)

199, 259, 262, 271–278
handling and displaying user

discussion 274
problem 271
solution 271–274

using Microsoft Anti-XSS
Library 275–278
discussion 277–278
problem 275
method 275 input 271 solution 275–277

A
SP.NET is a massive framework that requires a large amount
of know-how from developers. Fortunately, this book distills
over 100 practical ASP.NET techniques from the experience of

a team of MVPs, and puts them right at your fi ngertips.

Th e techniques are tested and selected for their usefulness, and
they are all presented in a simple problem-solution-discussion
format. You’ll discover methods for key new subjects like data
integration with Entity Framework and ASP.NET MVC. Along the
way, you’ll also fi nd ways to make your applications fast and secure.

What’s Inside
Th e Identity Map pattern in EF 4
Use Master Pages to defi ne a common UI
Adaptive Rendering
Save user login data securely
 … and much more

Th is book is written for developers familiar with the basics of ASP
.NET, looking to become more productive with it.

Daniele Bochicchio, Stefano Mostarda, and Marco De Sanctis are ASP
.NET MVPs and core members of ASPItalia.com, Italy ’s largest
.NET community. Th ey are also the authors of Manning’s Entity
Framework 4 in Action.

For access to the book’s forum and a free ebook for owners of this
book, go to www.manning.com/ASP.NET4.0inPractice

$54.99 / Can $63.99 [INCLUDING eBOOK]

.NET DEVELOPMENT

M A N N I N G

SEE INSERT

“Th e right book to
 sharpen your
 ASP.NET skills.”
—Alessandro Gallo
 Microsoft MVP

“Easy to read, full of
 extremely helpful
 techniques.”
—David Barkol, Neudesic

“A great way to learn an
 exciting new technology.”
—Gary A. Bushey
 ShareTech Consulting

“Get up to speed in no
 time.”
—Nikander and Margriet
 Bruggeman
 Lois & Clark IT Services

Bochicchio Mostarda De Sanctis
ASP.NET 4.0 IN PRACTICE

	ASP.NET 4.0 in Practice
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Part 1: ASP.NET fundamentals
	Part 2: ASP.NET Web Forms
	Part 3: ASP.NET MVC
	Part 4: Security
	Part 5: Advanced topics

	Code conventions and downloads
	Author Online

	about the authors
	about the cover illustration
	Part 1: ASP.NET Fundamentals
	Getting acquainted with ASP.NET 4.0
	1.1 Meet ASP.NET
	1.1.1 Installing ASP.NET
	1.1.2 How ASP.NET works
	1.1.3 Getting started

	1.2 Typical architecture in ASP.NET applications
	1.2.1 ASP.NET meets OOP
	1.2.2 ASP.NET components
	1.2.3 Global.asax and web.config
	1.2.4 The ASP.NET pipeline

	1.3 Your first ASP.NET Web Form
	1.3.1 Server controls
	1.3.2 Page events
	1.3.3 Using server controls

	1.4 What’s new in ASP.NET 4.0
	1.4.1 .NET Framework 4.0
	1.4.2 A panoramic overview of ASP.NET 4.0 features

	1.5 ASP.NET Web Forms in practice
	Technique 1: Handling PostBack
	Technique 2: Form validation
	Technique 3: Page header, styling, and CSS

	1.6 Summary

	Data access reloaded: Entity Framework
	2.1 Designing an application
	2.1.1 What’s an object model?
	2.1.2 The evolution of the object model: the domain model

	2.2 Using an ORM to build a data layer
	2.2.1 The granularity mismatch
	2.2.2 The relationship mismatch
	2.2.3 The inheritance mismatch

	2.3 Introducing Entity Framework
	Technique 4: Creating a model using Entity Framework
	Technique 5: Generating POCO code
	Technique 6: Reading data using Entity Framework
	Technique 7: Writing data using Entity Framework

	2.4 Summary

	Integrating Entity Framework and ASP.NET
	3.1 Understanding context lifetime
	Technique 8: First approach: one context per method
	Technique 9: A better approach: one context per ASP.NET request
	Technique 10: Instantiating the context using modules

	3.2 Using the context the right way
	Technique 11: Persisting entity modifications
	Technique 12: Persisting only selected properties
	Technique 13: Persisting an entity using ViewState
	Technique 14: Keep concurrency in mind

	3.3 Optimizing performance in an ASP.NET environment
	Technique 15: Optimizing fetching
	Technique 16: Avoiding multiple query execution
	Technique 17: Optimizing queries that retrieve a single element
	Technique 18: Disabling change tracking

	3.4 Summary

	Part 2: ASP.NET Web Forms
	Building the user interface with ASP.NET Web Forms
	4.1 The UI and Web Forms
	4.1.1 New features in Web Forms 4.0
	Technique 19: Better markup generation in ASP.NET 4.0
	Technique 20: Controlling ClientID generation

	4.2 Defining a common UI: using master pages
	Technique 21: Using nested master pages
	Technique 22: Setting a master page programmatically

	4.3 URL rewriting and routing with ASP.NET
	4.3.1 URL rewriting versus URL routing
	Technique 23: URL routing with Web Forms
	Technique 24: Advanced URL routing scenarios
	Technique 25: Rewriting in practice: UrlRewriting.NET

	4.4 Summary

	Data binding in ASP.NET Web Forms
	5.1 Displaying data
	Technique 26: How to display data using Repeater
	Technique 27: ListView in ASP.NET 4.0

	5.2 Modifying data
	Technique 28: Using data source controls
	Technique 29: EntityDataSource and Entity Framework
	Technique 30: What’s new in GridView, FormView, and ListView

	5.3 Filtering and sorting data
	Technique 31: The QueryExtender control

	5.4 Working with Dynamic Data controls
	Technique 32: The first application
	Technique 33: Working with metadata and templates
	Technique 34: Extending Dynamic Data

	5.5 Summary

	Custom controls
	6.1 The basics of custom controls
	Technique 35: Simple controls
	Technique 36: Composite controls
	Technique 37: Handling PostBack

	6.2 Complex controls
	Technique 38: Container controls
	Technique 39: Templated controls
	Technique 40: Data binding in custom controls

	6.3 Advanced controls
	Technique 41: Control builders

	6.4 Summary

	Taking control of markup
	7.1 ASP.NET adaptive rendering
	Technique 42: Add OptionGroups to DropDownList
	Technique 43: Build a table-less control adapter for the DataList
	7.1.1 Mobile controls and the Control Adapter Toolkit

	7.2 ASP.NET 4.0 browser capabilities
	Technique 44: Building a custom browser capabilities provider
	Technique 45: Validating ASP.NET pages with the W3C validator

	7.3 Summary

	Part 3: ASP.NET MVC
	Introducing ASP.NET MVC
	8.1 A new way to build web applications
	8.1.1 The Model-View-Controller pattern

	8.2 Your first experience with ASP.NET MVC
	Technique 46: The model
	Technique 47: The controller
	Technique 48: The view

	8.3 Routing in ASP.NET MVC
	8.3.1 Basic routing concepts in ASP.NET MVC
	Technique 49: Partitioning using Areas

	8.4 Accepting user input
	Technique 50: Handling user input at the controller level
	Technique 51: Validating posted data

	8.5 Summary

	Customizing and extending ASP.NET MVC
	9.1 Building reusable elements in ASP.NET MVC
	9.1.1 Using templates to represent data
	Technique 52: Building customized data templates
	Technique 53: Componentized markup through HTML helpers
	Technique 54: Inject logic using action filters

	9.2 User input handling made smart
	Technique 55: Custom model binders for domain entities
	Technique 56: Building a new model binder from scratch

	9.3 Improving ASP.NET MVC routing
	Technique 57: Routes with consistent URL termination

	9.4 Summary

	Part 4: Security
	ASP.NET security
	10.1 What is security in ASP.NET applications?
	10.2 Filtering and blocking incoming requests
	Technique 58: Handling improper parameter values
	Technique 59: Monitoring and blocking bad requests

	10.3 Protecting applications from SQL injection
	Technique 60: Handling SQL queries using parameters
	Technique 61: Dynamic queries with multiple values

	10.4 Dealing with XSS (cross-site scripting)
	Technique 62: Handling and displaying user input
	Technique 63: Using Microsoft’s Anti-XSS Library

	10.5 Controlling path composition: path canonicalization vulnerabilities
	Technique 64: Dynamically building a path

	10.6 Summary

	ASP.NET authentication and authorization
	11.1 Authentication and authorization basics
	Technique 65: Using FormsAuthentication and UrlAuthorization

	11.2 Handling user authentication: introducing the Membership API
	Technique 66: Implementing a user login using the Membership API

	11.3 Adding support to roles using the Roles API
	Technique 67: Implementing a role-enabled login using Roles API

	11.4 Custom providers for the Membership and Roles APIs
	Technique 68: Other providers
	Technique 69: Building custom Membership and Role providers
	Technique 70: Integrating Windows Live ID with your application

	11.5 Summary

	Part 5: Advanced topics
	Ajax and RIAs with ASP.NET 4.0
	12.1 Understanding Ajax
	12.1.1 How Ajax improves usability
	12.1.2 How Ajax works

	12.2 Working with ASP.NET Ajax
	Technique 71: Creating a classic page
	Technique 72: Ajaxize a page using the update panel
	Technique 73: Optimizing UpdatePanel using triggers
	Technique 74: Optimizing a page with multiple UpdatePanels
	Technique 75: Intercepting client-side pipeline

	12.3 Focusing on the client: jQuery
	12.3.1 jQuery Basics
	Technique 76: Invoking REST web services with jQuery
	Technique 77: Invoking page methods with jQuery
	Technique 78: Invoking MVC actions with jQuery
	Technique 79: Enriching the interface via jQueryUI

	12.4 Summary

	State
	13.1 Handling state
	13.1.1 What is state?
	Technique 80: Per-request state
	Technique 81: Per-session state

	13.2 Advanced user state
	Technique 82: Using the Profile API
	Technique 83: A custom provider for the Profile API

	13.3 Summary

	Caching in ASP.NET
	14.1 Per-application state: Cache
	14.2 Using OutputCache
	Technique 84: Leveraging OutputCache to speed up your pages

	14.3 OutputCache in ASP.NET MVC
	Technique 85: Deterministically removing items from OutputCache
	Technique 86: OutputCache and partial views

	14.4 Data caching techniques
	14.4.1 Cache tips and tricks
	Technique 87: Implementing data caching in ASP.NET

	14.5 Building custom cache providers
	14.5.1 Do I need a provider?
	14.5.2 Windows Server AppFabric caching
	Technique 88: Custom cache provider
	Technique 89: Custom OutputCache provider

	14.6 Summary

	Extreme ASP.NET 4.0
	15.1 Using HttpModules
	Technique 90: Modifying the response flow with HttpModules
	Technique 91: Intercepting and handling mobile device requests

	15.2 Logging and handling errors
	15.2.1 Error logging with Enterprise Library and log4net
	Technique 92: Intercepting, and handling errors with a custom module

	15.3 Extending ASP.NET HttpRuntime
	Technique 93: Running your site from the database

	15.4 Summary

	Performance and optimizations
	16.1 Increasing download performance by minifying
	Technique 94: Building a request filter to minify HTML
	Technique 95: Building an HTTPHandler to minify CSS
	Technique 96: Building an HTTPHandler to minify JavaScript

	16.2 Reducing computing time with multithreading
	Technique 97: Increasing performance with multithreading
	Technique 98: Using ParallelFX

	16.3 Optimize your web.config
	Technique 99: Tips for your web.config

	16.4 Summary

	appendix A: ASP.NET and IIS 7.x
	A.1 What’s new in IIS 7.5
	A.2 Building extensions
	Technique 100: Modifying IIS behavior with managed modules
	Technique 101: Configuring application warm-up in IIS 7.5

	A.3 Summary

	appendix B: Data access fundamentals
	B.1 Using ADO.NET to access data
	Technique 102: Querying the database using ADO.NET
	Technique 103: Using stored procedures to query the database
	Technique 104: Persisting data into the database

	B.2 Reading and writing XML
	Technique 105: Writing XML
	Technique 106: Generating XML from a data source
	Technique 107: Reading XML

	B.3 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

